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Abstract: Land cover/land use (LCLU) is currently a very important topic, especially for coastal
areas that connect the land and the coast and tend to change frequently. LCLU plays a crucial role in
land and territory planning and management tasks. This study aims to complement information on
the types and rates of LCLU multiannual changes with the distributions, rates, and consequences of
these changes in the Crozon Peninsula, a highly fragmented coastal area. To evaluate the multiannual
change detection (CD) capabilities using high-resolution (HR) satellite imagery, we implemented
three remote sensing algorithms: a support vector machine (SVM), a random forest (RF) combined
with geographic object-based image analysis techniques (GEOBIA), and a convolutional neural
network (CNN), with SPOT 5 and Sentinel 2 data from 2007 and 2018. Accurate and timely CD is
the most important aspect of this process. Although all algorithms were indicated as efficient in
our study, with accuracy indices between 70% and 90%, the CNN had significantly higher accuracy
than the SVM and RF, up to 90%. The inclusion of the CNN significantly improved the classification
performance (5–10% increase in the overall accuracy) compared with the SVM and RF classifiers
applied in our study. The CNN eliminated some of the confusion that characterizes a coastal area.
Through the study of CD results by post-classification comparison (PCC), multiple changes in LCLU
could be observed between 2007 and 2018: both the cultivated and non-vegetated areas increased,
accompanied by high deforestation, which could be explained by the high rate of urbanization in the
peninsula.

Keywords: remote sensing; machine learning; GEOBIA; CNN; land cover/land use; SPOT 5; Sentinel
2; change detection

1. Introduction

Coastal zones are the shores of seas or oceans. Today, nearly half of the world’s
population lives in coastal regions where multiple activities are developed [1]. Over the last
century, coastal zones throughout the world have undergone major changes related to a
significant influx of the population. Coveted, densely populated, and exploited by human
societies, coastal zones are therefore subject to significant pressures that generate territorial
dynamics and changes in land cover/land use (LCLU). LCLU is al-ways influenced by
human actions and environmental features and processes, and it mediates the interactions
of these two factors. This means that land use changes are primarily due to human actions,
which are associated with economic development, tech-neology, environmental change,
and especially, population growth, which usually has parallel rates to land use change [2,3].
However, traditional methods require direct observations in the field; usually, they are not
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only ineffective, expensive, time-consuming, and labor intensive but are also limited on
the local scale. Hence, remote sensing with analysis techniques is highly recommended,
and there has been an in-creasing demand for LCLU studies since the first launch of Earth
observation satellites in 1972 with Landsat-1. Since that time, the monitoring and mapping
of LCLUs over large areas and in a consistent manner has been made possible with Earth
observation (EO) data, and detection of these changes by EO data is necessary for the
better management of territory and resources. Moreover, each new generation of satellite
equipment increases the resolution of sensors that collect high spatial resolution data
for LCLU mapping and monitoring [4]. Since high-resolution satellite images are now
available, land cover change mapping and monitoring at the landscape or local scale have
been developed at a high rate of speed [5–7].

Several national and international organizations have produced regional land change
maps that represent a location on a single date (e.g., CORINE Land Cover 2000 in Europe),
with Landsat observations acquired in a target year interval (e.g., ±1–3 years). Some pro-
grams repeat land cover mapping periodically (e.g., NLCD 2001/2006/2011 in the United
States and CSBIO in France) to allow the observation of the changes. The local accuracy of
these global or national land cover maps generated from coarse spatial resolution data is
low, especially in regions with fragmented land covers [8].

At the same time, for studies at larger scales, satellite data have been used to mon-
itor LCLU changes worldwide in various fields of research, such as mapping cropland
conversions [9], monitoring urbanization and its impacts [10–12], monitoring deforesta-
tion [13–17], evaluating the environment [18–20] and biodiversity losses, and examining
the influence of LCLU on climate change [21]. Nonetheless, all types of land use might
lead to detrimental impacts and effects in many fields: for example, the abandonment
of agricultural land without restoration is linked to a specific set of problems, including
landscape degradation and an increased risk of erosion [4]. These irreversible impacts
of LCLU change have significantly increased in recent decades, and so the mapping and
monitoring LCLU is very important as the first step in the study and management of this
phenomenon.

In recent years, given the importance of LCLU changes and the increasing availabil-
ity of open-access archived multitemporal datasets, many methods for analyzing and
mapping LCLU changes have been developed. The diversity of algorithms for studying
LCLU changes was also determined by the diversity of remote sensing sensor types (e.g.,
multispectral, hyperspectral, and SAR). Among the most commonly used satellite images
in change detection (CD) studies are multispectral images due to the diversity of the types
of sensors used to collect the data and the high temporal resolution of datasets for this
type of study. For example, Wang et al. 2018 [22] conducted a study in a coastal area of
Dongguan City, China, using SPOT-5 images acquired in 2005 and 2010. In this study, a
scale self-adapting segmentation (SSAS) approach based on the exponential sampling of a
scale parameter and the location of the local maximum of a weighted local variance was
proposed to determine the scale selection problem when segmenting images constrained
by LCLU for detecting changes. Tran et al. 2015 [23] conducted a study in coastal areas of
the Mekong Delta on changes in LCLU between 1973 and 2011 from Landsat and SPOT
images. The supervised maximum likelihood classification algorithm was demonstrated
to provide the best results from remotely sensed data when each class had a Gaussian
distribution. Guan et al. 2020 [24] studied a CD and classification algorithm for urban
expansion processes in Tianjin (a coastal city in China) based on a Landsat time series from
1985 to 2018. They applied the c-factor approach with the Ross Thick-LiSparse-R model to
correct the bi-directional reflectance distribution function (BRDF) effect for each Landsat
image and calculated a spatial line density feature for improving the CD and the classifica-
tion. Dou and Chen 2017 [25] proposed a study in Shenzhen, a coastal city in China, from
Landsat images using C4.5-based AdaBoost, and a hierarchical classification method was
developed to extract specific classes with high accuracy by combining a specific number of
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base-classifier decisions. According to this study, the landscape of Shenzhen city has been
profoundly changed by prominent urban expansion.

