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Abstract: Air temperature is one of the most essential variables in understanding global warming as
well as variations of climate, hydrology, and eco-systems. However, current products and assimilation
approaches alone can provide temperature data with high resolution, high spatio-temporal continuity,
and high accuracy simultaneously (refer to 3H data). To explore this kind of potential, we proposed
an integrated temperature downscaling framework by fusing multiple remotely sent, model-based,
and in-situ datasets, which was inspired by point-surface data fusion and deep learning. First, all
of the predictor variables were processed to maintain spatial seamlessness and temporal continuity.
Then, a deep belief neural network was applied to downscale temperature with a spatial resolution of
1 km. To further enhance the model performance, calibration techniques were adopted by integrating
station-based data. The results of the validation over the Yangtze River Basin indicated that the
average Pearson correlation coefficient, RMSE, and MAE of downscaled temperature achieved 0.983,
1.96 ◦C, and 1.57 ◦C, respectively. After calibration, the RMSE and MAE were further decreased by
~20%. In general, the results and comparative analysis confirmed the effectiveness of the framework
for generating 3H temperature datasets, which would be valuable for earth science studies.

Keywords: temperature downscaling; deep learning; point-surface fusion; Yangtze River basin

1. Introduction

Surface air temperature is one of the most critical land surface variables in the fields
of hydrology, meteorology, earth system sciences, and also plays a vital role in climate
change, natural disasters, and human health [1,2]. Global warming (i.e., increasing global
temperature) in recent decades has attracted scientists’ attention since it has led to dramati-
cal changes in the global eco-system, which has induced rise of the sea’s surface level, the
growth of extreme events (e.g., floods and droughts), and ultimately damages to human
lives [3–7]. Over the last few decades, there are two most direct sources for acquiring air
temperature data. On the one hand, in-situ weather stations are superior in providing
long-term, stable, and accurate temperature recordings. However, their costly maintenance
and sparse distribution are the major limitations for their application in regional or global
earth science research [8,9]. On the other hand, a variety of data assimilation and reanalysis
approaches have been developed to produce large scale assimilated products such as the
Japanese 55-year Reanalysis Project (JRA-55), the Global Land Data Assimilation System
(GLDAS), the NCEP/DOE Reanalysis 2 Project (NNRP-2), and the ERA-5 reanalysis prod-
uct [10–13]. Although these assimilated products are capable of providing both regional
and global data, the coarse resolution and relatively low accuracy usually limits their use
for fine impact assessment and decision making [14,15].
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Generally speaking, current point-wise ground observations and assimilated products
have diverse but also opposite advantages in providing air temperature data. However,
neither of them alone can provide a temperature product which has high resolution, high
spatio-temporal continuity (i.e., spatially seamless and temporally continuous), and high
accuracy simultaneously. This kind of temperature product is defined as 3H data in this
study. 3H temperature products are of great importance for investigating local to global
changes and mechanisms of various ecological and hydrological processes such as snow
melting and the prediction of streamflow and evapotranspiration [16,17]. Therefore, under
a changing environment, it is still urgently necessary to utilize downscaling and data fusion
techniques to generate 3H temperature data.

Temperature downscaling can be generally classified into two methods, namely dy-
namical downscaling and statistical downscaling [18]. Dynamical downscaling applies
a numerical weather model (e.g., weather research and forecasting model) and regional
climate model (e.g., regional climate model) to produce high resolution climate variables by
simulating physical processes of the coupled land-atmosphere system [19,20]. For instance,
Zhou et al. [21] developed downscaled temperature by using the providing regional cli-
mates for impacts studies (PRECIS) model. The results indicated that PRECIS had excellent
performance in capturing temperature spatial patterns. Hou et al. [22] used an energy bal-
ance Bowen ratio model to retrieve air temperature, and the mean error was approximately
2.21 ◦C. Nevertheless, these models are often limited by complicated parameters, intensive
computational resources, and non-transferability between regions [23,24].

Compared to dynamical downscaling, statistical downscaling can establish the sta-
tistical relationship between air temperature and other related climate or geographical
variables [25,26]. For instance, Li et al. [27] applied the geographical weighted regression
(GWR) method to generate 1 km air temperature over the conterminous United States by
taking land surface temperature (LST) and elevation as explanatory variables. Recently,
machine learning methods have also been widely adopted in data fusion [28,29]. Popular
algorithms include the random forest, multiple linear regression, and artificial neural
network methods. Zhang et al. [30] adopted the cubist regression, gradient boosting, and
random forest methods to integrate eight types of land assimilation products and produced
1 km long-term temperature in the Tibetan Plateau. Additionally, Rao et al. [31] utilized
cubist model to estimate daily temperature at 0.05◦ using LST and top-of-atmosphere
radiation products.

