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Abstract: Bathymetry is of vital importance in river studies but obtaining full-scale riverbed maps
often requires considerable resources. Remote sensing imagery can be used for efficient depth
mapping in both space and time. Multispectral image depth retrieval requires imagery with a certain
level of quality and local in-situ depth observations for the calculation and verification of models.
To assess the potential of providing extensive depth maps in rivers lacking local bathymetry, we
tested the application of three platform-specific, regionalized linear models for depth retrieval across
four Norwegian rivers. We used imagery from satellite platforms Worldview-2 and Sentinel-2, along
with local aerial images to calculate the intercept and slope vectors. Bathymetric input was provided
using green Light Detection and Ranging (LIDAR) data augmented by sonar measurements. By
averaging platform-specific intercept and slope values, we calculated regionalized linear models and
tested model performance in each of the four rivers. While the performance of the basic regional
models was comparable to local river-specific models, regional models were improved by including
the estimated average depth and a brightness variable. Our results show that regionalized linear
models for depth retrieval can potentially be applied for extensive spatial and temporal mapping of
bathymetry in water bodies where local in-situ depth measurements are lacking.

Keywords: remote sensing; bathymetry; satellite imagery; LIDAR; river management

1. Introduction

Rivers provide a range of landscape functions and ecosystem services [1]. While
rivers have been supplying means of recreation, transportation, and electricity production,
the utilization of rivers has come at a certain cost, introducing physical, ecological, and
hydrological alterations. Proposing relevant mitigation measures requires the appropriate
analytical tools. This includes a solid bathymetric basis on which to build the assess-
ment strategy and the use of hydraulic, hydrological, sediment, physio-chemical, and
ecological models.

While remote sensing (RS) technologies have been available for many years [2,3],
recent developments suggest an increased interest in the analytical possibilities of RS [4,5].
RS has been applied for many different purposes in river studies and is rapidly becoming
more available for analytical use [6–9]. Examples of use include automated grain size map-
ping [10], fluvial patterns and sediment surface topography [11,12], and habitat mapping
for salmonids [13,14].

The basis for many river assessments is riverbed topography coupled with hydraulic
models [15,16]. Hydraulic models often depend on an adequately defined bathymetry [17,18]
and have historically been applied in relatively short river sections rather than large river
reaches due to lack of resources for extensive bathymetric mapping. There are many methods
to retrieve riverbed data ranging from manual methods using hand-held sticks and instruments
by wading or from boats to more semi-automated methods like sonars, acoustic doppler
current profilers (ADCP), Light Detection and Ranging (LIDAR), and optical instruments,
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mostly carried by remotely operated vehicles (ROV), boats, drones, helicopters, airplanes, and
satellites. Some of these methods still require intensive manual effort to collect data for large
river reaches, and they are not further discussed here.

Airborne devices such as LIDARs may provide users with extensive, high-resolution
bathymetric models [19], but the collection and processing of LIDAR data can potentially
be costly and time-consuming [20,21]. While the application of RS imagery may result in
lower-resolution models when compared to LIDAR-derived data, it can still be a sensible
alternative for the mapping of river bathymetry [22,23]. Often, RS imagery is collected
repeatedly in both space and time, adding spatial and temporal elements that can be
utilized in river assessments [24]. The main sources of RS imagery are satellites and aircraft-
based instruments [25]. While access to local aerial images may be restricted, satellite
imagery is often readily available at low- or no-costs from a range of global archives.

Lyzenga [26] introduced the use of RS image band combinations for water depth
extraction. Building on the Lyzenga image band combination concept, Legleiter et al. [27]
introduced OBRA (Optimal Band Ratio Analysis) for the identification of optimal band
combinations. Further development of the concept was done by Legleiter & Harrison [28]
by assessing different types of equations for the relation between image-derived quantities
and depth. Additional methods include MODPA (Multiple Optimal Depth Predictors
Analysis), where multiple predictors are included to enhance water depth extraction,
and SMART-SDB (Sample-specific multiple band ratio technique for satellite-derived
bathymetry), where local adjustments to band ratio models are applied [29,30].

In addition to being dependent on the platform-specific sensor technology, the rela-
tional quality between image-derived quantity and water depth also depends on factors
like ground pixel resolution, substrate color, water column characteristics, and water depth
itself [31]. While “clear” rivers are (seasonally) present in Norway, many rivers are semi-
or non-transparent due to suspended sediments, organic matter, and the presence of peri-
phyton reducing water column transparency and obscuring riverbed visibility, especially
in the deeper parts of the river.

While a small but increasing number of Norwegian rivers have been mapped using
green LIDAR, most rivers lack extensive bathymetric coverage. Occasional mapping of
rivers done many years ago may also not be used anymore, as the riverbed topography
may have changed due to sedimentation and erosion caused by flood events, ice scouring,
or other factors. This may emphasize the need for updating outdated bathymetric maps
while also providing access to bathymetry in previously unmapped rivers.

Increasing the availability of bathymetric maps on a regional or national scale could
provide a better foundation for river management. Norwegian river managers are currently
facing multiple challenges. The European Water Framework Directive (WFD) requires the
characterization and classification of all water bodies. So far, the methods and tools to
do this in a cost-effective way are missing. About 2/3 of the large rivers in Norway are
regulated for hydropower. Many of these will undergo a revision of terms in the coming
years, as they reach 30 years of operation [32]. Both the implementation of the WFD and
the revision of terms in hydropower regulated rivers would most likely require mitigation
measures to be carried out. These measures could be the release of environmental flows,
habitat improvements, and alterations of geomorphology. In addition, the increased
frequency and magnitude of intensive precipitation events due to climate change increase
the risk of damaging flood events in Norwegian rivers [33]. All these factors require
improved knowledge and data from rivers, highlighting the need for adequate and spatial
extensive river bathymetry data.