In addition, in recent decades, remote sensing techniques have progressed, and many
methods, such as machine learning, have been developed for LCLU change studies, such as
support vector machines (SVMs), random forests (RFs), and convolutional neural networks
(CNNs). Nonparametric machine learning algorithms such as SVM and RF are well-known
for their optimal classification accuracies in land cover classification applications [26–28].
These algorithms have significant advantages and similar abilities in classifying multitem-
poral and multisensor data, including high-dimensional datasets and improved overall
accuracy [29,30]. The accurate and timely detection of changes is the most important aspect
of this process. Moreover, CNN, a more recently developed but well-represented deep
learning method, allows the rapid and effective analysis and classification of LCLUs and
has proven a suitable and reliable method for accurate CD in complex scenes. Although it is
more recent, many studies have made use of this method. Wang et al., 2020 [31] proposed a
new coarse-to-fine deep learning-based land-use CD method. In this study, several models
of CNN well-trained with a new scene classification dataset were able to provide ac-curate
pixel-level range CD results with a high detection accuracy and reflect the changes in LCLU
in detail. In another study of Han et al., 2020 [32], a weighted Demptster-Shafer theory
fusion method was proposed. This method achieved reliable CD results with high accuracy
using only two very high-resolution multitemporal images by generating object-based CD
through combining multiple pixel-based CDs.

At the same time, in the Pays de Brest, which the Crozon Peninsula is part of, a category
of LCLU has been studied through shallow machine learning algorithms. Niculescu et al.
2018 [33] and Niculescu et al. 2020 [34] applied the algorithms of rotation forest, canonical
correlation forests and random forest (RF) with satisfactory results for the classification of
the different categories of land cover (vegetation) of the peninsula, as well as the summer
and winter crops from the synergy of optical and radar data from the Sentinel satellite.

LCLU changes in coastal areas have been studied with machine learning algorithms
in different environments. Munoz et al 2021 [35] analyzed the coastal wetland dynamics
associated with urbanization, the sea level rise and hurricane impacts in the Mobile Bay
watershed since 1984. They developed a land cover classification model with CNNs and a
data fusion (DF) framework. The classification model achieved the highest overall accuracy
(0.93) and f1-scores in the woody (0.90) and emergent wetland classes (0.99) when those
datasets were fused into the framework.

More methodological work on the application of CNNs for CD was conducted by
Jing et al. 2020 [36]. In this study, a CD method was proposed that combines a multiscale
simple linear iterative clustering-convolutional neural network (SLIC-CNN) with stacked
convolutional auto encoder (SCAE) features to improve the CD capabilities with HR
satellite images. This method uses the self-learning SCAE architecture as the feature
extractor to integrate multiscale, spectral, geometric, textural and deep structural features
to enhance the characteristics of ground objects in images.

Machine learning methods were combined with Object-based Image Analysis (OBIA)
techniques by Jozdani et al., 2019 [37] for urban LCLU classification. The multi-layer
perceptron model led to the most accurate classification results in this study. However, it
is also important to note that GB/XGB and SVM produced highly accurate classification
results, demonstrating the versatility of these ML algorithms.

In this work, we aimed to study multiannual changes of LCLU in the Crozon Peninsula,
an area that has mainly been marked by conversion between three types of LCLU: cropland,
urban, and vegetation, in recent years, especially from 2007 to 2018. The challenge of this
research was to deal with multiannual changes of a coastal area with different shapes
and patterns by combining machine learning methods with PCC. To improve the CD
capabilities using high-resolution satellite images, we implemented three remote sensing
machine learning algorithms: SVM, RF combined with GEOBIA techniques, and CNN with
SPOT 5 and Sentinel 2 data from 2007 and 2018, all effective and valid data sources. An
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evaluation of these three advanced machine-learning algorithms for image classification
in terms of the overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA),
and confidence interval was conducted to more precisely detect the type of multiannual
change.

2. Study Area

The study area, the Crozon Peninsula canton south of the Landerneau-Daoulas canton,
is located on the west coast of France in the Pays de Brest, Department of Finistère and the
region of Brittany (Figure 1).
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Figure 1. Location of the study area, including the Crozon Peninsula and two bordering regions, located in Pays de Brest,
Finistère, Brittany, France, with the RGB band combination for Sentinel 2 (2018) and the location of the ground truth field
research.

It covers a land area of 365.4 km2 that extends between latitudes 48◦ 10′04′′ N and
48◦ 21′28′′ N, longitudes 4◦02′44′′ W and 4◦38′37′′ W. The Crozon Peninsula is a sedimen-
tary site with contrasting topography and contours that separate the Bay of Brest and the
Bay of Douarnenez. The region is a mosaic of cliffs, dunes, moors, peat bogs, and coastal
wetlands. The peninsula thus presents phytocenetic, faunistic, and landscape interests. The
population of the study area is 29,893; this makes the population density approximately
81.6 per km2. The topography of the Crozon Peninsula is mostly dominated by plains,
except for hills in the east and northeast, and the elevation of the area ranges between 0 m
and 300 m. Climatically, the study area is classified as type Cfb (temperate oceanic climate)
according to the Köppen climate classification. On average, the Crozon Peninsula reaches
1208 mm of precipitation per year, and the annual average temperature is 12.2 ◦C. The
land cover is characterized by forest, shrubs, and grasslands, which are mostly in the west,
urban areas, cropland (including mainly corn and wheat) and meadow.

Traditionally, the majority of local people practice agricultural or related activities
in the Finistère Department, in which 57% of the department’s surface is devoted to
agricultural use. However, the French National Defense provides more than half of the em-
ployment in the Crozon Peninsula; hence, other activity sectors (e.g., agriculture, industry,
construction and commerce) are proportionally less important.

Nevertheless, the land cover was actually in sharp transition in our study area between
2008 and 2018, with the peninsula especially marked by an increasing service and commerce
sectors. Therefore, the study area was chosen as a typical ideal case to study land cover
changes.
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3. Data

Operable high-quality cloud-free satellite images in this area are extremely rare due to
the annual high-intensity rainfall and, hence, heavy cloud cover. Despite these limitations,
three cloud-free images from two dates in 2007 and 2018 with the same scene area were
acquired from either the SPOT or Sentinel platforms to study land cover changes in the
study area during the summer, which is the growing season for crops (Table 1).

Table 1. Satellite images used in the study.

Date Satellite Spectral Bands Spatial Resolution

2 July 2007 SPOT-5 Green, Red, Near-infrared 10 m resampled to
2.5 m

24 June 2018 Sentinel-2B 1, 2 (Blue), 3 (Green), 4 (Red), 5, 6, 7,
8 (Near-infrared), 8A, 9, 10, 11, 12 10 m

24 June2018 Sentinel-2B 1, 2 (Blue), 3 (Green), 4 (Red), 5, 6, 7,
8 (Near-infrared), 8A, 9, 10, 11, 12 10 m

First, a SPOT-5 satellite image was obtained from the early summer of 2007. SPOT-
5 was the fifth satellite in the SPOT series of CNES (Space Agency of France). It was
launched in 2002 and completed its mission by the end of 2012. It provided very high
spatial resolution (2.5 m in the panchromatic band and 10 m in the multispectral band)
and wide-area coverage satellite images with a revisit frequency of 2 to 3 days [38]. The
multispectral SPOT-5 image downloaded from the ESA was obtained by merging the 2.5 m
panchromatic band and the 10 m multispectral band, resulting in the spatial information
of the image being identical to the information observed with the panchromatic sensor
(earth.eas.int).

