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Abstract: Automatically extracting buildings from remote sensing images with deep learning is of
great significance to urban planning, disaster prevention, change detection, and other applications.
Various deep learning models have been proposed to extract building information, showing both
strengths and weaknesses in capturing the complex spectral and spatial characteristics of buildings in
remote sensing images. To integrate the strengths of individual models and obtain fine-scale spatial
and spectral building information, this study proposed a stacking ensemble deep learning model.
First, an optimization method for the prediction results of the basic model is proposed based on fully
connected conditional random fields (CRFs). On this basis, a stacking ensemble model (SENet) based
on a sparse autoencoder integrating U-NET, SegNet, and FCN-8s models is proposed to combine the
features of the optimized basic model prediction results. Utilizing several cities in Hebei Province,
China as a case study, a building dataset containing attribute labels is established to assess the
performance of the proposed model. The proposed SENet is compared with three individual models
(U-NET, SegNet and FCN-8s), and the results show that the accuracy of SENet is 0.954, approximately
6.7%, 6.1%, and 9.8% higher than U-NET, SegNet, and FCN-8s models, respectively. The identification
of building features, including colors, sizes, shapes, and shadows, is also evaluated, showing that
the accuracy, recall, F1 score, and intersection over union (IoU) of the SENet model are higher than
those of the three individual models. This suggests that the proposed ensemble model can effectively
depict the different features of buildings and provides an alternative approach to building extraction
with higher accuracy.

Keywords: deep learning; remote sensing image; building extraction; stacking ensemble

1. Introduction

Automatic extraction of buildings from remote sensing imagery is of great significance
for many applications, such as urban planning, environmental research, change detection
and digital city construction [1–3]. Recently, substantial improvements in the capabilities

Remote Sens. 2021, 13, 3898. https://doi.org/10.3390/rs13193898 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3529-1093
https://orcid.org/0000-0001-8602-9258
https://doi.org/10.3390/rs13193898
https://doi.org/10.3390/rs13193898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13193898
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13193898?type=check_update&version=1


Remote Sens. 2021, 13, 3898 2 of 22

of remote sensing techniques have been achieved and have led to a dramatic increase in
the availability and accessibility of high-resolution remote sensing images [4]. The high
spatial resolution of remote sensing imagery reveals fine details in urban areas and greatly
facilitates automatic building extraction. However, the diverse characteristics of build-
ings, including color, shape, size, and the interference of building shadows [5], make the
development of an accurate and reliable building extraction method a challenging task.

Over the past few decades, various approaches for feature extraction from images have
been developed. Spatial and textural features of images are extracted through mathematical
descriptors, such as the scale-invariant feature transform (SIFT) [6], local binary patterns
(LBPs) [7], and histograms of oriented gradients (HOGs) [8]. More recently, pixel-by-pixel
predictions were introduced based on extracted features through classifiers, such as support
vector machines (SVMs) [9], adaptive boosting (AdaBoost) [10], random forests [11], and
conditional random fields (CRFs) [12]. However, these methods rely heavily on manual
feature designs and implementations, which generally change with the application area.
As a consequence, they can easily introduce biases, have poor generalization abilities, and
are time-consuming and labor-intensive.

With the rapid development of computer technology, deep learning methods have
shown strong performance in classification and detection in the field of image processing.
In the past decade, convolutional neural network (CNN) models, such as fully convolu-
tional networks (FCNs) [13], SegNet [14], U-Net [15], and LinkNet [16], have been proposed
by researchers and have been widely used for extracting buildings from remote sensing
images. Mnih [17] and Saito et al. [18] transformed the output of a fully connected layer
of a CNN into the predicted block to achieve building extraction. Bittner et al. [19] im-
plemented an FCN that effectively combined high-resolution images with normalized
DSMs and automatically generated architectural predictions. Based on these classical
semantic segmentation models, research has optimized and proposed improved models
suitable for building extraction. Yi et al. [20] compared the building extraction performance
of the proposed DeepResUNet with other semantic segmentation architectures: FCN-8s,
SegNet, DeconvNet [21], U-Net, ResUNet [22], and DeepUNet [23]. Pan et al. [24] used a
generative adversarial network model with spatial and channel attention mechanisms to
select more useful features for building extraction and compared their method with the
classical model to verify the superiority of different methods. Ye et al. [25] proposed a
novel FCN that adopts attention-based reweighting to extract buildings from aerial imagery.
The advantages of the proposed RFA-UNET were verified by comparing it with U-Net,
SegNet, RefineNet [26], FC-DenseNet [27], DeepLab-V3Plus [28], and MFRN [29] on three
public aerial image datasets. These deep learning models have made great contributions to
improving the accuracy of building extraction from remote sensing images.

Despite the strengths of the proposed deep learning models, limitations still exist in
extracting building information. Liu et al. [30] found through comparative experiments
that U-Net failed to detect holes when extracting large buildings, but it is better than
SegNet at recognizing shadows. Zhang et al. [31] found that SegNet often misclassifies
shadowed building pixels as nonbuildings. On the other hand, Ma et al. [32] discovered
that FCNs and SegNet have smooth boundary predictions and perform better on small
buildings compared with other models. In addition, clouds and fog in remote sensing im-
ages will also affect the accuracy of model extraction, but there have been many defogging
technologies, such as IDE [33] and IDGCP [34], that can effectively solve this problem. Con-
sidering the complex characteristics of building shape, structure, color, texture, and other
features, it is difficult for an individual deep learning model to maintain high forecasting
accuracy and robustness.