Despite the great achievement by aforementioned researchers, there are still some
limitations in producing 3H temperature. The statistical downscaling usually constructs
the linear or non-linear relationship between air temperature and related factors. However,
some commonly used remotely sensed variables (e.g., LST, NDVI) are not always spatially
seamless and temporally continuous due to the contamination of clouds and atmospheric
condition. To this point, the downscaled temperature is also difficult to achieve the 3H
goal [32–34]. In addition, although previous studies have generated air temperature with
acceptable results, reliable calibration techniques are still required to substantially improve
the accuracy of downscaled temperature. Since station-based observations are considered
to be the most accurate, the integration of ground data in bias correction is also promising
for generating high accuracy temperature [35,36]. Moreover, with the arrival of big data
era, deep learning has made great impact in various fields due to its powerful capability in
simulating the non-linear relationship [37,38]. However, the applications of deep learning
in the fields of hydrology, climate, and earth science are still in an infant stage. Therefore,
whether deep learning can also exhibit excellent performance in temperature downscaling
is an interesting question to explore.

To address the aforementioned issue, the main objective of this study is to develop an
air temperature downscaling framework by combining point-surface data fusion and deep
learning method. The proposed framework is designed to generate high resolution (1 km),
high spatio-temporal continuity (cloud-free and daily), and high accuracy (high correlation
and low error) temperature product. In this case, the generated 3H temperature product
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will help better understanding of the variations in hydrology, climate, and eco-system
under the changing environment.

2. Study Area and Data
2.1. Study Area

The Yangtze River Basin (YRB) was selected as the study area, which is the third
largest river in the world (Figure 1). Covering an area about 1.8 million km2 which
occupies nearly 18.8% of the extent of entire China mainland, YRB concentrates almost one
third of the total population in China. Additionally, YRB also shows substantial spatial
heterogeneity of land-cover types. With higher altitude in the upper region and lower
altitudes in the midstream and downstream, the topography of YRB indicates a three-step
ladder distribution, flowing through mountains, plateaus, basins, hills, and plains. To this
point, the climate, meteorological and hydrological characteristics, and land covers in YRB
are extremely complicated. Specifically, the distribution of annual precipitation is uneven,
ranging from 500 mm in the west to 2500 mm in the east. The feature of temperature
in YRB is formed under the influence of multiple factors such as solar radiation energy,
East Asia atmospheric circulation, and the topography of Qinghai-Tibet Plateau. The
annual mean temperature in YRB represents a trend of high temperatures in the east and
low temperatures in the west. Due to the impact of different topography, the Sichuan
Basin, Yunnan-Guizhou Plateau, and Jinsha River Valley have formed enclosed high and
low temperature central areas. Over the last few decades, global warming has greatly
influenced the hydrological cycle in YRB. For instance, Li et al. [39] investigated that the
intensity and frequency of extreme rainfall event have increased significantly with the
increase of temperature. Chen et al. [40] concluded that the occurrence frequency and
severity of droughts under global warming of 1.5 ◦C and floods under global warming of
2 ◦C indicated an upward trend in YRB. To this point, an all-weather high resolution air
temperature dataset is of great significance to understand the variation and underlying
mechanism of the modified hydrological cycle and natural disasters in YRB under the
changing environment.

Figure 1. The geographical location of Yangtze River Basin. The blue points represent the meteo-
rological stations used for model training while the purple triangles indicate the stations used for
model validation.

2.2. Data

In this study, a total of three categories of datasets were adopted for temperature
downscaling, which are elaborated in Table 1. The datasets can be classified as: (1) remotely
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sensed data including MODIS and SRTM products, (2) model-based data including ERA-5
and TRIMS LST products, and (3) in-situ ground measurement from weather stations.

Table 1. The detailed information of three categories of products used in this study.