Second, Sentinel-2 is an imaging mission that operates in the frame of the Copernicus
(ex-GMES Global Monitoring for Environment and Security) program, which is imple-
mented by the European Commission (EC) and the European Space Agency (ESA). The
twin Sentinel-2 satellites (2A and 2B) deliver continually polar-orbiting; multispectral;
high-resolution (10 m spatial resolution for B2, B3, B4, and B8; 20 m for B5, B6, B7, B8a,
B11, and B12; and 60 m for B1, B9, and B10); high revisit frequency (10 days of revisit
frequency for each satellite and a combined revisit frequency of five days); wide-swath; and
open-access satellite imagery [39]. Two level 2A atmospheric effect-corrected Sentinel-2
images of the same date in the middle of the summer in 2018 were acquired from Theia
(catalog.theia-land.fr); a mosaic was then created by combining two images to cover the
whole study area, and four spectral bands at a 10 m resolution (red, green, blue, and
near-infrared) were extracted for further use.

For the purpose of land cover identification at the sample selection step, we also
used Google Earth and RPG (Graphic parcel register) maps and a French database with
agricultural parcel identification as the reference data, complemented by observation and
survey in the field when necessary.

4. Methods

The methodology of this paper is detailed in three main parts as follows: prepro-
cessing, image processing, and postprocessing. Three satellite images of two dates were
processed in QGIS (SAGA, Grass, OrfeoToolbox7.3.0), eCognition 9.5 and 10.0. A flow
chart of the proposed global methodology and details of the CNN are displayed below
(Figures 2 and 3).
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4.1. Image Preprocessing
4.1.1. Study Area Extraction

After satellite image acquisition, a mosaic of the two images of the same date in 2018
was created to cover the whole study area. Then, the boundary of the Crozon Peninsula
and south of Landerneau-Daoulas were used to extract our area of interest by applying
subsets to raw images to reduce the image size, processing time and storage space.

4.1.2. Vegetation Indices Calculation

The vegetation index is a qualitative and quantitative evaluation of vegetative cover
and growth dynamics using spectral band measurements, which have been proven to have
better sensitivity than individual spectral bands in identifying vegetated areas or different
vegetation types and evaluating the vegetative cover density [40,41].

Due to the different spectral bands used and their ratios, the results are also different,
not only because the reflectance of vegetation to the electromagnetic spectrum is determined
by the chemical and morphological characteristics of the surfaces of the organs or leaves of
the plants [42,43] but also because the values are heavily influenced by the atmosphere,
sensor calibration, sensor viewing conditions, soil moisture, soil color, and brightness [41].

For this reason, different indices highlight different specific properties of vegetation
features, and thus, more than 100 vegetation indices have been developed by scientists for
various purposes and specific applications. Three of these were utilized in our study.

• The normalized difference vegetation index (NDVI), the most known and widely
used vegetation index, was proposed in 1973 by Rousse et al. [44]. This index is a
normalized ratio between the red and near-infrared spectral bands, as follows:
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NDVI =
NIR− RED
NIR + RED

(1)

Although the NDVI is widely used in research related to regional or global vegetation
monitoring, some limitations remain, such as a sensitivity to the effects of soil brightness,
soil color and a series of atmospheric effects [43].

• The green normalized difference vegetation index (GNDVI), the index proposed in
1996 by Gitelson et al. [45], is very similar to the NDVI; nonetheless, it considers the
green spectral band an instance of red, and the expression is as follows:

GNDVI =
NIR−Green
NIR + Green

(2)

The GNDVI is proven to be more sensitive to chlorophyll than the original “red” band
and enabled a precise estimation of the pigment concentration [45].

• The Enhanced Vegetation Index 2 (EVI2), the two-band index, was developed by Jiang
et al. in 2007 [46] as an adaptation of the enhanced vegetation index (EVI) that was
designed to improve on its sensitivity in high biomass regions while minimizing the
soil background signals and atmospheric influences. However, since the role of the
blue band in the EVI only reduces noise, the EVI2 was developed without the blue
band to maintain the soil-adjustment and linearization functions in the EVI but to
break through its limit to sensor systems [46]. The index is expressed as follows:

EVI2 = 2.5
N− R

N + 2.4R + 1
(3)

After calculating the three vegetation indices, we created an image stack with the
original spectral bands and all of the indices for image processing.

4.2. Image Processing
4.2.1. Shallow Machine Learning Methods (SVM and RF)

In this study, supervised object-based classification was performed on two image
stacks of two different years. Segmentation was applied first, followed by two nonpara-
metric machine learning algorithms. SVM and RF were trained and applied in this step.

Multiresolution Segmentation (MRS)

Segmentation is the first processing step of object-oriented image analysis. MRS is
one of the most successful region-based segmentation algorithms [47] and is based on
homogeneity by extracting meaningful image objects with a reasonable processing speed.
At the same time, the texture, color, form, spectra, and sizes of objects are accounted for [48].
The process starts by considering each pixel as an individual object; afterwards, pairs of
adjacent image objects are merged to form larger segments [49]. The scale, compactness,
and shape are the main parameters of the merging decision of the algorithm. Among the
three parameters, the scale parameter allows users to define the maximum standard devia-
tion of the heterogeneity used for image segmentation controlling the amount of spectral
variation within objects and the size of their results [47,50]. There are two compositions
of homogeneity criteria, which are the weight of the shape criterion and the compactness
criterion [51]. The shape parameter is a weighting between the shape and the spectral
information of the objects. When the parameter is 0, only color is considered. Then, the
higher the value, the more important the shape is. The compactness parameter defines
the weight of the compactness criterion, which represents the compactness of the objects
formed during segmentation. The higher the value, the more compact objects are [51].

In this study, the scale, compactness, and shape parameters used were assigned as
follows: 10, 0.1, and 0.3, respectively. The selection of the parameters was completed on a
trial-and-error basis.
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Sample Selection

Supervised methods were performed in our research, of which the goal was to build a
concise model of the distribution of class labels in terms of the predictor features [52]. In
contrast to the unsupervised methods, users are able to provide knowledge and experience
to the process with these methods. Sample selection is an indispensable step in training
machine-learning models using supervised methods. In this study, all of the samples
presented in Table 2 were selected manually with Google Earth, an RPG (Graphic parcel
register) map, and ground truth as the reference data, and the ground truth values were
taken during a field survey with a Global Positioning System (GPS) in August. The samples
were then used to train two classifiers in the next step.