Considering the limitations of individual models, research has adopted ensemble
learning to combine the advantages of different models. Ensemble learning uses several
different individual models and certain ensemble strategies to improve the generaliza-
tion performance of the entire model and has been proven to be an effective method for
overcoming the abovementioned problems [35]. The integration strategies of ensemble
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learning include averaging, voting, and learning [36,37]. Sun et al. [38] used simple ma-
jority voting based on rule images for decision fusion to refine boundaries and reduce
noise. Saqlain et al. [39] proposed a voting ensemble classifier with multitype features to
identify wafer map defect patterns in semiconductor manufacturing. However, averaging
and voting represent the fusion of results at the decision level, which will lead to large
learning errors [40]. The learning method represented by stacking can correct errors in
the base model to improve the performance of the integrated model and maximize the
advantages of different models to a certain extent [32]. Stacking is an ensemble method
with a two-layer structure that combines the outputs of more than two base models via a
new (meta) model to find the optimal regression performance. When a stacking technique
is used to integrate the features of the output results of the base model, result fusion at the
feature level can be achieved.

Motivated by the analysis above, in this study, a deep learning feature integration
method based on a stacking ensemble technique is proposed for extracting buildings from
remote sensing images. Taking the integration of three CNN models (U-net, SegNet, and
FCN-8s) as an example, an ensemble model called SENet was developed. To verify that the
model can effectively integrate the advantages of different base models to extract different
building features, a dataset was also created for building detection, and feature attribute
tags were added to the buildings in the test set. The main contributions of this study are
summarized as follows:

(1) A deep learning feature integration method is proposed for extracting buildings from
remote sensing images. The method combines the advantages of deep learning and
ensemble learning. It can enhance the generalization and robustness of the whole
model by integrating the advantages of different CNN models.

(2) An optimization method for the prediction results of the basic model is proposed based
on fully connected CRFs. The influence of the number of inference function calculations
in the CRFs on the optimization result is analyzed, and the number of inference function
calculations needed to obtain the best optimization result is determined.

(3) A stacking ensemble method based on a sparse autoencoder [41] is proposed to
combine the features of the optimized basic model prediction results. A sparse au-
toencoder is used to extract the features of the optimized base model prediction results,
and then these features are integrated based on the stacking ensemble technique.

A building dataset is created, and the proposed SENet is compared with three individ-
ual models on this dataset. By adding attribute labels to each building sample in the test
set, the accuracy of extracting different building features from the model is quantitatively
analyzed. The experimental results showed that SENET can effectively integrate different
model features and improve the accuracy of building extraction.

The rest of this article is organized as follows. In Section 2, an overview of the
method and a description of the dataset are introduced. Section 3 provides descriptions
of the experimental results and comparisons of three individual models. Discussions and
conclusions are given in Sections 4 and 5, respectively.

2. Methodology
2.1. Overview of the Proposed Model

The framework of the proposed ensemble deep learning model for building extraction
(denoted as SENet) is presented in Figure 1. The overview of the framework consists of
three stages: data preparation, basic model construction, and basic model combination. In
the data preparation stage, a building dataset from satellite images was created, and the
accuracy of the building features extracted by the model was quantitatively analyzed by
adding attribute tags to the buildings in the test set. In the basic model construction stage,
three CNN models of U-net, SegNet, and FCN-8s are used to train the model and extract
features from the building dataset. Furthermore, a method for optimizing the prediction
results of the basic model is proposed based on CRFs. In the basic model combination
stage, an ensemble method based on a sparse autoencoder is proposed. First, the sparse
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autoencoder is used to extract the features of the optimized base model prediction results,
and then the stacking ensemble technique is used to integrate the features in a weighted
way to obtain the final prediction results. In the following subsections, the methods
involved in the construction and combination of the basic predictors are described in detail.
The data preparation stage will be introduced in Section 3.1.
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2.2. Basic Model Construction

The basic model construction stage consists of two parts, namely to train the basic
semantic segmentation models for building extraction and to optimize basic prediction
results by using fully connected CRFs.

2.2.1. Semantic Segmentation Models for Building Extraction

Based on the performance of individual models, three representative models, includ-
ing FCN-8s, U-Net, and SegNet, were selected. Detailed comparisons of the selected
models are summarized in Table 1.

Table 1. Detailed comparisons of FCN-8s, U-Net and SegNet. ’LRP’ denotes the learning rate policy.

Methods Structure Backbone LRP Loss

FCN-8s Multi-Scale VGG-16 Fixed Cross Entropy

U-Net Encoder-
Decoder VGG-16 Step Cross Entropy

SegNet Encoder-
Decoder VGG-16 Step Cross Entropy

The introduction of FCNs has caused a rapid increase in the number of semantic
segmentation networks. The FCN model transforms all of the fully connected layers
to convolutional layers and allows the input image to be arbitrarily sized. In addition,
it combines semantic image information from deep layers with the information from
shallow layers to produce the final segmentation result by using a skip architecture. Long
et al. [13] proposed three end-to-end FCN models (i.e., FCN-32s, FCN-16s, and FCN-8s),
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among which FCN-8s was considered the best. Therefore, the FCN-8s model is selected
in this study.