As satellite imagery often covers large parts of catchments, both spatially and tem-
porally, estimating depth from image data can be an essential tool for setting up a range
of river applications to meet these new challenges for river management. In addition to
the challenges mentioned above, extensive river bathymetry data are also important for
planning urban, industrial, and infrastructure development close to or across the riverscape.
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While a range of models for local depth retrieval has been tested and applied, there is
a lack of studies analyzing the potential transferability and application of platform-specific
models across rivers. The main goal of our study was to test the use of regionalized
linear models for depth retrieval in a Norwegian setting to provide a potential method
for extensive depth mapping in water bodies where local bathymetry is lacking. The
regionalized linear models were set up by calculating and averaging the platform-specific
depth to band ratio intercept and slope coefficients across four rivers located within the
same geographical region. Using local LIDAR and sonar bathymetry as depth input, we set
up linear models for three RS platforms: (1) high-resolution Worldview-2 satellite imagery,
(2) low-resolution Sentinel-2 satellite imagery, and (3) local high-resolution aerial imagery.
Our research objectives were:

(1) To test and assess depth retrieval using linear models for three different platforms
across four Norwegian rivers with slightly different characteristics.

(2) To develop and test the application and transferability of platform-specific, regional-
ized models for depth retrieval across the four study sites.

2. Materials and Methods

Four non-connected rivers located in Central Norway were used in the study: Gaula,
Gudbrandsdalslågen (hereafter Lågen), Nea, and Surna (Figure 1 and Table 1). River Gaula
is dominated by a sand and gravel substrate and runs through a relatively wide U-shaped
valley. While floods still affect the hydromorphology, embankments and historical gravel
outtakes have altered the geomorphology and reduced the dynamic movement of the
riverbed in parts of Gaula. River Lågen is dominated by silt/sand and gravel substrate
and runs through a wide valley bottom. River Nea is dominated by gravel and occasional
rocks and runs through a V-shaped valley in the upstream part and a u-shaped valley
in the lower part. River Surna is a gravel-bed-dominated river that runs through a U-
shaped valley. Rivers Nea and Surna are regulated by hydropower with an upstream
dam and reservoir, a bypass section, and an outlet in the lower part, while river Lågen is
regulated by a run-of-the-river hydropower plant. River Gaula is not directly affected by
hydropower regulation.
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Figure 1. Overview of the study areas: (a) regional locations of the four rivers in central Norway; (b–e) aerial images of
the river sections used as training data for cross-sectional image pixel and in-situ depth extraction. The scale for all river
sections is given in (d). Aerial images by © Kartverket and Geovekst.
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Table 1. River drainage area and training data river section mean annual flow, width, section length,
and channel aspect ratio, A. Channel aspect ratio is calculated as average width by depth in one of
the Worldview-2 images in the four river sections.

River Drainage Area
(km2)

Mean Annual
Flow (m3s−1)

Average Width
(m)/Section
Length (m)

Channel Aspect
Ratio, A

Gaula 3660 96.6 85.3/293.5 90.7
Lågen 1 1828 32.7 72.9/443.6 58.3
Nea 2 1519 1.5 95.9/322.4 223.0

Surna 3 1199 8.2 39.1/230.9 56.6
1 Regulated by hydropower. 2 Regulated by hydropower. 1.5 m3s−1 is the minimum flow release from May
through September. Local runoff applies in addition. 3 Regulated by hydropower. Mean flow in bypass
reach/downstream powerplant outlet.

2.1. Data
2.1.1. Riverbed Topography

We accessed a national public database for red and green LIDAR data, available at
www.hoydedata.no, acessed on 17 August 2021 [34]. Using polygons to define the area of
interest (AOI) in each of the four rivers, we included the specific river reaches in each of the
study areas in addition to a buffer zone of approximately 10 m of dry terrain on each bank.
For each AOI, we downloaded a 1 × 1 m orthorectified digital terrain model (DTM) based
on a nationwide red LIDAR mapping project. As all standard DTMs in the database were
based on a non-water penetrating red LIDAR point cloud, the wet parts of rivers were given
as a water surface, per classification from the point cloud. In the same database, a selection
of sections of rivers have bathymetry available based on green LIDAR point clouds, and
some of these point clouds also include supplementary local measurements of bathymetry
using multibeam sonar to complement missing data in deeper river sections. For rivers
Gaula and Lågen, we downloaded bathymetry point clouds for the respective AOIs. For
each of the two rivers, we used the point clouds to create riverbed topography raster files
using natural neighbor interpolation. In river Nea, we sampled riverbed topography using
boat mounted SonTek M9 ADCP. Approximately 12,000 points were collected on a 3 km
river stretch. We then used the points for natural neighbor interpolation to create a riverbed
topography raster file. For river Surna, we were given access to a green LIDAR bathymetric
dataset collected by the hydropower operator Statkraft [35], covering the study reach. A
summary of parameters for the underlying point clouds and terrain datasets is given in
Table 2.

Table 2. Equipment used for the acquisition of point clouds used to calculate the river-specific
terrain datasets.

River Platform Operator Date of Acquisition Point
Density

Accuracy
(dz) (m)

Gaula Optech Titan
snr 349 TerraTec 26 September

2016–11 October 2016 4 pt/m2 0.002

Lågen Optech Titan
snr 349 TerraTec 20 September 2015–

21 September 2015 4 pt/m2 0.024

Nea
SonTek

RiverSurveyor
M9 [36]

NTNU 25 October 2019 0.06 pt/m2 -

Surna RIEGL VQ-880 G AHM 20 August
2016–26 August 2016 >1 pt/m2 -

The bathymetric raster in each river was resampled and snapped to match the reso-
lution and borders of the cells (i.e., pixels) in the individual satellite and aerial imagery.
Thereby, each set of imagery had its georeferenced bathymetric map. To establish the
georeferenced water surface elevation along the river sections, we used local satellite
imagery in combination with the red LIDAR raster to set up polygons with the same

www.hoydedata.no
www.hoydedata.no
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water surface elevation. To obtain water surface maps, we used the Normalized Difference
Vegetation Index (NDVI) method on the satellite imagery, using a combination of the red
and near-infrared (NIR) bands [37]. In the resulting raster, negative values indicated water
surface, and positive values indicated dry land. We reclassified the raster by letting a value
of 1 indicate water, and a value of 0 indicate dry land, and, finally, created a polygon repre-
senting the water surface classification outline. Using the red LIDAR raster as input, we
extracted the water surface elevation using the classification polygon file. In addition, we
set up a new water surface polygon file based on areas with the same elevation to inspect
and extract local water surface slope. Based on the extracted water surface elevations,
we created depth raster files by subtracting the bathymetric raster from the local water
surface elevation. Further adjustment of local water surface elevations due to different
flows during image acquisition was done during the subsequent analysis.