Table 2. Training samples surface area for SVM and RF model training in 2007(2a) and 2018(2b).

Class Area surface of training samples (km2)

Cropland 13.68
Cropland with bare soils 18.18

Water 00.39
Vegetation 35.61

Non-vegetation 03.86
Total 71.72

2a

Class Area surface of training samples (km2)

Cropland 11.76
Cropland with bare soils 17.75

Water 00.14
Vegetation 41.08

Non-vegetation 07.69
Total 78.42

2b

SVM Classification

SVM, also called the Support Vector Network, is one of the most robust and frequently
used supervised nonparametric statistical machine-learning methods. It is capable of
generating good classification results with a simple training dataset in comparison to many
supervised learning methods [53]. Originally, SVM was a learning machine with the aim
of solving a binary classification problem [54]. SVM is capable of handling two different
cases: when the classes are linearly separable, the machine seeks a linear decision boundary
called a hyperplane that minimizes the generalization error and leaves the greatest margin
between the two classes [55]. In contrast, in the case of nonlinearly separable classes, a
method of projecting the input data onto a high-dimensional feature space with kernel
functions was proposed, which worked in such a way that the problem is transformed into
a linear classification problem in that space [54,55].

Some multiclass classification methods were developed for cases in which this initially
two-group classification learning machine faces a multiclass problem. The most commonly
used strategies are described as “one against one” and “one against all.” Traditionally, SVM
has always been considered to be a pixel-based classification method, and it always obtains
great classification results in this way [56–60]. However, some studies have proven that
SVMs can also produce very satisfactory results as object-based classifiers [61–63], which
involves spectra, texture, form and shape information [64]. Therefore, the SVM is tested
and evaluated as an object-based classifier in this paper. In this method, segmentation was
previously completed [64].

The training and classification of the SVM module are applied using ECognition
software with a radial basis function (RBF) kernel. The SVM kernel is a set of mathematic
functions for taking sequence data as the input and then transforming them into the
required form of processing data. This function can transform a non-linear problem into a
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linear equation in a higher-dimensional feature space. RBF, a very effective and accurate
kernel type, is capable of performing the transformation with the radial basis method
in the case of lack of prior knowledge about the data [65,66]. Furthermore, the module
was executed with 10 as its capacity constant, also called the c-parameter, with the aim
of minimizing error function and avoiding a misclassification problems. The higher the
c-parameter value, the smaller-margin hyperplane the optimizer looks for [51].

RF Classification

Other than the SVM and most classifiers, RF is a combination of multiple tree-based
classifiers to produce a single classification, an ensemble of decision trees, where each
single tree contributes a vote for the assignment of the most popular class to the input
data [55,67–69].

This type of ensemble method has been highly developed and used for two decades
and has been proven to make significant progress in the classification accuracy for land
cover classification. In particular, RF can address thousands of input data without variable
deletion and estimates the importance of the variables in the classification [55,68,70–72].

The RF classification requires two important user-defined parameters to train the
model: Two parameters are set on a trial-and-error basis: the number of decision trees
grown in the forest; decision trees are capable of contributing a prediction then voting
for the final model’s prediction; this parameter was set to 300 and 200 for 2007 and 2018,
respectively. In addition, the maximum tree depth, which means the length of each tree in
the forest; generally, a larger tree can capture more information about the data with the
more splits it has; this parameter was defined as 20 for both years.

4.2.2. Deep Learning Method (CNN)

As a subset of machine learning, the CNN was inspired by the functioning of the
nervous system of the human brain; it utilizes artificial neural networks (ANNs) but has
multiple layers. CNNs are mainly designed for image classification [73,74]. They are well-
suited for solving complex problems and recognizing image objects with revolutionary
accuracy levels that none of the other machine learning approaches have yet achieved [51].
The CNN implemented in eCognition is based on the Google TensorFlow library.

It has an input layer that consists of an image patch, at least one hidden layer, and
an output layer where the classified output has a unit for each class that the network
predicts. Images as input layers must go through multiple hidden layers for the output to
be obtained (Figure 4).
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Generating Labeled Samples

The training of a CNN model requires a large number of samples because with a
larger training sample, a better model is trained, and a higher accuracy level can be
achieved [73,74]. All of the training data in this study were prepared manually to obtain
better accuracy. For years between 1960 and 1980, the samples in the form of points were
automatically and evenly selected in QGIS by random selection for the purpose of avoiding
bias. We then categorized all of the points manually into five distinct classes and created
sample patches by including all of the pixels that surround each point for the model
training. The algorithm then shuffled the labeled sample patches and created a random
sample order for training [51].

Model Generation

Two models were created separately for 2007 and 2018. Each model had two hidden
layers, a kernel size for the convolution, which is a matrix used to extract the features from
the image, a number of feature maps, defined as the output activations for one filter applied
to the previous layer, and a max-pooling step that can significantly reduce the number of
units by keeping only the maximum response of several units from the first stage [51]. For
the processing of the 2007 images, the batch size, the number of training examples utilized
in one iteration, was set to 32, the kernel size was assigned to be 3 × 3 with 64 feature maps
in the first hidden layer, and the second hidden layer had a kernel size and feature map
of 4 × 4 and 64, respectively. For the 2018 images, the batch size was set to 10, and both
hidden layers were assigned 3 × 3 and 32 for the kernel size and number of feature maps,
respectively. Both hidden layers of the two models contained a max-pooling stage using a
2 × 2 filter. Then the two models were trained based on the trial-and-error method, with a
learning rate of 0.001. After obtaining a satisfactory CNN accuracy, the two models were
validated and used to produce the classification of two satellite images, from 2007 and 2018
separately.

4.3. Image Postprocessing
4.3.1. Accuracy Assessment

The accuracy assessment, a principal component of land cover classification, is used
to express the classification’s degree of agreement with reality [75–77]. The accuracy assess-
ment statistics of the classifiers (SVM, RF and CNN), based on confidence intervals [78],
were calculated for each method and each class to check the model training and classi-
fication quality by comparing the classification with the reference values. The accuracy
assessment used in this study included three indices: the overall accuracy (OA), the pro-
ducer’s accuracy (PA) and the user’s accuracy (UA) —which are among the best-known
and most highly promoted quantitative accuracy assessment metrics for the evaluation of
classification quality or for comparisons among different classifications.

The OA is the probability that something will be correctly classified by a classifier. It
is computed by dividing the total number of correct pixels by the total number of pixels in
the error matrix [76–79]. The PA is a measure of errors of omission; it refers to instances in
which something is erroneously excluded from consideration when it should have been
included. On the other hand, the UA measures the error of commission, which refers
to something that is erroneously included for consideration when it should have been
excluded [80–82].