U-Net was built upon an FCN and adopts an encoder-decoder architecture that
consists of a contracting path to capture context and a symmetric expanding path to enable
accurate localization. It was originally designed to segment medical images and achieves
good results with fewer training sets. In recent years, some studies have shown that U-Net
is also suitable for remote sensing images [42], and it has great potential to be improved.

Similar to U-Net, SegNet is also built on an encoder-decoder structure. Its encoder
network is topologically the same as the 13 convolutional layers of VGG-16 [43]. The de-
coder network first uses max-pooling indexes generated from the corresponding encoder
to enhance the location information. Bischke et al. [44] used SegNet with a new cascaded
multitask loss to further preserve semantic segmentation boundaries in high-resolution
satellite images.

2.2.2. Optimized Basic Prediction Results

The extraction performances of the individual basic models influence the extraction
performance of the ultimate ensemble model. It is therefore necessary to optimize the
prediction results of a single model before model combination. In this study, fully con-
nected CRFs [45] are introduced to perform postprocessing on the prediction results of the
basic model. By combining the relationships among all pixels, the CRF model carries out
full connection modeling between adjacent pixels, introduces pixel color information as
a reference, and calculates the pixel classification probability according to the prediction
results of the basic model [46]. The probability distribution map is calculated as unary
potential energy. Thus, each pixel is classified and evaluated, and the classification proba-
bility is calculated. Moreover, the position information and color information provided
by the input of the original image are used as binary potential energy, and the category
energy of the prediction class is finally reduced to the minimum value to achieve the final
optimization result. The optimization process is shown in Figure 1(c-1). The input of this
process is the prediction result of the basic model, and the output is the prediction result
optimized by CRFs.

The energy function E(a) of CRFs consists of two parts:

E(a) = ∑
y
ϕu(ay) + ∑

y<z
ϕp(ay, az), y, z ∈ {1, 2, . . . N} (1)

where a is the label assignment for each pixel y and N is the total number of pixels in the
image. ∑

y
ϕu(ay) is a unary potential energy function, which is mainly used to calculate the

probability that a pixel of the input image belongs to category ay, which can be directly
obtained from the CNN. It can predict the label of the pixel without considering the
smoothness and consistency of the label assignment. ∑

y<z
ϕp(ay, az) is the binary potential

energy function of the energy function, which is mainly used to calculate the mutual
influence between pixels and assigns similar labels to similar pixels. The pairwiseϕp(ay, az)
potential is defined as

ϕp(ay, az) = ϕ(ay, az)
K

∑
m=1

ω(m)k(m)( fy, fz) (2)

where fy and fz are the feature vectors of pixels y and z, respectively, in a feature space, and
they are derived from the spatial position and RGB value in the image feature. Each k(m)

is a Gaussian kernel weighted byω(m). ϕ(ay, az) is a label compatibility function, which
depends on only the labels ay and az.

To achieve segmentation and labeling of multiple types of images, CRFs use two
contrasting Gaussian kernel functions [47,48]. The first kernel function uses the position
information and color information of pixels. py and pz are used to represent the positions
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of pixels y and z, respectively. Xy and Xz represent the original color values of pixels
y and z, respectively; and learnable parameters θα and θβ are used to determine the spatial
proximity and color similarity, respectively. The second kernel uses only pixel position
information to remove isolated regions.

k( fy, fz) = ω(1) exp(−|py−pz|2
2θ2

α
− |Xy−Xz|2

2θ2
β

)

+ω(2) exp(−|py−pz|2
2θ2

γ
)

(3)

whereω(1),ω(2), θα, θβ, and θγ are all parameters that can be learned from the model.

2.3. Basic Model Combination
A Stacking Ensemble Method Based on a Sparse Autoencoder

Stacking is an ensemble method with a two-layer structure that combines outputs
of more than two base models via a new (meta) model to find the optimal regression
performance. This method can correct errors in the basic model to improve the perfor-
mance of the integrated model and maximize the advantages of different models to a
certain extent. The development of computer technology can provide opportunities for
deeper networks, but even without increases in depth, network performance has been
increasing. Inspired by the designs of the VGG and GoogLeNet [49] structures, the features
of different CNN outputs can be used to perform integrated optimization and explore
better classification methods. Therefore, a stacking ensemble method based on a sparse
autoencoder is proposed in this study. First, the features of the output results of multiple
base models optimized by CRFs were selected, and the weight parameters of the primary
encoder were obtained by encoding the multilayer features through the sparse autoencoder.
Then, the sparse autoencoder is used again to fit the output of the primary encoder with
the real output, and the weight parameters of the secondary encoder are obtained. Finally,
the output of each subencoder is integrated via Euclidean distance weighting to obtain
the final prediction result. As shown in Figure 1(c-2), the input of the sparse autoencoder
is the optimized prediction result image, and the output is the feature weight parameter
of each image. Figure 1(c-3) shows the process of integrating features based on stacking
technology. The input of this process is all the features extracted by the sparse autoencoder,
and the output is the final prediction result.