2.1.2. Platform Imagery

Three sources of imagery were used for analysis: (1) four-band red, green, blue,
and near-infrared high-resolution Worldview-2 satellite images; (2) four-band red, green,
blue, and near-infrared Sentinel-2 satellite images; and (3) three-band high-resolution
aerial images (Table 3). Worldview-2 images (© TPMO (2020)) were provided by the
European Space Agency [38]. We did a manual conversion to obtain top-of-atmosphere
(ToA) reflectance pixel values. ToA reflectance Sentinel-2 images were downloaded via
the Copernicus Open Access Hub [39], while aerial images were acquired through the
Norwegian mapping authority aerial image repository at www.norgeibilder.no, acessed on
17 August 2021. The aerial images were analyzed using raw digital numbers (DN) without
any atmospheric correction.

Table 3. Platform image information summary.

River Image Source Image No. Resolution
(m) Acquisition Date Discharge

Gaula Worldview-2 1 2.04 9 May 2017 -
2 2.07 27 August 2019 50 1

Sentinel-2 1 10 19 August 2016 50 1

2 10 26 April 2019 -

Aerial image 1 0.5 6 June 2016 75 1

Lågen Worldview-2 1 2.05 7 September 2019 63
2 2.05 8 September 2019 58

Sentinel-2 1 10 30 June 2018 35
2 10 3 July 2018 28
3 10 4 August 2019 49

Aerial image 1 0.5 9 September 2015 42

Nea Worldview-2 1 1.65 17 May 2018 20 1

2 2.06 16 May 2019 30 1

Sentinel-2 1 10 28 July 2019 10 1

2 10 4 August 2019 10 1

3 10 26 September 2019 10 1

Aerial image 1 0.2 2 June 2017 40 1

2 0.2 27 July 2018 5 1

Surna Worldview-2 1 2.02 5 August 2019 14 1

2 2.05 20 October 2019 12 1

Sentinel-2 1 10 26 April 2019 96 1

2 10 28 July 2019 8 1

3 10 26 September 2019 4 1

Aerial image 1 0.1 30 June 2018 6 1

1 Discharge is estimated based on expert knowledge.

www.norgeibilder.no
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All satellite images were orthorectified using the red-LIDAR-based terrain raster
datasets. In addition, minor adjustments were done by shifting images in the x-y-plane
to match the local high-resolution aerial images, used as georeferencing baseline. No
smoothing was done on any of the images.

2.2. Data Analysis
2.2.1. Selecting Band Combinations

After a preliminary evaluation of both linear and polynomial methods, we decided to
base the work on Legleiter et al. [28] and analyzed the linear relationship between depth
and image pixel values as given in Equation (1).

d = b0 + b1X (1)

where d is depth, X is an image pixel-derived quantity, and b0 and b1 are the intercept and
slope of the linear relationship. b0 and b1 form the coefficient vector b = [b0 b1]. X from
Equation (1) was defined as two different band combinations in our study:

Xg = ln
(

pg/pr
)

(2)

Xb = ln(pb/pr) (3)

where p is the respective band image pixel value (with subscripts b, g, and r representing
blue, green, or red bands, respectively). For the Worldview-2 and Sentinel-2 images, p
represented top-of-atmosphere reflectance values, while for the local aerial images, p
represented raw digital number values (DN). Band combinations were selected based on
previous studies by Legleiter et al. [23] and Shintani and Fonstad [40], where analysis
indicated that bands with the highest spectral values (i.e., red available in our case) as the
denominator in many cases provided the best results. The blue and green bands were both
subsequently chosen as the numerators. A pre-study assessment in our rivers confirmed
the choice of band combinations.

2.2.2. The Study Framework

The data analysis was done using two sets of data: (1) cross-sectional training data
and (2) polygon validation data (as given by the corresponding numbers in Figure 2). The
training data was used for setting up local and regional linear models for depth retrieval
for each platform (Worldview-2, Sentinel-2, and aerial images). The validation data was
used for assessing the quality of the linear models when applied in each of the four rivers.
The separate steps of data analysis apply to each of the four rivers and are summarized in
short below (as given by the corresponding lettering in Figure 2) and described in full in
the following chapters.

[A] We sampled image pixel quantities for the bands red, green, and blue along with in-
situ depth in 17 cross-sections for platforms Worldview-2, Sentinel-2, and aerial images.

[B] Using linear regression, we calculated coefficients b0,dir and b1,dir for the relationship
between Xg, Xb, and depth, as given in Equations (1)–(3).

[C] By assessing the coefficient of determination (R2) for each cross-section, we removed
all cross-sections with an R2 less than 0.60 to obtain coefficients b0,corr and b1,corr

[D] Based on the remaining cross-section, we averaged coefficients b0,corr and b1,corr for
each platform across the four rivers to obtain a regional set of coefficients b0,reg
and b1,reg.

[E] We assessed and tested the relationship between the model coefficients b0,dir and b1,dir
and variables average depth and image brightness.

[F] Using the relationships from [E], we calculated a corrected set of regional coefficients
b0,reg_dbr and b1,reg_dbr for each river.

[G] In a separate validation polygon in each of the four rivers, we applied the models
from [B], [D], and [F] to test and assess the model quality.
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Figure 2. The study framework. Starting with the top box (0) displaying the study input data, the data analysis takes two
pathways: (1) using RGB pixel values in river cross-sections to set up the different relationships between depth and image
pixel quantities in steps A through F, and (2) testing and validating former relationships in a validation polygon in step G.

2.2.3. Cross-Sectional Training Data Sampling

A single river section (in the range of 232–443 m) was selected as training data input
in each of the four rivers. Sections were specifically chosen in areas with a low potential for
temporal bed elevation changes due to floods and a minimum of image distortion factors
like riverbank shadows, surface sun reflection, and turbulence. An example of a river
section is shown in Figure 3 for river Lågen.
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Figure 3. Example of training polygon depth and imagery for river Lågen. (a) Depth map, (b) Worldview-2 RGB ToA
image (2 m resolution, © TPMO), (c) Sentinel-2 RGB ToA image (10 m resolution), (d) RGB aerial image (0.5 m resolution, ©
Kartverket and Geovekst).