The indices of the accuracy assessment were generated with an algorithm from Olofs-
son based on the confidence interval. Therefore, all indicators presented in the tables are
followed by an uncertainty rate. A higher uncertainty signifies that a larger accuracy rate
can vary; in contrast, a small uncertainty represents a relationship with a certain accuracy.

4.3.2. Post-classification Comparison

To analyze the land cover changes between 2007 and 2018, a PCC was performed
with the semi-automatic classification plugin on QGIS. The open-source plugin allows two
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classified images to be taken as the input (a new map and a reference map), then creating
an overlap of these images to cross the data at the pixel level and differentiating the land
cover changes according to the differences between the two maps. As the output, a change
layer is created, and there is also a table that shows how the pixels move between the
classes.

5. Results
5.1. Comparison of Classifiers

The classification results of the three methods for the two years are presented in
Figure 5. The five classes detected in the classification process were cropland; cropland
with bare soil; water; vegetated area; and non-vegetation, including urban area, sand, and
rocks. Although some differences might exist, generally, the vegetation, non-vegetation,
and cropland could be well-identified from different maps, which are globally identical.
The vegetation is located in the south and east, with some vegetation near the coastlines,
similar to the most important urban areas. In contrast, all of the cropland is in the interior
of the peninsula.
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To make better comparisons possible, each accuracy assessment in this paper is split
into two tables, which are the training accuracy and validation accuracy, allowing for
cross-validation to avoid the problem of overfitting or underfitting. The training accuracy
was computed and used to improve the model performance and classification quality
during the classification processing based on the training dataset; otherwise, the validation
accuracy was used with the validation data to evaluate each model’s final prediction.

According to Tables 3 and 4, all of the accuracy indices range from 70% to 90%, and
the two tables are very similar. Although the training accuracy is slightly higher and
more certain (approximately 2–6%), it suggests a good performance and good training
of all three models, a strong level of agreement, and a high level of reliability. Beyond
that, it is worthwhile to note that the CNN demonstrated better potential (approximately
1–12% higher in accuracy) for the classification of land cover monitoring than RF and SVM
in both years, and it is the most stable and certain method, given its low uncertainty of
approximately 1.50 for training accuracy and 3.50 for validation accuracy in comparison
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with the other methods. In general, the 2007 images have better accuracy indicators and
lower uncertainty rates than the 2018 images, and RF achieved better accuracy and lower
uncertainty in the 2007 images than in the 2018 (e.g., 80.23± 03.87% and 70.51± 08.38% for
2007 and 2018, respectively, in the validation accuracy assessment), which is the opposite
of SVM (e.g., 77.03 ± 04.36% and 78.14 ± 06.40% for 2007 and 2018, respectively, in the
validation accuracy assessment). The most reasonable explanation is that the 2018 images
have a rougher resolution than the 2007 images, and so fewer pixels are present in each
segment, and since the SVM needs fewer samples and pixels to train the model, it achieved
a better performance with the 2018 images.

Table 3. Training overall accuracy (%).

Methods 2007 2018

RF 82.72 ± 01.79 76.78 ± 03.40
SVM 77.17 ± 02.20 81.14 ± 03.18
CNN 89.15 ± 01.36 83.16 ± 01.64

Table 4. Validation overall accuracy (%).

Methods 2007 2018

RF 80.23 ± 03.87 70.51 ± 08.38
SVM 77.03 ± 04.36 78.14 ± 06.40
CNN 83.11 ± 03.27 79.85 ± 03.58

The PA and UA of each class with the three methods in both years are listed in
Tables 5 and 6. Table 5 presents the satisfactory training accuracy of both models (approxi-
mately 70–90%, with a few acceptable exceptions, such as cropland, which has PA and UA
values of approximately 40–50%), which indicates that the three models used in the classifi-
cation: SVM, RF, and CNN, were generally well-trained. Even though the training accuracy
and the validation accuracy are constantly approximate, as shown in Tables 3 and 4, the
training accuracy is very slightly more accurate and certain than the validation accuracy
(approximately 1–10% higher). This suggests a slight overfitting problem in the models.
Overfitting, which can be revealed when the training accuracy is significantly greater than
the validation accuracy, occurs when the model for the classification is too close and too
well-adapted to the training data, in such a way that it is not capable of processing and
fitting additional data or making a proper prediction for global images. Nevertheless, the
presence of the overfitting problem is not an important obstacle in our study because the
differences between the training and validation accuracies are acceptable (between 1%
and 10%). Additionally, the validation accuracy always has a higher uncertainty, which
indicates that the real accuracy rate may vary to a large extent.
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Table 5. Training producer’s accuracy and user’s accuracy by class.

Land Cover Types 2007 2018

Cropland

RF PA 66.45 ± 08.68 RF PA 78.89 ± 04.48
UA 40.92 ± 03.90 UA 43.71 ± 04.21

SVM PA 46.06 ± 06.58 SVM PA 69.91 ± 04.74
UA 51.31 ± 04.79 UA 59.83 ± 05.09

CNN PA 79.88 ± 04.53 CNN PA 71.78 ± 04.62
UA 75.25 ± 04.86 UA 71.34 ± 05.06

Cropland (with
Bare Soil)

RF PA 46.34 ± 04.75 RF PA 35.77 ± 05.33
UA 98.79 ± 01.06 UA 91.89 ± 02.65

SVM PA 36.15 ± 03.54 SVM PA 52.23 ± 07.21
UA 96.73 ± 01.75 UA 94.78 ± 02.08

CNN PA 92.24 ± 02.15 CNN PA 86.54 ± 02.51
UA 92.99 ± 02.09 UA 84.72 ± 02.97

Water area

RF PA 100 RF PA 100
UA 41.18 ± 16.54 UA 100

SVM PA 58.75 ± 48.12 SVM PA 100
UA 72.22 ± 20.69 UA 100

CNN PA 100 CNN PA 100
UA 100 UA 71.43 ± 33.47

Vegetation (except
crop)

RF PA 91.50 ± 00.73 RF PA 63.40 ± 06.00
UA 89.59 ± 02.24 UA 88.56 ± 02.22

SVM PA 94.93 ± 00.61 SVM PA 65.04 ± 06.45
UA 78.32 ± 02.61 UA 85.26 ± 02.30

CNN PA 92.45 ± 01.39 CNN PA 87.58 ± 01.87
UA 90.54 ± 01.90 UA 85.81 ± 02.03

Non-vegetation

RF PA 81.79 ± 06.72 RF PA 98.22 ± 00.52
UA 82.14 ± 05.36 UA 77.87 ± 05.21

SVM PA 38.73 ± 08.16 SVM PA 98.99 ± 00.39
UA 81.71 ± 05.73 UA 80.38 ± 04.83

CNN PA 70.71 ± 06.62 CNN PA 68.08 ± 05.64
UA 92.99 ± 04.06 UA 84.29 ± 04.92

Table 6. Validation producer’s accuracy and user’s accuracy by class.