Category Product Variable Spatial Resolution Temporal Resolution

Remotely
Sensed

Products

MOD13A2 NDVI 1 km 16 Days

SRTM DEM 90 m —

Model-based Products
ERA5

2 m
Temperature 0.1◦ Hourly

Soil moisture
Wind Speed

Albedo
TRIMS LST LST 1 km Daily

Ground Data In-situ
Station

Mean
Temperature — Daily

2.2.1. Remotely Sensed Product

Moderate Resolution Imaging Spectroradiometer (MODIS) is the major instrument
aboard Aqua and Terra satellite. Depending on the opposite transit direction of Aqua
(south to north) and Terra (north to south), MODIS satellite can obtain global surface
observations once or twice per day in 36 spectral bands. In this study, we selected NDVI as
one of the predictors for temperature downscaling model. The temporal variation of NDVI
is relatively stable compared to other highly time-varying variables such as land surface
temperature. Therefore, we adopted MODIS vegetation index product (MOD13A2) which
was collected from Application for Extracting and Exploring Analysis Ready Samples
(AppEEARS). MOD13A2 Version 6 provides vegetation index values with a spatial resolu-
tion of 1 km and temporal resolution of 16 days, which can greatly reduce the proportions
of pixels with missing values due to the cloud contamination and atmospheric conditions.

Additionally, we also collected global resampled Shuttle Radar Topography Mission
(SRTM) digital elevation product with a spatial resolution of 90 m.

2.2.2. Model-Based Product

Previous researches have demonstrated that land surface temperature (LST) had
strong positive relationship with air temperature and could be an effective variable in
generating 3H temperature products [41,42]. However, current MODIS LST products
(e.g., MOD11A1) fail to provide long-term spatially seamless LST data due to the cloud
contamination and atmospheric pollution, which would further lead to the discontinuity
of downscaled temperature data. To overcome this issue, we adopted a 1 km all weather
Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless (TRIMS) LST
product, which covers China mainland and its neighboring areas [43,44]. TRIMS LST
was generated by a novel reanalysis and thermal infrared remote sensing data merging
(RTM) method based on the decomposition model of LST series. And the dataset has been
validated to be applicable for associated hydrological and meteorological studies with
excellent performance compared with MODIS LST and other existing products [45].

Moreover, we introduced ERA-5 reanalysis product to provide 2 m model-based air
temperature, forecast albedo, wind speed, and soil moisture. Developed by European
Centre for Medium-Range Weather Forecasts (ECMWF), ERA-5 is the successor of previous
ERA-Interim, which is the latest generation for providing global atmospheric, land and
oceanic climate variables. ERA-5 assimilates various satellite data and in-situ ground
measurements using 4D-Var data assimilation technique and produces datasets with a
spatial resolution of 0.1◦, which has been widely used in various fields of studies.
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2.2.3. In-Situ Measurement

In-situ ground measurements of air temperature were acquired from China Meteoro-
logical Data Service Center (CMDC). After the screening by the boundary of YRB, a total of
194 meteorological stations were selected as the sources of in-situ data. The location and
distribution of in-situ stations can be observed at Figure 1. Higher density of stations is
concentrated in the middle and lower regions of YRB while the distribution of stations in
the upper region is relatively sparse. In this study, daily average air temperature is selected
as the major downscaling factor.

3. Methods
3.1. Methodology

The proposed high resolution spatially seamless and temporally continuous tem-
perature downscaling framework is shown in Figure 2. Generally, the methodology can
be divided into three parts: (1) Data collection and preprocessing (Section 3.2); (2) deep
learning based temperature downscaling (Section 3.3); (3) and bias correction for down-
scaled temperature (Section 3.4). More detailed information about the methodology were
outlined below.

Figure 2. The methodology of temperature downscaling. The entire framework can be gener-
ally divided into three parts including (a) data preprocessing, (b) temperature downscaling, and
(c) temperature calibration.

3.2. Data Preprocessing

In total, we collected multi-source datasets for the downscaling framework including
remotely sensed, model-based, and in-situ products. Each of these products had diverse
spatial and temporal resolution. Therefore, before the downscaling, necessary data prepro-
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cessing operations (i.e., reprojection, resampling, clipping) should be completed to ensure
the same extent and resolution.

Additionally, for NDVI products, although MOD13A2 had 16-day resolution, there
were still some small proportions of pixels with missing or unreliable values. In order
to provide seamless NDVI and further produce all-weather downscaled temperature, we
utilized Savizky-Golay (SG) filter method to reconstruct unreliable NDVI pixels [46,47]. SG
filter uses a simplified high-order polynomial approximation sliding windows to smooth
derivatives of a set of consecutive values [48]. The general equation of SG fitting process
can be given as:

Y∗j =
i=m

∑
i=−m

CiYj+1

N
(1)

where Y∗j and Yj+1 are the smoothed and original NDVI, respectively. Ci is the coefficient
calculated by SG filter and N is the number of convoluting integers. m is the size of half
of smoothing window. Before the SG filtering, we introduced the pixel reliability files of
MOD13A2 to identify the unreliable NDVI pixels. Specifically, the values of unreliable
pixels were equal to 2 and 3 in the quality control files. Then, the unreliable values would
be replaced by a linear interpolation method using the adjacent NDVI values, which can
be given as follows:

N0(i, t) =
{

aN(i, t− 1) + bN(i, t + 1), R = 2, 3
N(i, t), R = 0, 1

(2)

where R is the reliability value in the quality control file and N(i, t) is the NDVI of the ith

pixel in the ith time. N0(i, t) is the NDVI value after the judgment of Equation (2). After
the linear interpolation, the SG filter process will begin.