In each polygon, we defined a longitudinal, mid-river centerline and added 17 equally
spaced latitudinal lines along the centerline reaching from the left to the right riverbank.
Each latitudinal line was transformed into cross-sectional points with fixed 2 m intervals.
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The cross-section point files were used as input for calculations of intercepts and slopes
([A], Figure 2).

2.2.4. Coefficient Vector Calculations

Four methods were used for calculating coefficient vectors from the image quantity
X to depth relationship in cross-sections: (1) a direct linear relationship = bdir; (2) a direct
linear relationship for cross-sections with R2 above 0.60 = bcorr; (3) basic regional average
= breg; and (4) adjusted regional average = breg_dbr. All four methods are described in the
following section and summarized in Table 4.

Table 4. Summary of the four methods for depth retrieval using 17 cross-sections in each of the
four rivers.

No. Method Coefficient Vector Method Description

1 Direct linear bdir =
[
b0,dir b1,dir

]
Direct linear fit with depth

2 R2-corrected bcorr = [b0,corr b1,corr] Direct linear with R2 > 0.60

3 Regional breg =
[
b0,reg b1,reg

] Averaged across four rivers
using bcorr

4 Regional, depth and
brightness adjusted breg_dbr =

[
b0,reg_dbr b1,reg_dbr

] Averaged across four rivers
using bcorr and corrected by
average estimated local depth
and normalized brightness

Using the cross-section point files in each river, we sampled RGB pixel values and
observed depth in all images for each of the three platforms. Sampling was done using
the nearest neighbor resampling technique. We calculated Xg and Xb for each sample
point and assessed the direct linear relationship between Xg and Xb, and observed depth in
cross-sections. The quality of fit between calculated and observed depth was determined by
calculating the coefficient of determination (R2) for each cross-section. We repeated the pro-
cess for all images across the three platforms in each of the four rivers. For each of the three
platforms, we calculated a final river-specific coefficient vector bdir = [b0,dir b1,dir] by aver-
aging the individual cross-section vectors in all platform-specific images. From the initial
cross-sectional Xg and Xb dataset, we removed cross-sections with a coefficient of determi-
nation less than 0.60, based on an assumption of adequate linear fit above this threshold
value. The river- and platform-specific R2-corrected coefficient vector bcorr = [b0,corr b1,corr]
was then calculated by averaging all remaining cross-section vectors in all platform-specific
images. By averaging the four river-specific R2-corrected coefficient vectors bcorr, we ob-
tained final multiple-river regional coefficient vectors breg =

[
b0,reg b1,reg

]
for each platform.

We tested the relationship between the average depth and the coefficient vector in the
cross-sections by setting up two separate linear regression models using coefficients b0,dir
and b1,dir from the initial cross-sectional Xg and Xb dataset as predictor variables and depth,
d, as the response variable. Linear regression was done separately for each platform, and
the results were summarized as a platform-specific coefficient of determination averaged
across all four rivers. Examples of linear models for the calculation of bdir for Worldview-2
images in our study are given in Equations (4)–(7).

For Xg b0,dir = 0.6526 − 1.4346 ∗ d (4)

b1,dir = −0.9313 + 5.0843 ∗ d (5)

For Xb b0,dir = 0.8061 − 2.0049 ∗ d (6)
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b1,dir = −0.8532 + 3.8351 ∗ d (7)

In addition, we introduced a “brightness” variable BRlocal to adjust the regional
coefficient vectors for the local variations in the red, green, and blue (RGB) pixel values pr,
pg, and pb. For each river, we calculated the normalized brightness value by dividing the
median value of all three band image pixel values in each cross-section with the median
RGB pixel value across all cross-sections within the study area.

BRlocal = median RGBXS/median RGBAll (8)

median RGB = median [pr, pg, pb] (9)

For each platform, in each of the four rivers, we calculated a local depth and brightness
corrected regional coefficient vector breg_dbr =

[
b0,reg_dbr b1,reg_dbr

]
by adding average

estimated depth, dest, and the normalized “brightness” variable BRlocal as product variables
to the regional coefficient vector breg:

b0,reg_dbr = b0,reg ∗ dest ∗ BRlocal (10)

b1,reg_dbr = b1,reg ∗ dest ∗ BRlocal (11)

We used the statistical software R [41] and the package lme4 [42] for regression and
statistics on depth average and brightness.

2.2.5. Mean Error and RMSE Calculation

To test the quality of depth retrieval from the coefficient vectors, we used mean
error (ME) and root-mean-square error (RMSE) as accuracy and precision parameters,
respectively. ME was calculated as the deviation between average calculated and observed
depth. Thus, negative ME values represented an underestimation of depth, while positive
values indicated an overestimation. RMSE was calculated as the square root of the mean of
the squares of the deviations for n predictions, as shown in Equation (12). All calculations
of ME and RMSE were done using Microsoft Excel (2021).

RMSE =

√√√√∑n
i=1

(
d̂i − d

)2

n
(12)

2.2.6. Polygon Validation of Linear Models

For the assessment of model depth retrieval quality across platforms, we selected a
separate validation location in each of the four rivers (Figure 4). A total of 100 randomly
distributed points were generated within each validation polygon and used for band-
specific image pixel quantity and depth sampling (corresponding to step [G] in Figure 2).
From the sampled image pixel quantities in the validation polygons, we applied the three
bathymetry models from the initial training datasets:

1. A direct linear model using locally calculated coefficient vectors.
2. A basic regional model using coefficients averaged across the four rivers.
3. An adjusted regional model with basic regional model coefficients corrected by the

local estimated average depth and image brightness.
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(c), and Surna (d). Source: © Kartverket and Geovekst.

We used mean error, RMSE, and R2 as indicators of model quality. As the band
combination blue on red provided the best overall model results on depth retrieval during
the initial model calculations, we only applied this specific band combination in the final
assessment. Initial calculations of depth from Sentinel-2 images in the validation polygons
provided non-significant relationships to in-situ depths in all four rivers, and the platform
was removed from the final assessment. Visual inspection of Sentinel-2 images in the
validation polygons confirmed the low image quality and diffuse pixel quantities in the
dry/wet zones along the riverbanks.