Land Cover Types 2007 2018

Cropland

RF PA 49.63 ± 14.63 RF PA 88.71 ± 06.54
UA 38.27 ± 07.48 UA 54.01 ± 08.35

SVM PA 43.21 ± 12.41 SVM PA 63.20 ± 09.69
UA 49.58 ± 08.98 UA 66.67 ± 09.29

CNN PA 61.86 ± 09.38 CNN PA 61.34 ± 08.55
UA 65.79 ± 10.67 UA 72.60 ± 10.23

Cropland (with
Bare Soil)

RF PA 47.04 ± 09.65 RF PA 25.69 ± 07.37
UA 94.68 ± 04.54 UA 93.48 ± 05.05

SVM PA 35.19 ± 06.81 SVM PA 47.18 ± 08.56
UA 96.39 ± 04.02 UA 98.06 ± 02.66

CNN PA 89.96 ± 04.85 CNN PA 90.09 ± 04.81
UA 86.76 ± 05.07 UA 82.55 ± 06.09

Water area

RF PA 100 RF PA 100
UA 60.00 ± 30.36 UA 50.00 ± 69.30

SVM PA 100 SVM PA 100
UA 85.71 ± 25.92 UA 62.07 ± 30.54

CNN PA 100 CNN PA 100
UA 100 UA 70 ± 25.05

Vegetation (except
crop)

RF PA 90.66 ± 01.48 RF PA 67.21 ± 13.96
UA 87.22 ± 04.88 UA 91.28 ± 03.96

SVM PA 94.91 ± 01.15 SVM PA 65.08 ± 05.30
UA 78.42 ± 05.19 UA 86.94 ± 04.43

CNN PA 88.36 ± 03.31 CNN PA 83.79 ± 04.14
UA 85.00 ± 04.52 UA 81.86 ± 05.15

Non-vegetation

RF PA 84.10 ± 10.16 RF PA 97.87 ± 01.28
UA 77.78 ± 12.15 UA 65.38 ± 12.93

SVM PA 45.59 ± 19.51 SVM PA 99.08 ± 01.31
UA 78.05 ± 12.67 UA 74.07 ± 11.69

CNN PA 66.06 ± 12.64 CNN PA 63.29 ± 11.88
UA 90.91 ± 09.81 UA 73.68 ± 14.00

Among the three methods, the CNN remains the most stable and accurate method,
and all of the values range between 70% and 100%. Among the classes, water areas were
very well predicted but also very extensive (usually with an accuracy between 50% and 70%
with a large uncertainty and 100% ) by means of their distinctive spectral signature. Crop-
land had training accuracy indicators between 50% and 70%, with CNN having the best
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performance in this class (approximately 70–80% in training accuracy and approximately
60–70% in validation accuracy). Of the other two methods, RF was mostly more accurate
than SVM (approximately 5–20% higher). In addition, they performed better on the images
from 2018 than those from 2007, with a stable uncertainty (approximately 10–20%); the vali-
dation accuracies were still approximate and slightly lower. Crops are easily confused with
vegetation, which might explain the low accuracy of this classification. Croplands with bare
soil are more correctly classified than croplands with plants (with a 20–50% higher rate),
and all UA are significantly higher than PA, with a 50% to 70% difference, which suggests
that fewer errors of commissions were made during the classification. Except for the CNN,
both the UA and PA ranged from 82% to 92%, with less uncertainty at approximately 2.50
in the training accuracy and approximately 5 in the validation accuracy. Even though
vegetation has the potential to be confused with crops, it was still the best-predicted class
besides water, and the accuracy indicators achieved approximately 80–95%, except for the
PA of RF and SVM in 2018, which were approximately 65%. It can be assumed that some
errors of omission were made during this classification. The non-vegetation class includes
all types of urban land use, sand, and rock; hence, it is globally well-classified due to its
particular spectral signature, especially with the 2018 images. The accuracies in general
ranged from approximately 70% to 98% in the training accuracy and from approximately
63% to 97% in the validation accuracy. In this class, the fact that the PA is considerably
greater than the UA reveals the error of omission, except for the classification of SVM in
2007 and both CNN classifications, which suggests an error of commission instead. In all
cases, the CNN was always the most stable and reliable method.

5.2. LCLU Detection Changes (2007–2018)

The land use change map resulting from the PCC is shown in Figure 6.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 24 
 

 

images. The accuracies in general ranged from approximately 70% to 98% in the training 
accuracy and from approximately 63% to 97% in the validation accuracy. In this class, the 
fact that the PA is considerably greater than the UA reveals the error of omission, except 
for the classification of SVM in 2007 and both CNN classifications, which suggests an error 
of commission instead. In all cases, the CNN was always the most stable and reliable 
method. 

5.2. LCLU Detection Changes (2007–2018) 
The land use change map resulting from the PCC is shown in Figure 6. 

 

 
Figure 6. Cont.



Remote Sens. 2021, 13, 3899 15 of 23
Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 6. Land cover change maps with the classification of SVM (a), RF (b), and CNN (c). 

In addition to the problems of the uncertainty and error values caused by classifica-
tion and spatial resolution differences between two satellite images, multiple changes be-
tween the two classes and between the two years (2007 and 2018) were detected. Land 
cover change maps revealed the status of each pixel, which stayed in the same class, mean-
ing no change, or changes to another class, or another LCLU. Some changes can be seen 
among the three land cover change maps with different classifications; for example, many 
croplands were transformed into vegetation, and vegetation was changed to cropland ac-
cording to the maps of RF. The SVM maps indicate numerous transformations from veg-
etation to cropland and vegetation to non-vegetation. However, generally, the cropland 
surface has slightly increased in the peninsula, and many vegetation areas have trun into 
cropland, according to the land cover change map. At the same time, many cropland areas 
have become vegetation areas. However, there may be confusion between vegetation and 
crops due to the different acquired dates of the two images. Therefore, many of the new 
vegetation areas are most likely growing crops. The third most important land cover 
change is vegetation to non-vegetation, which mainly took place near urban areas on the 
coast, especially in the south, where tourism is the most developed. Some details of the 
three main land cover change types based on the classification results of the CNN, which 
is the most stable of the three methods, are shown in Figure 7, with comparisons between 
2007 and 2018. 