3.3. Deep Learning Based Temperature Downscaling

There have been some studies demonstrated that deep learning models had effective
capability of monitoring the non-linear relationship between different land surface vari-
ables. And deep belief network (DBN) has been shown to have excellent performance in
the field of data fusion [26,49,50]. DBN is a Bayesian probability generation model which
consists of multiple restricted Boltzmann machines (RBM) layers and one back-propagation
(BP) layer [51]. The traditional structures of DBN and RBM are shown in Figure 3. An
RBM is a two-layer neural network, which contains one hidden layer and one visible layer
with full connection between two layers but no connection within each layer. Let v and h
indicate the state of visible layer and hidden layer. vi and hi represent the ith neuron of the
corresponding layers, respectively. Then the equation of energy function of RBM can be
given as follows:

E(v, h/θ) = −
m

∑
i=1

aivi −
n

∑
j=1

bjhj −
m

∑
i=1

n

∑
j=1

viWijhj (3)

where θ =
{

Wij, ai, bj
}

means the parameters to be estimated. To be specific, W represents
the weight matrix while a and b denote the bias of visible neurons and hidden neurons,
respectively. The training of DBN can be generally divided into two steps. First, the
pre-training step starts from the input layer to the hidden layer of the last RBM network
without supervision in order to study significant features from the independent variables.
Then, the initialized parameters (i.e., weights and biases) will be further refined by the BP
network to make the predicted values closer to the dependent variable.
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Figure 3. The structure of deep belief neural network.

In this study, a total of eight variables were regarded as the predictors for the DBN
model including ERA-5 temperature, surface soil moisture, wind speed, albedo, LST, NDVI,
DEM, and a time variable (i.e., DOY). All predictors were downscaled and resampled to
1 km spatial resolution so that the finally downscaled temperature could maintain high
spatial resolution. The output variable of DBN was in-situ average air temperature. The
downscaled model can be expressed as:

Temperaturedownscaled = f (ERA5 T, SSM, Wind, Albedo, LST, NDVI,
DEM, DOY)

(4)

where f (·) is the DBN model. The study period was selected as the whole year of 2019 and
there was a total of 194 meteorological stations in the study area. For each station, the input
sample set has two dimensions of which the shape is 365 × 8, indicating 365 days (one
year) and 8 input variables. Therefore, all meteorological stations formed the sample set of
194× 365× 8. Then all stations were randomly classified as training set, validation set, and
test set with the ratio of 7:2:1. And cross validation was used to assess the performance of
downscaling models. Finally, the selected best-fitted DBN model would be applied to other
pixels with all predictors available and downscaled seamless and continuous temperature
at 1 km resolution.

3.4. Bias Correction for Downscaled Temperature

The downscaled temperature based on DBN model still contains certain underesti-
mation or overestimation against ground observations due to the error propagation from
the resampling of coarse resolution products (e.g., ERA-5). Additionally, the heterogenous
distribution of model predictors may also affect the downscaling accuracy [52]. To further
improve the accuracy of downscaled temperature and achieve the 3H goal, we introduced
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two calibration strategies which were geographical ratio analysis (GRA) and geographical
difference analysis (GDA) [53,54]. The equations of GRA and GDA were given as follows:

Pcorrected(x) = Pdownscaled(x)×
n

∑
i=1

λi
Pobs(xi)

Pdownscaled(xi)
(5)

Pcorrected(x) = Pdownscaled(x) +
n

∑
i=1

λi(Pobs(xi)− Pdownscaled(xi)) (6)

where Pcorrected, Pdownscaled, and Pobs represent the calibrated, originally downscaled, and
observed temperature at location x, respectively. λ is the weight at location x. Then,
the ratio Pobs/Pdownscaled and the difference Pobs − Pdownscaled at in-situ stations would be
interpolated to the entire study region with a spatial resolution of 1 km using ordinary
Kriging algorithm. Finally, the interpolated calibration parameters would be compensated
to the downscaled temperature to obtain calibrated high accuracy temperature data.