As the adjusted regional models used estimated local average depth and brightness
as corrective factors, we needed to calculate these factors in the validation polygons. We
split each validation polygon longitudinally into five sections. For each section, we used
average in-situ depth in the 20 random points as a proxy for the estimated average depth.
The section brightness was calculated by dividing the median section RGB value by the
median RGB value in the whole validation polygon.

3. Results
3.1. River-Specific Platform Coefficient Vectors in Cross-Sections

Training data coefficient vectors bdir and bcorr for platforms Worldview-2, Sentinel-2,
and aerial image are given in Table 5. The overall best fit was obtained by using the blue on
red band combination Xb on the aerial images. Sentinel-2 images provided the least fitted
models, especially for the green on red band combination Xg. Removing cross-sections
with R2 less than 0.60 and thus increasing the overall fit generally increased the absolute
value of the coefficients.
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Table 5. Vector coefficients and R2 for (a) bdir and (b) bcorr for band combinations Xg and Xb for the
three platforms in each of the four rivers. The total number of points in cross-sections (n) is given in
the last column.

Xg Xb

River Platform CV 1 b0 b1 R2 b0 b1 R2 n

Gaula Worldview-2 a −0.89 5.67 0.71 −1.38 3.72 0.70 611
b −1.09 6.24 0.74 −1.79 4.35 0.75 504

Sentinel-2 a −0.05 3.61 0.42 −0.18 1.93 0.37 638
b −0.42 4.95 0.74 −0.68 2.69 0.69 205

Aerial image a 1.48 6.91 0.65 1.77 3.97 0.70 1395
b 1.67 8.07 0.75 1.88 4.59 0.82 1026

Lågen Worldview-2 a −1.25 5.44 0.57 −1.88 4.13 0.58 1195
b −1.61 6.67 0.80 −2.34 4.93 0.78 565

Sentinel-2 a −0.08 3.54 0.63 −0.30 2.82 0.64 1780
b −0.24 4.35 0.85 −0.48 3.43 0.86 1051

Aerial image a 0.42 5.46 0.89 1.19 4.67 0.85 597
b 0.42 5.46 0.89 1.19 4.67 0.85 597

Nea Worldview-2 a 0.04 1.28 0.31 −0.19 0.96 0.31 1366
b −0.29 2.21 0.67 −0.63 1.75 0.67 320

Sentinel-2 a −0.07 1.38 0.33 −0.45 1.27 0.36 2030
b −0.61 2.62 0.78 −1.32 2.48 0.77 478

Aerial image a 0.47 0.68 0.23 0.41 0.43 0.36 1317
b 0.68 1.84 0.67 0.49 1.12 0.77 138

Surna Worldview-2 a −0.45 2.76 0.64 −0.56 1.82 0.64 432
b −0.68 3.36 0.76 −0.71 2.03 0.76 270

Sentinel-2 a 0.15 1.57 0.47 0.65 0.04 0.56 595
b −0.20 1.95 0.94 0.76 −0.18 0.88 216

Aerial image a 0.62 3.14 0.65 0.50 1.71 0.80 484
b 0.65 3.65 0.76 0.49 1.77 0.83 313

1 CV = Coefficient Vector.

Figure 5 shows examples of cross-section depth retrievals using coefficient vectors bdir
and bcorr for the Xb band combination in rivers Lågen, Gaula, and Nea. For the Worldview-
2 image in river Lågen, both coefficient vectors led to an overestimation of depths in the
shallow areas close to the left bank. The best fit was obtained by using the coefficient vector
bdir. For the Lågen aerial image, both methods provided an adequate calculated versus
observed depth fit.

For the Worldview-2 and the Sentinel-2 images in river Gaula, both coefficient vectors
bdir and bcorr underestimated the depths in the deeper part of the cross-section. For the
aerial image in river Gaula, most methods provided an adequate fit to the observed depth.
The presence of “noise” in the deeper parts of the aerial image can be observed as a slightly
“fluctuating” riverbed in the depth calculations (Figure 5f).

River Nea was the shallowest river among the four in terms of average river section
depth. For the Worldview-2 image, overall depth was overestimated along the cross-
section. Both coefficient vectors provided a relatively good fit with the observed depth
for the Sentinel-2 image. For the aerial image in river Nea, both coefficient vectors were
inadequate in estimating depth.
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Figure 5. Examples of calculated versus observed depth in selected cross-sections. The horizontal axis is given in meters
from the left bank. The columns represent platforms Worldview-2 (a,d,g), Sentinel-2 (b,e,h), and aerial images (c,f,i) for
rivers Lågen (a–c), Gaula (d–f), and Nea (g–i). The lines represent the water surface, bed elevation, and depth calculated
using the coefficient vectors bdir and bcorr, respectively, for the Xb band combination on the Y-axis.

3.2. Cross-Section Mean Error and RMSE

The cross-sectional average depth retrieval mean error was in the −0.07–0.01 m range
for all platforms and models. Excluding cross-sections with R2 < 0.6, reduced the mean
error to ≈ 0, while no overall reduction in RMSE was observed. RMSE across all platforms
and models ranged from 0.15 m to 0.31 m. While the cross-platform average mean error
was slightly less for Xb, no overall difference in RMSE was observed between Xg and Xb.

Average mean error and RMSE were lower in depths less than 2 m when compared to
the inclusion of all depths (for coefficient vector bdir, Table 6).
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Table 6. Cross-sectional mean error and RMSE for depth retrieval on all depths (for bdir and bcorr)
and depths below 2 m (bdir only) across platforms and rivers for band combinations Xg and Xb.

CV 1 Data Included Xg Xb

Platform ME RMSE ME RMSE

Worldview-2 bdir All −0.06 ± 0.09 0.28 −0.07 ± 0.11 0.28
Depths < 2 m −0.01 ± 0.08 0.19 −0.02 ± 0.08 0.19

bcorr XS R2 > 0.6 0.00 ± 0.17 0.31 0.00 ± 0.18 0.31

Sentinel-2 bdir All −0.04 ± 0.06 0.27 −0.04 ± 0.06 0.27
Depths < 2 m 0.00 ± 0.03 0.18 0.00 ± 0.04 0.18

bcorr XS R2 > 0.6 0.00 ± 0.08 0.25 0.00 ± 0.08 0.28

Aerial image bdir All −0.04 ± 0.05 0.26 −0.03 ± 0.05 0.24
Depths < 2 m 0.01 ± 0.04 0.16 0.00 ± 0.03 0.15

bcorr XS R2 > 0.6 0.01 ± 0.07 0.26 −0.01 ± 0.05 0.23
1 CV = Coefficient Vector.