Figure 6. Land cover change maps with the classification of SVM (a), RF (b), and CNN (c).

In addition to the problems of the uncertainty and error values caused by classification
and spatial resolution differences between two satellite images, multiple changes between
the two classes and between the two years (2007 and 2018) were detected. Land cover
change maps revealed the status of each pixel, which stayed in the same class, meaning
no change, or changes to another class, or another LCLU. Some changes can be seen
among the three land cover change maps with different classifications; for example, many
croplands were transformed into vegetation, and vegetation was changed to cropland
according to the maps of RF. The SVM maps indicate numerous transformations from
vegetation to cropland and vegetation to non-vegetation. However, generally, the cropland
surface has slightly increased in the peninsula, and many vegetation areas have trun into
cropland, according to the land cover change map. At the same time, many cropland
areas have become vegetation areas. However, there may be confusion between vegetation
and crops due to the different acquired dates of the two images. Therefore, many of the
new vegetation areas are most likely growing crops. The third most important land cover
change is vegetation to non-vegetation, which mainly took place near urban areas on the
coast, especially in the south, where tourism is the most developed. Some details of the
three main land cover change types based on the classification results of the CNN, which is
the most stable of the three methods, are shown in Figure 7, with comparisons between
2007 and 2018.

Table 7 presents the evolution of the surface of each class between 2007 and 2018 with
their proportion in the total surface area of the peninsula, the surface area of each type of
land use change and the proportion of each type in the total surface area.
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Table 7. Land cover change area and proportion of the change type with the three methods of
classification.

Land Cover Change SVM RF CNN

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

No change 238.74 65.33% 243.40 66.77% 282.51 77.37%
Vegetation to Cropland 45.55 12.47% 31.90 8.73% 35.71 9.78%
Cropland to vegetation 43.55 12.03% 49.94 13.67% 23.96 6.55%

Vegetation to
non-vegetation 20.68 5.66% 5.14 1.41% 12.43 3.40%

Non-vegetation to
vegetation 1.42 0.39% 3.13 0.86% 3.15 0.86%

Cropland to
non-vegetation 9.11 2.49% 15.12 4.14% 2.63 0.72%

Non-vegetation to
cropland 4.61 1.26% 12.17 3.33% 2.63 0.72%

Water related 1.34 0.37% 4.04 1.11% 2.14 0.59%
Total 365.42 100% 365.42 100% 365.42 100%

In addition to the confusion between growing crops and vegetation, our previous
results can be confirmed by Table 7. The table ranges from the most important class with the
greatest proportion of land cover change to the least changed class, with the two types of
cropland assembled into one class to facilitate the comparisons. The majority of the land in
the peninsula retained the same LCLU between 2007 and 2018, and at least 65% to 66% of the
area remained unchanged according to the SVM and RF classifications. However, the CNN
indicated that approximately 77% of the surface of the Crozon Peninsula did not change
between the two years, which is more important. Cropland is clearly increasing: 12.45%
of the vegetated area has been converted into cropland, according to SVM classification;
however, this transformation is less important according to the RF and CNN classifications,
which show approximately 8% and 9%. In contrast, much cropland was identified as
vegetation in 2018, more with the SVM and RF classifications (12–13%) than with the CNN
(6.55%), which could confuse vegetation and crops due to the different acquired dates of
the two images. Undoubtedly, non-vegetation, which includes urban areas, has certainly
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gained surface area from vegetated areas over the 11-year period by agreement of the
three classifications, even though RF presents a lower land cover change value (1.41%)
than SVM and CNN (5.66% and 3.40%, respectively). For the RF and SVM classifications,
non-vegetation was developed from cropland as well (2.49% and 4.14% in SVM and RF,
respectively). A small part of the non-vegetated area was classified as cropland in 2018
in all three models (1.26% in SVM, 3.33% in RF, and 0.72% in CNN); however, it might
have been confused with bare soil and non-vegetated areas such as concrete. Finally, the
last two classes (non-vegetation to vegetation and all water-related areas) have very low
proportions, approximately 0.30–1% in land cover change, which is likely due to the rising
tides and increasing water storage in the mid-summer and to planting of small areas, such
as in the city.

To conclude, according to the models, the cropland surface has slightly increased, and
non-vegetation areas have sharply grown in the 11-year period. The dramatically increasing
urbanization of the peninsula, requiring more cropland to address the population growth
and tourism development, has resulted in a rapid decrease in vegetation surface area.

6. Discussion
6.1. LCLU Classification

In this study, three different algorithms were applied to two high spatial resolution
satellite images from 2007 and 2018, which were both acquired in the growing season, to
map LCLU changes in the Crozon Peninsula, a highly fragmented region. Our objective
was to map different LCLUs (cropland, water, vegetation and non-vegetation, including
urban land use) and then map and monitor LCLU changes between two years. Another
important aspect in the application of the machine learning methods was to recognize the
specific type of change when collecting samples for training.

Three classification algorithms (SVM, RF, and CNN) were used, and all of them
achieved a good accuracy level, with the overall accuracy ranging from 70% to 90%, despite
the complex landscape and small field size. Two machine learning methods, RF and SVM,
are object-based approaches, and features other than spectral values play an important role
in the classification.

The RF and SVM models both performed well for the LCLU classification; nonetheless,
the CNN obviously is better suited to performing classification in our study area, as
indicated by the accuracy assessments. According to the results presented in Figure 5 and
the statistical evaluations of accuracy provided in Tables 3–6, the proposed method (CNN)
generally performs best regardless of the type of dataset and accuracy index. Therefore,
the CNN has proven to be a feasible, reliable method with remarkable performance for
precisely mapping LCLU and analyzing the changes. Our experiments have shown the
superiority of the CNN over other state-of-the-art machine learning classifiers in terms of
classification accuracy. However, some important considerations regarding its effectiveness
are worth discussing. Previous applications of CNN models have tended to emphasize
the complexity of these models compared to RF models and SVMs. In this case, parameter
tuning and optimization are often performed by cross-validation for CNN algorithms.
However, in some cases, CNN models can have millions of weights to optimize at each
iteration [83]. In such situations, training these models can be tedious. Manual tuning
or rules of thumb for cross-validation should be implemented in this case. This manual
manipulation could have repercussions on the accuracy of the model. A well-known
solution is transfer learning [84]. In this case, instead of a model being trained from scratch,
pretrained models are retrained on the user’s classes of interest. Pretrained models allow
for better accuracy [85]. In our study, the deep model was very useful for generalization.