3.5. Statistical Metrics

A total of four statistical metrics were applied to evaluate the performance of down-
scaled temperature, including Pearson correlation coefficient (PCC), root mean squared
error (RMSE), mean absolute error (MAE), and bias. The detailed information of these four
metrics is listed in Table 2.

Table 2. The equations and detailed information of PCC, RMSE, bias, and MAE. Pi and Mi represent
the ith downscaled value and ground measurement, respectively. P and M indicate the average
values of downscaled temperature and in-situ measurements. n is the number of the sample.

Metric Equation Unit

PCC PCC =

n
∑

i=1
(Pi−P)(Mi−M)√

n
∑

i=1
(Pi−P)2

(Mi−M)
2

–

RMSE
RMSE =

√
n
∑

i=1
(Pi−Mi)

2

n

◦C

bias bias = 1
n

n
∑

i=1
(Pi −Mi)

◦C

MAE MAE = 1
n

n
∑

i=1
|Pi −Mi|

◦C

4. Results
4.1. Correlation Analysis for Dependent and Independent Variables

First, Pearson correlation coefficient (PCC) was adopted to investigate the relationship
between in-situ average temperature and each predictor. The result is presented in Figure 4.
It can be seen that in-situ temperature indicated strong positive relationship with land
surface temperature and ERA-5 temperature with PCC of 0.91 and 0.95, respectively.
To this point, the inputs of LST and model-based temperature might be beneficial to the
improvement of accuracy for the downscaled temperature, which have also been confirmed
in some previous studies. Besides, in-situ temperature also showed moderate positive
correlation with NDVI (0.40) and negative correlations with elevation (−0.44) and Albedo
(−0.38). For SSM, wind speed, and DOY, only weak correlations were observed with
absolute PCC lower than 0.3.



Remote Sens. 2021, 13, 3904 9 of 21

Figure 4. The correlation coefficient between air temperature and each predictor variables. The blue
color represents positive relationship while the red color means negative relationship. The lower
triangle of the figure represents the specific PCC values between two variables while the upper
triangle uses colors and oblique lines to represent the positive or negative relationship.

4.2. Performance of the Downscaled Temperature
4.2.1. Evaluation of the Performance at Validation Sites

By combining the eight aforementioned input variables, the DBN based downscal-
ing model was constructed from January 1st to December 31th during 2019. The entire
sample set was divided into training set, validation set, and test set following the ratio
of 7:2:1. Therefore, a total of 20 meteorological stations were randomly selected for the
validation of downscaling performance. To evaluate the predictive power of DBN model in
downscaling average air temperature, firstly, we plotted the scatter density plots for the 20
validation sites (Figure 5). The x and y axes represent in-situ and downscaled temperature,
respectively while the red color indicates the dense concentration of scatter points. In
general, the scatter points for all validation sites were concentrated near the 1:1 line which
illustrated that the downscaled temperature showed high consistence with in-situ ground
measurements. Specifically, the downscaled temperature exhibited strong correlation with
in-situ ground observations with PCC values generally higher than 0.94 for all validation
stations while RMSE was ranging from 1.13 ◦C to 3.69 ◦C. The average PCC, RMSE, and
bias for these validation sites achieved 0.983 ◦C, 1.96 ◦C, and 1.57 ◦C, respectively. Results
demonstrated that DBN model showed excellent performance in downscaling temperature
with 1 km spatial resolution at relatively high accuracy.
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Figure 5. The scatter density plots and statistical metrics for 20 validation stations. The x and y axes represent in-situ
ground measurements and downscaled temperature, respectively. The red color represents dense concentration of scatters.
N means the number of observations for validation.

However, it can be observed that the distribution of density scatter points still var-
ied from stations to stations. For instance, station 56,034 and 57,028 represented obvious
overestimation against in-situ ground data while station 56,247 and 57,348 showed underes-
timation compared to in-situ observations. To further investigate the spatial patterns of the
statistical metrics and downscaling accuracy in all meteorological stations, the distributions
of four metrics are presented in Figure 6. Prominent spatial variations of these statistical
metrics can be observed from the figure. For PCC, RMSE, and MAE, the stations located in
the middle and lower region of YRB exhibited significantly higher accuracy (i.e., higher
PCC values and lower RMSE and MAE) than that of upper reach. It may attribute to
the complicated terrain in the west of YRB. The topography of upper region of YRB are
mainly dominated by mountains and plateaus. And typical topographical areas include
Qinghai-Tibet Plateau, Hengduan Mountains, Yunnan-Guizhou Plateau, and Sichuan Basin,
which form a huge drop in elevation. Previous studies have found that the accuracy of
some existing temperature products was relatively low in these areas, which was in line
with the results of our study [30].