3.3. Regionalization of Coefficient Vectors

Using river-specific coefficient vector bcorr (as given in Table 5) as input, we obtained
platform-specific regional coefficient vectors breg for the band combinations Xg and Xb
(Table 7).

Table 7. The regional platform-specific coefficient vectors breg for the band combinations Xg and Xb
as an average of bcorr in rivers Gaula, Lågen, Nea, and Surna.

Xg Xb

Platform b0,reg b1,reg b0,reg b1,reg

Worldview-2 −0.89 ± 0.59 4.39 ± 2.10 −1.31 ± 0.85 3.11 ± 1.55
Sentinel-2 −0.37 ± 0.22 3.17 ± 1.46 −0.38 ± 1.21 1.99 ± 2.17

Aerial image 0.92 ± 0.80 4.65 ± 2.67 0.99 ± 0.75 2.81 ± 1.74

We tested for an overall non-river-specific linear relationship between the coefficient
vector bdir and average depth in cross-sections for each of the three platforms. The results
showed that the slope variable b1,dir was significantly related to average depth in all platforms
(p < 0.01, Table 8), while the intercept variable b0,dir was significantly related to depth in
Worldview-2 images (Xg and Xb, p < 0.01) and aerial images (Xb, p < 0.01). Sentinel-2 image
intercept (b0,reg for Xg and Xb) were not significantly related to average depth.

Table 8. Quality of fit by coefficients of determination R2 for the band combinations Xg and Xb for the
relationship between the direct linear coefficient vectors bdir and average depth d in cross-sections.

Xg Xb

b0,dir b1,dir b0,dir b1,dir

Platform R2 p-Value R2 p-Value R2 p-Value R2 p-Value

Worldview-2 0.93 <0.01 0.93 <0.01 0.95 <0.01 0.98 <0.01
Sentinel-2 0.00 0.93 0.94 <0.01 0.07 0.48 0.74 <0.01

Aerial image 0.41 0.12 0.95 <0.01 0.82 <0.01 0.83 <0.01

We found that normalized brightness was significantly related to average depth in
cross-sections in images with low levels of surface disturbance (Table 9).



Remote Sens. 2021, 13, 3897 14 of 22

Table 9. The linear fit between the “brightness” factor BRlocal and average depth d in cross-sections
for platforms Worldview-2, Sentinel-2, and aerial image.

Platform R2 p-Value Number of Cross
Sections

Worldview-2 0.61 <0.001 34
Sentinel-2 0.71 <0.001 51

Aerial image 0.78 <0.001 51

Using the significant relationships between the coefficient vectors, average depth,
and brightness, we calculated a depth- and brightness-adjusted breg_dbr for all images, as
described in Equations (10) and (11). While no overall significant average depth-relation
was found for intercept b0,reg for platforms Sentinel-2 (Xg and Xb) and aerial image (for Xg),
we included the platforms in a final calculation of platform-specific breg_dbr for comparison.
An example of regional coefficient vector use in a cross-section is shown in Figure 6. The
use of the adjusted coefficient vector breg_dbr improved the results of the basic regional
coefficient vector breg across platforms.
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Figure 6. Example of cross-section depth calculations in river Gaula using regional coefficient vectors breg and breg_dbr for
(a) Worldview-2, (b) Sentinel-2, and (c) aerial image. breg is the basic regional coefficient vector (orange line), while breg_dbr
is the regional coefficient vector with adjustment using estimated local average depth and a brightness factor (green line).

3.4. Application and Quality Assessment of Regional Models in Validation Polygons

In the final step of the study, we applied and assessed the regional models for the
calculation of depth, using the band combination Xb for platforms Worldview-2 and aerial
images in validation polygons. See Figure 7 for results on model depth in the validation
polygon for river Gaula. Local river-specific models were also applied for comparison. The
model performances of each of the three models were compared in terms of mean error,
RMSE, and R2.
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Figure 7. Calculated depth in river Gaula using (a) local, (b) basic regional, and (c) adjusted regional models for band
combination Xb in a Worldview-2 image. The flow direction is from left to right. Negative depths are apparent in the
downstream mid-section, where dry land is protruding from the water surface, and close to the left riverbank, where surface
turbulence distorts the pixel quantities. Zonal differences in depth retrieval are observed in (c), where each zone has its
specific estimated depth and brightness.

The overall performances of the basic regional models were equal to or higher than the
local models for all rivers, with an exception for the aerial image in river Surna (Table 10).
Performances of the adjusted regional models improved upon the local and basic regional
models in rivers Gaula and Surna for the Worldview-2 image, and in river Gaula for the
aerial image.

Table 10. Model performance results in validation polygons.

Platform River Model ME RMSE R2

Worldview-2 Gaula Local −0.30 0.34 0.74
Basic regional −0.30 0.34 0.76

Adjusted
regional −0.22 0.27 0.83

Lågen Local 0.31 0.39 0.76
Basic regional 0.07 0.27 0.76

Adjusted
regional 0.88 0.91 0.74

Nea Local −0.58 0.66 0.52
Basic regional 0.11 0.27 0.52

Adjusted
regional 0.36 0.43 0.47

Surna Local −0.35 0.68 0.82
Basic regional −0.32 0.54 0.82

Adjusted
regional −0.09 0.31 0.84

Aerial image Gaula Local −0.39 0.43 0.77
Basic regional −0.22 0.27 0.77

Adjusted
regional 0.22 0.27 0.78

Lågen Local 0.17 0.22 0.91
Basic regional −0.15 0.24 0.91

Adjusted
regional 0.46 0.48 0.91

Nea Local −0.58 0.65 0.70
Basic regional 0.52 0.60 0.70

Adjusted
regional 0.81 0.88 0.71

Surna Local −0.54 0.68 0.83
Basic regional 0.59 0.67 0.83

Adjusted
regional 1.00 1.22 0.84

An example of the results of the model performance for depth retrieval is given in
Figure 8 for the validation polygon in river Gaula. The best result using the Worldview-2
image was obtained by applying the adjusted regional model (Figure 8d, mean error = −0.30,
RMSE = 0.34, R2 = 0.83). The best result for the aerial image was also obtained by using the
adjusted regional model (Figure 8g, mean error = 0.22, RMSE = 0.27, R2 = 0.78).
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Figure 8. Model performance in river Gaula validation polygon (a). Depth bias maps using local models, basic regional
models, and adjusted regional models, respectively, are given for the Worldview-2 image (b–d) and the aerial image (e–g).
White indicates a mean error of less than 0.25 m, while red and blue colors indicate an over- and underestimation of
depth, respectively. Scatterplots for calculated versus observed depth using the three different models are given for the
Worldview-2 image (h) and the aerial image (i).