6.2. Accuracy Assessment

In accordance with Table 4, the highest OA was obtained by applying the CNN
algorithm to 2007 (83.11 ± 03.27). The RF gives the lowest OA, 70.51 ± 08.38. The
SVM showed intermediate values between 77.03 ± 04.36 (2007) and 78.14 ± 06.40 (2018).
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Regarding the PU and UA (validated results) by class, the best results were obtained with
SVM for the PA in 2018 for the non-vegetation class (99.08 ± 01.31; except for the water
class). The worst results were always obtained with the SVM for the PA of the cropland
class (with bare soil), which was 35.19 ± 06.81.

However, the lower accuracy occurred for 2018, and we deduced that the spatial
resolution of the image is a crucial part of classification that can explain the differences
between the SVM and RF’s overall accuracy in the different years. The RF performed better
on the 2007 data with a 2 m spatial resolution SPOT 5 image; in contrast, SVM achieved a
better accuracy in 2018 with a 10 m spatial resolution Sentinel 2 image. Among all of the
classes, except for the water areas, which have a very different spectral signature than the
other classes, vegetation was the best-detected class, most likely because it occurred on the
greatest part of the study area; therefore, it also had the largest sample dataset, since all of
the samples were randomly and evenly selected in the images. Non-vegetation areas that
are mostly urban land, rocks, and sand were relatively simple to discriminate. Cropland
with bail soil was better-classified than planted cropland. Misclassification largely occurred
between the vegetation and crops due to their spectral signature similarities, especially
during the growing season, and they were spatially approximate; some croplands were
small and intermixed with trees or shrubs.

The choice of a good classifier is very important, but at the same time, the features
extracted from the image are also important. GEOBIA techniques allow the use of hand-
created features in the classification phase. The number and choice of features clearly
influence the final classification. At the same time, the features of an RF and SVM are
learned automatically from the input data during training. The features automatically
learned by RF and SVM based on the spectral, contextual and spatial property classes
increased the generalization capabilities of the models.

6.3. LCLU Changes Detection (2007–2018)

CD techniques can be grouped into two types of objectives: change enhancement and
change “from-to” information extraction. In this study, the detection and direction of the
changes were processed by applying PCC on a pixel-by-pixel basis through SVM, RF, and
CNN classification, with the best performances of the change classes detection between
the series of multitemporal images. The multitemporal images were stacked together and
then classified directly to detect land cover changes. This work presents a CD protocol that
allows reliable PCC to account for the classification accuracies, landscape heterogeneity,
and pixel sizes. However, the accuracy of the final change map depends on the quality
of each individual classification [86–88]. Errors in the individual maps are additive in the
combination (change mapping). In connection with this error question, Liu and Zhou,
2004 [89] proposed a set of rules for the probability of changes from one class to another
based on field knowledge. They used these rules to separate “real changes” from possible
classification errors. Thus, they determined the accuracy of trajectory changes by arguing
the rationality of the changes through a PCC.

Our classification results showed that it is possible to map land use with different
algorithms and analyze land use changes between two years. First, increasing the cropland
surface indicates that agricultural activities remained an important economic sector in the
peninsula, and there were essentially no signs of abandoned agricultural land during the
study period. Second, non-vegetation areas increased dramatically due to urbanization,
especially some coastal cities that are highly frequented by tourists, since tourism is highly
developed in the peninsula. The very dense population corresponds to a high level of
artificialization of the territory, which is growing faster than the national average, fueled
by a construction of housing and nonresidential premises. This human concentration also
implies the progression of urbanization toward the hinterlands, where the construction
of housing and the arrival of new residents increased significantly. Artificialization is
the main change that has affected the coastal zone of the peninsula, with preferential
locations around the major urban centers and on certain coastal sectors. Despite the
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regulatory protection established by the Littoral Law, the changes are also important in
the 100 m band nearest to the sea and then decrease as one moves away from it. In 1986,
the Littoral Law provided an initial regulatory response to the need to control the anarchic
development of construction on the coast. One of the most significant consequences of
development has been the drastic reduction of the vegetation surface. Vegetation has been
removed for two main reasons: increasing agricultural activities and urban land growth.
Therefore, economic development can have negative social and economic implications on
the peninsula; in addition, environmental conservation and protection are required.

7. Conclusions

CD methods involve analyzing the state of a specific geographic area to identify
variations from images taken at different times. With satellite remote sensing, high spatial
and spectral resolution images are recorded and used to analyze the scales of changes. In
this study, in order to detect multiannual change classes between the series of multitemporal
images using a pixel-by-pixel PCC technique, three different well-known and frequently
used algorithms, including two machine learning algorithms (SVM and RF) and one deep
learning algorithm (CNN), were tested on two high spatial resolution satellite images. RF
and SVM were applied with an object-based approach, which requires a segmentation
step to create subpixel-level objects to avoid the error of mixed pixels since the study area
was mainly covered by small fields. The inclusion of the CNN significantly improved the
classification performance (5–10% increase in the overall accuracy) compared to the SVM
and RF classifiers applied in our study.

Our results showed that the use of remote sensing for complex multiannual small-
scale LCLU change studies was completely reliable. The study resulted in two maps that
showed five different land uses (cropland, cropland with bare soil, water, vegetation and
non-vegetation) in 2007 and 2018 with high accuracy. In particular, the CNN had an overall
accuracy that ranged from 80 to 90%, making it the most suitable algorithm in our case,
even though RF and SVM also achieved good accuracy levels.

The results may also lead to the conclusion that economic development is rapidly
occurring in the peninsula, manifested as urban land and tourism growth, increasing the
agricultural activities and grossly decreasing the vegetative areas. Hence, environmental
protection measures are demanded for the future. In this context of change, the coastal
zones of the peninsula tend to specialize socially and economically, and the maintenance
of the agricultural areas, as well as the preservation of the natural areas, are both more
sensitive and more complex. Moreover, it appears that the change in land use must
be understood in the context of climate change, which is a factor in the aggravation of
risks (e.g., flooding and, coastal risks), especially in the sectors that are most subjected to
urbanization pressures.

Although we observed relatively high classification accuracies, several uncertainties
and limitations persisted. The first is the misclassification between vegetation and planted
croplands: the very similar spectral characteristics that they share and their geographical
localization lead to this confusion. Second, the two classifications were based on two
images with different spatial resolutions; thus, some errors of the land use change analysis
could have been induced. Third, useful cloud-free satellite images of the growing season
were not easy to obtain in our study area; therefore, a series of annual mappings with more
precision was not performed in the study. Hence, some recommendations can be made for
further studies, such as applying more vegetation indices or using hyperspectral images
to differentiate between vegetation and planted croplands or exploring the potential of
synthetic-aperture radar images as a supplement to the traditional optical images on cloudy
days.
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