4.2.2. Spatio-Temporal Analysis of the Downscaled Temperature

A reliable temperature downscaling framework is supposed to achieve two bench-
marks. First, the downscaled temperature is required to capture the temporal variation
of in-situ ground observations (which are regarded as true values here). Second, the
downscaled temperature should reconstruct the original spatial patterns of temperature
in the study area. In order to evaluate whether the proposed temperature downscaling
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framework can satisfy these two criteria, we conduct validation analysis from both spatial
and temporal perspectives.

Figure 6. The spatial distribution of statistical metrics for 20 validation sites in YRB. (a–d) represent
the distribution of PCC, RMSE, MAE, and bias.

To examine the capability of capturing temporal dynamics for the downscaled temper-
ature, a total of six validation stations were randomly selected. The temporal variations of
downscaled temperature (red dashed line), in-situ ground observations (purple point), and
ERA-5 temperature (orange line) at these stations are shown in Figure 7. In general, the
downscaled temperature represented higher consistence with in-situ measurements rather
than ERA-5 temperature. ERA-5 temperature showed more overestimation or underesti-
mation against in-situ observations, which could be significantly observed in station 56,374
and 57,687. It is mainly attributed to the fact that the spatial scale heterogeneity between
ground measurement and satellite-retrieved data is often existed. Although some errors
also existed in downscaled temperature at some time, the overall trend of temperature
variations could be well monitored and captured by applying DBN model. Results further
indicated the effectiveness of the proposed downscaling framework for generating high
quality temperature data.

Here we also compared the spatial distribution of our downscaled temperature with
that of the model-based ERA-5 temperature (Figure 8). The hourly ERA-5 temperature
had been merged to daily temperature in this case. From the figure, the spatial pattern
of temperature data downscaled by DBN model shared some similarities with the ERA-5
temperature. It indicated that the DBN based downscaling model could will capture the
overall spatial trend of temperature in YRB. Additionally, the downscaled temperature
exhibited more spatial details than the model-based temperature. For example, more
detailed spatial variations can be observed in the southwestern and middle areas in YRB in
the downscaled temperature data than the assimilated temperature product. In a word,
the proposed downscaling framework successfully generated 1 km spatially seamless and
temporally continuous temperature by applying point-surface data fusion method and
DBN model.
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Figure 7. The temporal variations of the temperature data in 2019 at six randomly selected stations.
The purple points represent in-situ ground measurements while the red dashed line and orange line
indicate the downscaled temperature and ERA-5 temperature, respectively.

Figure 8. The spatial distribution of ERA-5 temperature and downscaled temperature in 1 July in YRB.

Moreover, we mapped the spatial distributions of average downscaled temperature in
each season in 2019 (Figure 9). The spatial patterns of downscaled temperature showed
prominent seasonality and spatial heterogeneity in YRB. The overall temperature ranged
from −23 ◦C to 30 ◦C in 2019. Temporally, average temperature was significantly higher
in summer (June to August) and lower in winter (December to February). Spatially, the
downscaled temperature increased from the western YRB to the middle and lower regions
of YRB. Location with lowest temperature lay in the Qinghai-Tibet Plateau, which had the
highest elevation in the entire YRB.
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Figure 9. The spatial distributions of average downscaled temperature during each season in 2019.
(a–d) are the spatial distributions of downscaled temperature in four seasons. (e) exhibits the temporal
variation of downscaled temperature in each month.

4.3. Assessment of the Calibrated Temperature

Although previous downscaling procedure had successfully generated 1 km seamless
and continuous temperature, underestimation or overestimation still existed in some
periods. In order to further improve the accuracy of downscaled temperature and achieve
the 3H goal, we adopted GRA and GDA calibration methods which considered the ratio and
difference between downscaled and observed temperature, respectively. The calibration
methods were evaluated over 20 validation stations and the remaining sites were used to
calculate the calibration parameters. The statistical metrics for the 20 validation sites before
and after the calibration are shown in Figure 10. In general, PCC values increased after
the bias correction while the RMSE, bias, and MAE decreased. To be specific, the GDA
method exhibited more significant improvement in downscaling accuracy compared to
GRA. Although GRA generally improved the accuracy, it should be noted that it may also
cause opposite calibration due to the fact that temperature has negative values which will
influence the sign of the calibration parameters. GRA is more suitable for the variables
which are constantly positive or negative. In this case, GDA was more suitable for the bias
calibration since GDA applied add operation rather than multiply. In a word, after the
GDA calibration, the average PCC, RMSE, and MAE achieved 0.987, 1.54 ◦C, and 1.25 ◦C
which improved about 0.4%, 21.42%, and 20.38%, respectively.
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Figure 10. The box plots of the statistical metrics for 20 validation stations. Boxes from left to right
in each subplot represent downscaled temperature, calibrated temperature by GRA, and calibrated
temperature by GDA, respectively.