For river Lågen, the local and basic regional models had matching model performances
for both platforms, while the adjusted regional models led to higher levels of mean error and
RMSE. For river Nea, while the basic regional model had the best relative model performance
for the Worldview-2 image (mean error = 0.11, RMSE = 0.27, R2 = 0.52), the overall model per-
formance was low for both image platforms and across models. For river Surna, the adjusted
regional model performed best for the Worldview-2 image (mean error = −0.09, RMSE = 0.31,
R2 = 0.84), while for the aerial image, all three models had low performance levels.

3.5. Application of an Adjusted Regional Model in River Nea

In a separate study, using an adjusted regional model approach, as described above,
we created bathymetry for a 30 km river reach in river Nea. River Nea was originally
scanned using green LIDAR, but the resulting LIDAR data provided no data for river sec-
tions deeper than 0.5 m. We applied the adjusted regional model setup on an aerial image to
calculate depth in sections where LIDAR coverage was missing. From the calculated depths,
we used information on local water surface elevation from the LIDAR dataset to transfer
model depths to bathymetry. The bathymetry was used as input to a hydraulic model
using Hec-RAS (HEC-RAS 5.0.7., https://www.hec.usace.army.mil/software/hec-ras,
acessed on 17 August 2021). An example of bathymetry for a 5 km reach in river Nea is
given in Figure 9.

https://www.hec.usace.army.mil/software/hec-ras
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Figure 9. Bathymetry for a 5 km reach in river Nea. The bathymetry was calculated using an adjusted regional model setup
on an aerial image combined with LIDAR data in dry areas. The green color outlines are the main river course which runs
from right to left.

4. Discussion

A Web of Science publication search for the application of regional models for bathymetry
(using keywords “regional”, “remote sensing”, “river”, and “spectral analysis”) resulted in
no relevant publications. Thus, there is a lack of studies testing the potential for regional
models applicable across several rivers. Our study outlines a novel method for calculating
and applying regional models for depth retrieval using single predictors from multispectral
images. In the first part of our study, we used a set of RS imagery and local bathymetry
to set up linear regression models for depth retrieval in training data polygons for each of
the four rivers. From these locally derived models, we extracted the intercept and slope
coefficients to calculate regional coefficients. In the final part of the study, we applied the
regional coefficients in regional linear models for application and performance assessment in
a set of validation polygons. The regional models were calculated separately for Worldview-2,
Sentinel-2, and aerial images.

We observed the best overall fit between depth d and X in high-resolution aerial
images (0.10–0.50 m pixel width). The low-resolution Sentinel-2 images (10 m pixel width)
provided the least fitted models. Worldview-2 images (1.65–2.07 m pixel width) provided
adequately fitted models in rivers Gaula and Surna, while less fitted models in rivers
Lågen and Nea. As the average river width was in the range of 30–100 m, the pixel width
would influence the capability to capture local variations in bed elevation, especially in the
cross-sectional direction. Thus, the application of Sentinel-2 images with a pixel width of
10 m was least suitable for setting up models in our region.

Assessing the optimal band combination for depth retrieval, we found that the overall
mean error and RMSE were lower for the Xb pixel combination than for Xg in Worldview-2
and Sentinel-2 images. For aerial images, Xg provided fewer overall errors than Xb.

The overall depth retrieval was more successful in river sections with depths less
than 2 m. This issue is a known factor in image analysis [29]. As the image quality for all
four rivers ranged from medium to low, we expected deeper parts to be less accurately
calculated in the different models. We also tested the inclusion of the non-linear 2nd degree
polynomial model in river Gaula. The polynomial model compensated for the limited
range of X by introducing a steeper slope vector in the deeper parts (Figure 10b). While a
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negative intercept b0 in a linear approach could introduce negative calculated depths in
shallow areas (Figure 10a), the polynomial model could potentially be applied to avoid
negative depths in the calculations. As we tested the transferability of linear models with
two coefficients, we did not include polynomial models in our study.
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Figure 10. Examples of (a) direct linear and (b) 2nd degree polynomial relationships between depth
and Xg for a Worldview-2 image in river Gaula. The band combination Xg is shown on the x-
axis, while the calculated depth (m) is shown on the y-axis. The direct linear relationship would
potentially lead to negative depths in the shallow areas (Xg below ~0.2), while the 2nd degree
polynomial relationship would avoid negative depths in the shallow areas.

4.1. Local Adjustments of Regional Models

We observed that local adjustments of basic regional models using estimated depth
and “brightness” improved model performance for depth retrieval. Using the training data
in the first part of the study, we found that average cross-sectional depth d was significantly
related to bdir, more specifically for Worldview-2 and aerial images. From the training
dataset, we also found a significant relationship between a normalized brightness factor
BRlocal and average cross-sectional depth d for all platforms.

To assess the application of the two local correction factors in regional models, we used
a 10 × 10 m point grid in the training data polygons and sampled RGB values and in-situ
depth. Assuming a d to bdir relationship for Sentinel-2 images for comparison purposes,
we calculated depth in each image by applying an adjusted regional vector coefficient for
each point in the polygon point grid by using the setup from Equations (10) and (11). As a
substitute for the estimated average local depth dest, we calculated the average depth of the
10 latitudinally closest points in the point grid. We used the same approach to calculate the
local brightness factor BRlocal for each point. Results on the calculated depth range from
the different coefficient vectors showed that using the locally adjusted regional coefficients
provided the best overall fit with an observed depth range for all three platforms, although
with larger uncertainties than for other coefficient vectors. While these results are optimistic
in terms of depth retrieval, some limitations may apply to the use of adjusted regional
coefficients. Firstly, as the regional coefficients are based on initial depth to image pixel
value relations, the inclusion of estimated depth in a second iteration of the model may
introduce interdependencies between variables. Secondly, as we used actual depths in 10
local points to set up the dest for the polygon grid points, the models may be overfitted in
terms of depth.