First, it is assumed that the training sample input by the network is X, and the feature
extracted by the base model is denoted as Ti. According to the idea of a stacking ensemble,
the sparse autoencoder is used to construct the first group of learners F, which is called the
primary encoder. The optimization function of the primary encoder F is:

J(T) = ‖Y− T · F‖2
2 + λ‖F‖1 (4)

where J(T) is the objective function to be optimized, Y is the true label, T is the feature
of the input primary encoder, F is the parameter matrix of the primary encoder, and λ is
the regularization coefficient. The primary encoder trained by the base model is selected
as Fi. Then, the predicted output is Ypi = Ti · Fi. This optimization process shortens the
training time. The prediction result Ypi after feature T passes through the primary encoder
Fi is reoptimized and expressed as:

J(wi) = ‖Y−∑
i

Ypi · wi‖
2

2

+ λ‖∑
i

wi‖
1

(5)

where wi is the weight matrix of the prediction result of the primary encoder and the
expected output and is called the secondary encoder.
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The optimized primary encoder parameter F and the secondary encoder parameter w
are obtained by the above method. After inputting the test samples, the predicted output
of the secondary encoder is obtained:

Ypredi
= Ti · Fi · wi (6)

The prediction results of each secondary encoder are weighted according to the

Euclidean distance d =
√

∑ (Ypred −Ytrue)
2 between the prediction result and the real label

Ytrue after the feature extracted by each base model passes through the secondary encoder.
The larger the distance between the predicted result and the real label is, the smaller the
assigned weight. Then, the final predicted result is obtained:

Yo = ∑
i
αiYpredi

,αi = (1/di)∑
i
(1/di) (7)

where Yo is the final prediction result and αi is the weighting coefficient.

3. Experiments and Results

In this section, we first describe the dataset used in the experiments and experimental
setting. We then provide qualitative and quantitative comparisons of performances be-
tween SENet and other individual models in semantic segmentation of buildings from the
same data source.

3.1. Dataset

Based on the proposed model, a building dataset is established to quantitatively
evaluate the accuracy of extracting different building features. Currently, publicly available
building datasets only provide satellite or aerial images and the corresponding building
label data and lack descriptions of the feature attributes of each building sample. Therefore,
it is difficult to classify buildings according to their features and calculate the extraction
accuracy of each feature after using a deep learning model to extract buildings. Related
studies have found that the shape, color, size, texture, and shadow of a building will affect
the extraction accuracy of CNN models [30,32,50]. However, the types of texture features
are complex and difficult to classify. To solve this issue, the building-feature attribute label
including four kinds of feature information, namely, the color, size, shape, and shadow
are involved in this study. We counted the number of each roof color in the building
dataset and found that the four most common colors were red, blue, white, and gray, so we
divided the building color attributes into five categories: red, blue, white, gray, and others.
Castagno and Atkins [51] divided building shapes into eight types, unknown, complex
flat, flat, gabled, half hipped, hipped, pyramid, and skill (shed), in the study of roof shape
classification in lidar images using supervised learning. In this study, the classification
results are simplified to describe the shape of buildings in terms of the structure and edge
contours. For the size definition, we refer to the size classification standard of buildings in
the cost–benefit analysis of green buildings by Gabay et al. [52]. The detailed definitions
and descriptions of the building-feature attribute labels are listed in Table 2.

According to the above building-feature attribute labels, we manually created a large-
scale satellite image building dataset. As shown in Figure 2, the study area selected for
creating the dataset was in several cities, Hebei Province, China and contained 1,029,000
buildings of various types with ground resolutions of 0.27 m. We seamlessly cropped
the images according to the subregions of cities, towns, and rural areas and cut out a
total of 650 images that were approximately 5000 × 3500 pixels. Then, we drew building
vector diagrams and added feature attribute tags in ArcGIS software, stored them in shape
file format, and converted them to raster annotation data, as required for deep learning
model training.
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Table 2. Definitions and descriptions of the building-feature attribute label.

Features Options Definition

Color
1. red; 2. blue; 3.
white; 4. gray; 5.

others.

Describes the
building roof color

features

Size 1. small; 2. medium;
3. large.

Varying
in size (1000, 4000,

and 10,000 m2)

Shape Structure 1. simple; 2. complex.

Describes the shapes
of buildings through
structure and edge

contours

Edge contour 1. obvious; 2. Blurry.

Shadow 1. yes; 2. no.
Describes whether a
building is covered

by shadows
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Figure 2. Study area and samples for training, validation and testing.

Several high-resolution remote sensing image data were utilized, including QuickBird
and Worldview series data, with ground resolutions of up to 0.27 m and three spectral bands
(RGB). Since deep learning is a data-driven algorithm, the larger the amount of data is and
the more types of data there are, the easier it is for the model to learn representative features.
The dataset we created includes a variety of civil, industrial, and agricultural buildings. The
building samples include different colors, sizes, shapes, and textures. Figure 3 shows examples
of different types of buildings.
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Figure 3. Examples of buildings with different colors, sizes, shapes and textures from the satellite dataset.