The spatial distributions of the temperature before and after GDA calibration are also
presented in Figure 11. From Figure 11b, the residuals between downscaled temperature
and ground observations ranged from −3 ◦C to 3 ◦C. Results indicated that overestimation
of temperature mainly concentrated in the middle region of YRB while underestimation
usually concentrated in the southwestern areas.

Figure 11. The spatial distribution of downscaled temperature before (a) and after (b) bias calibration.
(c) is the distribution of residuals between downscaled temperature and in-situ observations. (d,e) are
the regions with significant changes before and after calibration.

Based on the aforementioned analysis, the proposed temperature downscaling frame-
work combining point-surface data fusion, deep learning, and bias calibration finally
achieved best performance in generating 1 km spatially seamless and temporally contin-
uous temperature. The average PCC, RMSE, and MAE after calibration achieved 0.987,
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1.54 ◦C, and 1.25 ◦C, which satisfied the goal of producing high accuracy data and con-
firmed the effectiveness of the downscaling framework.

5. Discussion
5.1. Spatio-Temporal Evaluation of the Downscaling Accuracy

To investigate the performance of downscaling framework in different months, Figure 12
presents the variations of statistical metrics for all validation sites in month scale. The
blue line indicates the mean value of corresponding metric. Generally, the variations of
downscaling accuracy also represented distinct differences in different months. Specifically,
downscaled temperature in spring (March to May) and autumn (September to November)
showed lower errors rather than that in summer and winter. February and December
witnessed relatively low downscaling accuracy with average PCC values of 0.69 and 0.60.

Figure 12. The temporal variations of PCC, RMSE, MAR, and bias in each month. The blue line represents the variations of
mean value for each statistical metric.

Additionally, we also examined the downscaling accuracy in diverse land cover types
including grassland, water, forest, farmland, and building. Results of the metrics are shown
in Figure 13. It can be seen that water and building areas had relatively good performance
with average RMSE of 1.32 ◦C and 1.51 ◦C, respectively. However, DBN model performed
relatively weaker in grassland and farmland with RMSE up to 1.89 ◦C and 1.64 ◦C. Besides,
it is also widely acknowledged that air temperature is highly correlated to the elevation, of
which the temperature will decrease with the increase of elevation. To this point, to what
extent the elevation affected the temperature downscaling accuracy was also worthy to
explore. Figure 13b classifies the elevation into five levels with an interval of 1000 m. The
statistical metrics varied in different ranges of elevation. Generally, the DBN performance
was weakened with the increase of elevation. However, it is noteworthy that for the
elevation over 3000 m, the model performance represented as an opposite trend (i.e.,
performed relatively better).

5.2. Comparison for Different Downscaling Algorithms

In the field of data fusion, spatial statistical methods (e.g., geographical weighted
regression) and machine learning algorithms have been widely adopted to downscale
and predict land surface variables. The commonly used machine learning approaches
include random forest (RF), back-propagation neural network (BPNN), support vector
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machine (SVM), and gradient boosting decision tree (GBDT). With the rising of deep
learning, researchers have also started to focus on the application of deep learning models
in earth science studies [55]. For instance, Wu et al. [56] combined convolutional neural
network (CNN) and long-short-term memory network (LSTM) to downscale high accuracy
precipitation with a spatial resolution of 0.05◦. Li et al. [57] developed a geo-intelligent
deep belief network to map PM2.5 in China. In this study, we adopted deep learning model
to downscale 1 km seamless and continuous temperature. To evaluate the role of deep
learning in the downscaling framework, we also conducted to comparative experiments
using other competing deep learning and machine learning algorithms, including long
short-term memory network (LSTM), BPNN, RF, classification and regression trees (CART),
and SVM. The automated machine learning (AutoML) technique was also adopted to
help the construction of machine learning models, which has been widely used in various
fields [58]. The effectiveness of these downscaling has been confirmed in various previous
studies. The results of four statistical metrics averaging for 20 validation stations are
shown in Figure 14. In general, all of these methods can achieve acceptable results in
downscaling temperature. In comparison, three neural network models (i.e., DBN, LSTM,
and BPNN) and RF outperformed CART and SVM with PCC values higher than 0.96 and
RMSE lower than 2.25 ◦C. Among the first four algorithms, BPNN had poorest performance
with PCC, RMSE, MAE of 0.965, 2.25 ◦C, and 1.68 ◦C, respectively. Random forest showed
slightly better predictive power than BPNN. Generally, it can be observed that deep
learning methods (i.e., DBN and LSTM) represented better capability than other machine
learning models in downscaling temperature. The results indicated that DBN exhibited
most powerful downscaling performance for obtaining the lowest errors (i.e., PCC, RMSE,
MAE of 0.983, 1.96 ◦C, and 1.57 ◦C) against in-situ observations. It was largely attributed
to the parameter initialization in the pre-training of RBM model, which overcomes the
disadvantages of random initialization of traditional BPNN that may induce falling into
the local optima and consuming long training time. The pre-training step can be regarded
as the parameter initialization for a deep BPNN. Overall, the comparative analysis further
confirmed the effectiveness of DBN in the proposed downscaling framework for producing
high accuracy temperature data.