When applying adjusted regional models, care should be taken when partitioning
the river into specific zones for local adjustment using estimated depth and brightness.
As each zone will have its specific linear model, zonal boundaries may have abrupt, non-
neglectable differences in depth. In the case of river Gaula, where the adjusted regional
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model was applied in five separate zones within the validation polygon, depth differences
were observed as cross-sectional discontinuities (Figure 7c). Such discontinuities will be
most apparent where neighboring zones have larger differences in estimated depth and
brightness. To address and potentially avoid the issue of zonal boundary discontinuity,
we suggest either to (1) define zone boundaries where there is a natural flow disruption,
e.g., at weirs, riffle sections, or rapids, (2) smooth the resulting depth maps by cross-
sectional interpolation at zone boundaries, or (3) apply adjusted regional models in densely
distributed cross-sections.

4.2. The Problem of Time Lag between RS Imagery Acquisition and In-Situ Depth Measurements

In an optimal assessment of the relationship between depth and X, the RS imagery and
in-situ depth measurements would be captured and measured at approximately the same
time. Any time lag between image capture and depth measurement could lead to errors in
the results due to potential temporal hydromorphological changes in the bed elevation [23].
As several images in our assessment were captured at a different time than the in-situ
depths, we sought to minimize potential time lag errors by selecting river sections with
relatively stable bed conditions. We used visual inspection to select the training and
validation locations in each of the four rivers. By visually comparing contrast-enhanced
platform images and local bathymetry, we selected locations where the bed topography
appeared constant over time. Figure 11 shows an example of visualization of bed elevation
using images for rivers Gaula and Lågen. While the water surface levels differed, a similar
bathymetry could be observed in both the Worldview-2 and aerial images. For river Nea,
the river sections used for training data sampling and validation are both located between
two low-head weirs in a bypass section with a minimum flow of 1.5 m3s−1 during the
summer season. The upstream dam and reservoir retain most floods creating a stable flow
and bed elevation conditions throughout the year.
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Figure 11. Visualization of bed elevation using Worldview-2 images (first column), aerial images
(second column), and LIDAR bathymetry (third column) for rivers Gaula (a–c) and Lågen (d–f).

4.3. Limitations and Considerations

A range of limitations may apply when using remote sensing imagery for depth
retrieval. Dependent on the image quality, most studies report the application to be optimal
in shallow (<2 m) and clear rivers [43]. Others mention the capability of the platform sensor
to adequately capture the surface nuances in radiance, which may determine the predictor
range in the linear modeling of depth [40]. Additionally, local variation in substrate color
and surface turbulence can induce large errors [44]. These factors and others must be
carefully considered when applying spectral depth retrieval models.

Our methods were developed and calibrated in one single region of Norway. The
local geology and hydromorphology may be specific to the region and using our methods



Remote Sens. 2021, 13, 3897 20 of 22

outside of this region may require local adaptation through a recalibration of coefficient
vectors. Another limitation in our study was the relatively low quality of many of our
images. Clouds and sun reflections on the water surface were frequent, in addition to
riverbank vegetation and mountain shadows. These factors reduced the number of river
sections available for model training and validation.

As we developed our models to facilitate an overall regional mapping of depths,
our models had limited accuracy and precision when compared to local bathymetry. For
hydraulic or hydromorphological modeling with high levels of detail, our methods may be
less suited and necessitate the application of locally calibrated models.

4.4. Application in River Management

Many rivers lack adequate data on the geomorphology and information on whole river-
scapes from the connected floodplains and the riparian zone to riverbanks and riverbeds.
While many countries have already established detailed surveys to provide digital terrain
models for the terrestrial part, fewer surveys exist in the below-water part of the riverscape.
In river management, regional assessments might include several rivers or water bodies,
e.g., in relation to anthropogenic influences like flood protection and mitigation measures.
Thus, it sometimes may be necessary to effectively establish a range of bathymetric data
for different rivers within the same region.

The EU WFD requires the development and implementation of river management
plans for all water bodies. When WFD targets are not met, the management plans must
include mitigation measures such as habitat improvements, the creation of spawning
grounds for fish, or other geomorphological changes. Norway has many rivers regulated
by hydropower, where the terms of the license will be revised in the coming years [32].
These revisions of terms may lead to changes in environmental flow releases, adjustments
of operation rules for reservoirs, and implementation of mitigation measures to improve
ecological conditions in river reaches. Like the requirements for WFD, planning and
implementation of mitigation measures often include the use of habitat-hydraulic models
and detailed geomorphological information. Additionally, future operations of hydropower
plants may include more hydropeaking due to changes in demand and renewable energy
generation, and such scenarios might require extensive data and information on river
bathymetry in relation to issues like sediment transport, erosion and deposition, ice build-
up, and water temperature.

Challenges in river management are often related to obtaining good data and in-
formation about the current situation with appropriate spatial and temporal coverage.
Our method may allow for a cost-effective retrieval of detailed riverbed information to
improve modeling and assessments of the rivers for multiple purposes, including flood risk
mapping, flood control operations, ecological mitigation measures for the implementation
of the EU WFD, licensing, and revision of terms in hydropower rivers, urban, industrial,
and infrastructure development as well as restoration of rivers.

5. Conclusions

By using multispectral images from three different platforms and publicly available
green LIDAR data, we found significant relationships between image-derived quantities
and depths. We found that platform-specific, regionalized models could potentially be
used to create depth maps and subsequent bathymetry across rivers within a geographical
region. By adding estimated local depth and a brightness factor to the regional models,
the results on depth retrieval were improved. While the regional models were not tested
outside of the four rivers included in this study, we believe our method for setting up
regional models could potentially be promising for the application in other regions.
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