3.2. Experimental Setting

The building dataset created in this paper is used as the experimental dataset and
contains 650 remote sensing images with 5000× 3500 pixels and the corresponding building
labels. Hence, 10% of the images from the 650 images were selected as the test images.
Considering the limitation of video memory size, we cropped all the images with a sliding
window of 256 ×256 pixels and divided the remaining 90% of images (from 650 images)
into training sets and validation sets. In the training process, the rectified linear unit (ReLU)
function is used as the activation function. Instead of the simple mean square error (MSE),
binary cross entropy is chosen to calculate the loss between every prediction and relative
ground truth. The experiment was conducted with the Keras framework (https://keras.
io/, accessed on 29 August 2021) with a TensorFlow GPU (https://tensorflow.google.cn,
accessed on 29 August 2021) as the backend, and the Adam algorithm was used for network
optimization. All the experiments were carried out on an NVIDIA GeForce RTX 2060 GPU
with 64 GB of memory under CUDA 9.0. PyCharm software was employed for developing
the suggested algorithm. The proposed SENet and three individual CNN models (U-
Net, SegNet, and FCN-8s) were trained and used for prediction on the same dataset.
The experiments were carried out in exactly the same experimental environments. Each
network was trained from scratch without a pretrained model. The building attribute labels
in the test set were used to classify the extracted results according to different attribute
features, and the overall extraction accuracy and the fusion of different building features
were compared and analyzed.

3.3. Model Performance
3.3.1. Overall Performance

Figure 4 shows the prediction results of four satellite images from the test dataset
after training with four models. The first column in the figure shows the buildings in a
village. The buildings are small in size and relatively scattered. The prediction results of the
SENet and U-Net networks in this region are highly accurate, while some misclassifications
(false positives) appeared in the segmentation results of SegNet and FCN-8s. SegNet
misclassifies parts of cultivated land as buildings, while FCN-8s misclassifies parts of roads

https://keras.io/
https://keras.io/
https://tensorflow.google.cn
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as buildings. The test area in the second column of the figure is a town, and the buildings
include compactly arranged small houses and large factories. As seen from the prediction
diagram, the extraction accuracies of SENet and FCN-8s are relatively high. Although
FCN-8s misclassifies parts of the land into buildings, there are few cases of false negatives
(blue). However, the extraction accuracies of U-Net and SegNet in this area are relatively
low, both of which have false negatives (blue), and U-Net also has many false positives
(red). The third and fourth columns contain images of buildings in a city. The differences
between the images in the columns are that the original image in the third column is dark
in color, the satellite image was taken at a large tilt angle, and the buildings appear in
an irregular arrangement. The images in the fourth column are brightly colored, and the
buildings are arranged normally. It can be seen from the figure that the building extraction
effect of the four models in the fourth column image is better than that in the third column
image. In the third column, U-Net and SegNet appear to have more false negatives (blue),
and FCN-8s misclassifies some squares as buildings. In the fourth column, the extraction
accuracies of SENet, SegNet, and FCN-8s are very high, and only the U-Net results contain
many false negatives (green).
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Figure 4. Segmentation results of the different methods on the test dataset. (a) Original input image.
(b) Label map (ground truth). (c) The output of SENet. (d) The output of U-Net. (e) The output of
SegNet. (f) The output of FCN-8s. The green, red, and blue pixels of the maps represent true positive,
false positive and false negative predictions, respectively.

Table 3 and Figure 5 show that the SENet model is better than the other three models
in terms of the average of the four evaluation indicators for the four test areas. The U-Net
model has the lowest recall rates for the four test areas, which is caused by the excessive
number of false negatives (blue) in the predicted results. In terms of precision, FCN-
8s has the lowest average value. Figure 4 shows that the FCN-8s model makes more
misclassifications (false positives) in the four predicted images, but the FCN-8s has higher
recall rates, especially in the second column test images, and fewer false negatives (blue)
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than the other two individual models. The accuracy, recall, F1 score, and IoU of the
experimental results of the SENet model on the test dataset reached 0.954, 0.889, 0.905, and
0.750, respectively, which were higher than those of the three individual models.

Table 3. Quantitative results of SENet, U-Net, SegNet and FCN-8s on 4 test datasets.

Methods 1 2 3 4 Average

Precision

SENet 0.972 0.963 0.926 0.956 0.954
U-Net 0.935 0.825 0.856 0.933 0.887
SegNet 0.814 0.912 0.895 0.951 0.893
FCN-8s 0.836 0.842 0.824 0.922 0.856

Recall

SENet 0.965 0.824 0.832 0.935 0.889
U-Net 0.878 0.763 0.742 0.824 0.802
SegNet 0.96 0.733 0.785 0.913 0.848
FCN-8s 0.834 0.915 0.793 0.873 0.854

F1

SENet 0.932 0.886 0.878 0.924 0.905
U-Net 0.893 0.795 0.794 0.871 0.838
SegNet 0.855 0.811 0.832 0.925 0.856
FCN-8s 0.834 0.872 0.813 0.896 0.854

IoU

SENet 0.752 0.737 0.685 0.826 0.750
U-Net 0.733 0.622 0.635 0.645 0.659
SegNet 0.675 0.618 0.634 0.813 0.685
FCN-8s 0.714 0.734 0.652 0.764 0.716
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results, and (d) IoU results.

3.3.2. Building Colors

The test results are classified and counted according to the color attribute information
of the building-feature attribute tags in the test set. The accuracy of the classification results
for buildings of different colors under different models was calculated. The evaluation
indexes were precision and recall. Table 4 shows the accuracy evaluation indexes extracted
by the four models for buildings of different colors.
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Table 4. Quantitative results of the different models for buildings of different colors.