Figure 13. Model performance in different land cover types (grassland, farmland, forest, building, and water) and ranges of
elevation (<1000 m, 1000~2000 m, 2000~3000 m, 3000~4000 m, >4000 m). The blue, orange, and green colors represent PCC,
MAE, and RMSE, respectively.
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Figure 14. The comparative analysis of six downscaling algorithms in generating 3H temperature. (a–f) represent the
performance of DBN, LSTM, BPNN, RF, CART, and SVM on 20 validation station, respectively.

5.3. Role of Point-Surface Fusion in Generating 3H Temperature Data

In this study, we applied point-surface data fusion in downscaling temperature since
in-situ ground measurements are usually considered the most accurate compared to other
data sources such as satellite-based and model-based products [59,60]. Some previous
downscaling studies used remotely sensed or assimilated products as model outputs, which
failed to take fully advantages of in-situ ground observations. In order to determine and
evaluate the role of point-surface data fusion in improving the downscaling accuracy, we
set a comparative experiment by applying a surface-surface fusion method in temperature
downscaling. In this case, the output of the DBN model was ERA-5 temperature instead of
in-situ measurements. The density scatter plots for 20 validation stations are presented in
Figure 15. Compared to the downscaled temperature using model-based temperature as
output, the accuracy of the downscaled temperature by adopting ground observations as
output was substantially improved. The average PCC increased from 0.94 to 0.98 while
the RMSE, MAE raised from 3.71 ◦C and 2.98 ◦C to 1.96 ◦C and 1.57 ◦C, which decreased
about 47.17% and 47.32%, respectively. Although downscaled temperature in the case
of surface-surface fusion still maintained high correlation with in-situ measurements, it
is mostly attributed to the originally high correlation between ERA-5 temperature and
ground observations. In a word, the application of point-surface data fusion was proved to
enhance the overall performance of DBN model in generating 3H temperature.



Remote Sens. 2021, 13, 3904 18 of 21

Figure 15. The scatter density plots for 20 validation stations based on point-surface data fusion (a)
and surface-surface data fusion (b).

6. Conclusions

In this study, we proposed an integrated temperature downscaling framework inspired
by point-surface data fusion through deep learning. The downscaling framework was
applied to generate high resolution (1 km), high spatio-temporal continuity (spatially
seamless and daily), and high accuracy temperature data over the Yangtze River Basin in
2019 by fusing remotely sensed, assimilated, and station-based products. Compared with
conventional data fusion algorithms (e.g., RF, BPNN), deep learning exhibited excellent
performance in downscaling air temperature. The average PCC, RMSE, MAE, and bias
for the 20 validation stations achieved 0.983, 1.96 ◦C, 1.57 ◦C, and 0.07 ◦C, respectively.
In order to further enhance the model performance, GRA and GDA calibration methods
were applied by integrating in-situ ground measurements. Results demonstrated that GDA
had better capability in improving downscaling accuracy than GRA. Specifically, PCC
values increased from 0.983 to 0.987 while RMSE and MAE were decreased by 21.42% and
20.38%, respectively. The comparison between point-surface fusion and surface-surface
fusion also indicated that the combination of station-based data could greatly improve the
downscaling accuracy, which decreased the RMSE and MAE about 47.17% and 47.32%. To
conclude, the results and comparative analysis confirmed that the proposed temperature
downscaling framework had potential to generate 3H temperature data, which would be of
great significance for global warming and climate change assessment as well as hydrology,
agriculture, and public health management.
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