Building
Color

Methods Recall
SENet U-Net SegNet FCN-8s SENet U-Net SegNet FCN-8s

Red 0.959 0.958 0.925 0.885 0.951 0.885 0.938 0.936
Blue 0.923 0.826 0.861 0.826 0.789 0.715 0.748 0.764

White 0.949 0.877 0.893 0.850 0.881 0.806 0.858 0.857
Gray 0.943 0.886 0.892 0.862 0.883 0.802 0.848 0.859

Average 0.943 0.887 0.893 0.856 0.876 0.802 0.848 0.854

Table 4 shows that the extraction accuracy and recall rate of SENet for buildings of
different colors are higher than those of the three individual models. We also found that
the precision and recall rate for white and gray buildings are not very different from the
average values, indicating that buildings of these two colors have little influence on the
extraction accuracy of the four models. The precision and recall rate of the four models
in extracting red buildings are 0.016, 0.071, 0.032, and 0.029 and 0.075, 0.083, 0.09, and
0.082 higher than the averages, respectively, indicating that the accuracies of the four
models in extracting red buildings are higher than those in extracting buildings of other
colors. The precision and recall rate when extracting blue buildings are lower than the
average by 0.02, 0.061, 0.032, and 0.03 and 0.087, 0.087, 0.1, and 0.09, indicating that these
four models have lower accuracies when extracting blue buildings. To show the difference
more intuitively in the extraction accuracies of red and blue buildings, four samples of red
and blue building data are selected from the test dataset. Figure 6 shows the extraction
results of the four models on these four building samples.
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Figure 6. Segmentation results of the different methods for buildings of different colors. (a) Original
input image. (b) The output of SENet. (c) The output of U-Net. (d) The output of SegNet. (e) The
output of FCN-8s. The green, red, and blue pixels of the maps represent true positive, false positive
and false negative predictions, respectively.

Figure 6 shows that all models have high accuracy when extracting red buildings.
Only SegNet (Figure 6d) and FCN-8s (Figure 6e) exhibit false negatives (blue) in the middle
shadow part of the red buildings in the fourth column. In Figure 6c,d, U-Net and SegNet
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have a large number of missed extractions when extracting blue buildings. The reason for
this result is that the color difference between the blue buildings and the image background,
which contains roads and ground, is small, which leads to the model easily misclassifying
blue buildings as non-buildings. The color difference between the red buildings and the
image background is large, so the extraction accuracy is high. After using CRFs to optimize
the prediction results of the basic model, SENet showed good extraction performance for
buildings of different colors.

3.3.3. Building Sizes

We calculate the accuracy of the extraction results for buildings of different sizes with
different models. Precision and recall are still selected as evaluation indexes. Table 5 shows the
accuracy evaluation indexes extracted by the four models for buildings of different sizes. SENet
achieved the highest precision and recall values when extracting buildings of all different sizes
compared with the other three individual models. For small buildings, the precision and recall
values of the extraction results of the four models are greater than the average values. When
extracting medium-sized buildings, the precision values of U-Net and FCN-8s are lower than
the average value, which indicates that the two models produce more false-positive (red) pixels
in the extraction of medium-sized buildings. When extracting large buildings, the recall value
of FCN-8s is higher than the average value and is 10.6% and 8.8% higher than the U-Net and
SegNet values, respectively, and the highest recall value of SENet is 0.897.

Table 5. Quantitative results of different models for buildings of different sizes.

Building
Sizes

Precision Recall
SENet U-Net SegNet FCN-8s SENet U-Net SegNet FCN-8s

Small 0.968 0.951 0.913 0.905 0.956 0.804 0.948 0.803
Medium 0.933 0.827 0.881 0.815 0.846 0.862 0.787 0.811

Large 0.945 0.866 0.885 0.848 0.897 0.791 0.809 0.826

Average 0.949 0.881 0.893 0.856 0.900 0.819 0.848 0.813

We select representative buildings from each category in the building dataset and classify
them by size to visualize the extraction results. The results are shown in Figure 7. Among
them, the area with small buildings is 160 m2, the area with medium buildings is 2323 m2,
and the area with large buildings is 15,973 m2. To ensure that the contrast experiment is not
affected by the color of the building roofs, we selected three buildings with similar colors.

Figure 7 shows that for small buildings in the first column, the four models have
achieved high extraction accuracies, especially the SENet and SegNet models, which
produce very few false negatives (blue) and false positives (red). For medium-sized
buildings, U-Net and SegNet produce a large number of false negatives (blue), and their
extraction accuracies are reduced. SENet and FCN-8s produce fewer false negatives
(blue), but FCN-8s produces a large area of false positives (red). For large buildings, U-
Net and SegNet generate many missed detection holes, while FCN-8s produces fewer
missed detections. SENet inherits the excellent features of FCN-8S when extracting large-
scale buildings.
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Figure 7. Segmentation results of the different methods for buildings of different sizes. (a) Original
input image. (b) The output of SENet. (c) The output of U-Net. (d) The output of SegNet. (e) The
output of FCN-8s. The green, red, and blue pixels of the maps represent true positive, false positive
and false negative predictions, respectively.

3.3.4. Building Shapes

For the feature attribute labels of the buildings, we use the structure and edge contours
to describe the shape of a building. We selected buildings of different shapes from the
prediction results of the test dataset for analysis, as shown in Figure 8. The first two columns
of buildings in the picture are simple in structure, while the last two columns contain
buildings that are complex. Among the four building samples, only the third column of
buildings has blurry edge contours, while the remaining three buildings have obvious
edge contours. The figure shows that SegNet has poor performance for building extraction,
and there are a large number of false negatives (blue) on the four building samples. For the
other two individual models, U-Net and FCN-8s have good extraction performance for
simple buildings, such as those in the first and second columns. However, for the third
column containing buildings with complex structures and blurry edge contours, all models
failed to identify the boundaries of the buildings well, and many missing pixels appeared
on the edges of the buildings. Although the building in the fourth column has a complex
structure, its edges are obvious and significantly different from the surrounding roads.
SENet and U-Net have high extraction precision outcomes on such buildings. For buildings
of different shapes, the extraction results of SENet are better than those of the other three
individual models.

3.3.5. Building Shadows

According to the shadow attributes in the building-feature attribute tags, we found a
total of 126 buildings covered by shadows from four test images and analyzed the extraction
performance of the four models on these buildings. Building pixels covered by shadows
are often misclassified as non-buildings. These misclassified results are considered false
negatives (blue), so we use recall to evaluate the extraction performance. We define a single
building with a recall value greater than or equal to 0.8 as a complete extraction and with a
recall value less than 0.8 as an incomplete extraction. Among the 126 buildings covered by
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shadows, the SENet model completely extracted 121 buildings with the highest accuracy
rate of 96.0%. The U-Net model completely extracted 107 buildings with an accuracy rate
of 84.9%. SegNet completely extracted 13 buildings with an accuracy rate of 10.3%. FCN-8s
only extracted four buildings
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output of FCN-8s. The green, red, and blue pixels of the maps represent true positive, false positive
and false negative predictions, respectively.

Completely with an accuracy rate of 3.2%. Figure 9 shows four of the 126 buildings
covered by tree shadows and the extraction results of the different models. As shown
in Figure 9d,e, SegNet and FCN-8s did not effectively extract the buildings covered by
shadows, which are considered missed detections. U-Net extracted most of the area covered
by shadows, and only a small number of missing pixels appeared. SENet effectively
inherits the advantages of U-Net in extracting shadowed buildings and has the highest
extraction accuracy.
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4. Discussion

In this section, the proposed model is discussed in five aspects. First, the established
building dataset is compared with the other available public building datasets. In order
to explore the applicability of the proposed SENet, we select another dataset to test the
effectiveness of SENet. In addition, the processing time of different models is compared.
An ablation study is also conducted to discuss the contributions of different models. Finally,
the influence of the number of inference function calculations in the CRFS model on the
optimization results is discussed in detail.

4.1. Dataset Evaluation

Currently, there are four open-source datasets commonly used for building extrac-
tion, namely the WHU dataset [53], ISPRS dataset, Massachusetts dataset [17], and Inria
dataset [54]. Table 6 compares the dataset created in this paper with these datasets in terms
of the coverage area, ground resolution, data source, image block size and number, and
label format. The WHU dataset provides samples that contain both raster and vector data
types from aerial and satellite sources. The ISPRS Vaihingen dataset and Potsdam dataset
provide labels for semantic segmentation and consist of high-resolution orthophotographs
and the corresponding digital surface models. However, the Vaihingen and Potsdam
datasets cover only a very small ground range. The Massachusetts dataset covers 340 km2

but has a relatively low resolution. The ground resolution of the INRIA dataset is similar to
the ground resolution of the dataset created in this article, but the coverage area is smaller
than that of our dataset. Although our dataset is inferior to the WHU and ISPRS datasets
in terms of ground resolution, our dataset has a larger coverage area and richer building
sample types. In addition, our dataset is the only dataset among all the publicly available
datasets that has attribute tags describing the features of each building.
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Table 6. Comparison of our dataset and the other open-source datasets.

Datasets GCD (m) Area (km2) Source Tiles Pixels Label Format

Ours 0.27 1830 sat 650 5000 × 3500 vector/raster
WHU 0.075/2.7 450/550 aerial/sat 8189/17,388 512 × 512 vector/raster
ISPRS 0.05/0.09 2/11 aerial 24/16 6000 × 6000 raster

Massachusetts 1.00 340 aerial 151 11,500 × 7500 raster
Inria 0.3 405 aerial 180 1500 × 1500 raster

4.2. Applicability Analysis of SENet

To further explore the applicability of SENet, the urban area of Waimakariri, New
Zealand was used to test the effectiveness of SENet. The aerial images of Waimakariri
were taken during 2015 and 2016, with a spatial resolution of 0.075 m. The corresponding
building outlines were also provided by the website (https://data.linz.govt.nz, accessed on
29 August 2021). The results of the Waimakariri area are presented in Figure 10. The U-Net
model misclassifies parts of roads as buildings (Figure 10c red rectangle). Both U-Net
and SegNet misclassify hardened ground as buildings (Figure 10c,d yellow rectangle).
It is obvious that SENet outperformed the other approaches. Quantitative results are
provided in Table 7. The overall performance of SENet in this study was the best among
deep models, followed by SegNet and U-Net. The performance of these deep models was
basically consistent with the testing results of the dataset created in this article, indicating
that SENet has high applicability and can be applied to other cities and rural areas.
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Table 7. Quantitative comparison of four metrics (for an urban area of Waimakariri, New Zealand)
obtained from the segmentation results by SegNet, U-Net and the proposed SENet.

Models Precesion Recall F1 IoU

U-Net 0.891 0.896 0.847 0.685
SegNet 0.924 0.901 0.863 0.705
SENet 0.957 0.915 0.923 0.785

https://data.linz.govt.nz
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4.3. Complexity Comparison of Deelp Learning Models

Computational cost is also a significant efficiency indicator in deep learning. It repre-
sents the complexity of the deep learning model where the costs for training and testing
quantify the differences in complexity between CNN models. To evaluate the complexity of
SENet, the training time and testing time were compared with five existing deep learning
approaches (i.e., SegNet, FCN-8s, U-Net, DeconvNet, and DeepUNet). It is worthwhile
mentioning that the running time of deep models including training and testing time can
be affected by many factors, such as the structure and the model parameters. Here, we
simply compared the complexity of deep models. As shown in Table 8, DeconvNet has
the longest training time and testing time among all models. DeepUNet has the shortest
training and testing time, because DeepUNet adopted a very small convolution channel
(each convolutional layer with 32 channels). However, SENet requires a longer training
time than SegNet, FCN-8s, and U-Net. The main reason for this is that the optimization
and combination of the basic model requires a portion of the processing time. Compared
with FCN-8s and SegNet, they require less training time than SENet, but the testing time
of SENet is shorter than that of FCN-8s, close to that of SegNet. From the viewpoint of
accuracy improvement and reducing computing resources, such a minor time increase
should be acceptable. Overall, SENet achieves a relative trade-off between the model
performance and complexity.

Table 8. Complexity comparison of SegNet, FCN-8s, U-Net, DeconvNet, DeepUNet and the proposed SENet.

Model SegNet FCN-8s U-Net DeconvNet DeepUNet SENet

Training Time
(Second/Epoch) 1186 976 724 2359 493 1769

Testing Time
(ms/image) 58.6 84.3 48.3 206.7 42.8 63.1

4.4. Ablation Study

As mentioned in Section 2, SENet is integrated by three basic models, including
SegNet, FCN-8s and U-Net. To study their contributions to the building extraction task, we
design five networks to complete the building extraction respectively. They are as follows:

• Net 1: SegNet
• Net 2: SegNet + FCN-8s
• Net 3: SegNet + U-Net
• Net 4: FCN-8s + U-Net
• Net 5: SegNet + FCN-8s + U-Net

Note that the experimental settings of the networks in this section are the same as
those mentioned in Section 3.2. The results of these networks counted on the dataset are
shown in Figure 11. From the observation of Figure 10, we can find that the performance of
different networks is proportional to the number of basic models. In detail, the behavior of
Net 1 is the weakest among all compared networks since it only consists of a basic model
SegNet. After integrating two basic models, the performances of Net 2, Net 3, and Net
4 are stronger than that of Net 1. Integrating all three basic models, Net 5 achieves the
best performance. Furthermore, the performance gap between Net 5 and other networks
is distinct. The results discussed above demonstrate that each basic models can make a
positive contribution to our SENet model, and integrating three basic model achieves an
incremental improvement over two.
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4.5. Analysis of the Number of CRF Optimization Calculations

The most important step in the CRF model is to use the inference function to perform
inference operations to obtain the value of the energy function. Each additional operation
will reduce the energy so that the segmentation results are closer to the color information
of the real objects. Although the color information of buildings can be used to improve the
edge segmentation effect of buildings, overinference is also likely to increase segmentation
result errors due to the interference of color information, resulting in overclassification.
To explore the number of inference function estimation calculations required to obtain the
optimal segmentation result, experiments with 0–7 calculations were carried out. Taking
the segmentation optimization of residential buildings as an example, the effect is shown
in Figure 12.
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Figure 10 shows that a better optimization effect can be reached after four calculations.
In addition to the complex color information of buildings on the south side, which leads to a
poor segmentation effect, the boundary segmentation result has been optimized according
to a certain amount of color information, and the postsegmentation operation has been
completed well. In the fifth inference, the image is influenced by more color information,
resulting in oversegmentation. Therefore, in this study, the four-calculation inference CRF
model is used to optimize the base model to achieve the best optimization effect.

5. Conclusions

To integrate the feature advantages of different deep learning models and improve the
robustness and stability of the model, a deep learning feature integration method based on
a stacking ensemble technique was proposed for extracting buildings from remote sensing
images. The proposed SENet model was compared with three individual CNN models (U-
NET, SegNet and FCN-8s) on the dataset created in this paper. By adding feature attribute
tags to the buildings in the test set, it is verified that the proposed model can effectively
integrate the feature advantages of different models. To ensure the fairness and reliability
of the experiment, the same training data and training parameters were used. Four widely
used statistical metrics were selected for evaluating the extraction performance of the
model. The experimental results show that the accuracy, recall, F1 score, and IoU of the
proposed SENet on the test dataset reached 0.954, 0.889, 0.905, and 0.75, respectively, which
are all superior to those of the three individual CNN models (U-net, SegNet and FCN-8s).
The proposed SENet can effectively integrate the feature advantages of different models
and obtain excellent prediction results when extracting buildings of different colors, sizes,
and shapes and buildings with shadows. The prediction results will form an important
information source for environmental observations.

Although the proposed model can achieve satisfactory extraction results, limitations
still exist. First, the proposed model requires more computation time, memory, and
resources than the individual models in the construction and combination stages of the
basic predictors. Therefore, more effective strategies for the construction and combination
of basic models must be explored to further enhance the computational efficiency and
scalability of the model. Second, the proposed model also needs to be tested on other
public building datasets to verify its generalization ability on different datasets.
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