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Abstract: An extensive record of current velocities at all levels in the water column is an indispensable
requirement for a tidal resource assessment and is fully necessary for accurate determination of
available energy throughout the water column as well as estimating likely energy capture for
any particular device. Traditional tidal prediction using the least squares method requires a large
number of harmonic parameters calculated from lengthy acoustic Doppler current profiler (ADCP)
measurements, while long-term in situ ADCPs have the advantage of measuring the real current but
are logistically expensive. This study aims to show how these issues can be overcome with the use of
a neural network to predict current velocities throughout the water column, using surface currents
measured by a high-frequency radar. Various structured neural networks were trained with the aim
of finding the network which could best simulate unseen subsurface current velocities, compared to
ADCP data. This study shows that a recurrent neural network, trained by the Bayesian regularisation
algorithm, produces current velocities highly correlated with measured values: r2 (0.98), mean
absolute error (0.05 ms−1), and the Nash–Sutcliffe efficiency (0.98). The method demonstrates its high
prediction ability using only 2 weeks of training data to predict subsurface currents up to 6 months in
the future, whilst a constant surface current input is available. The resulting current predictions can
be used to calculate flow power, with only a 0.4% mean error. The method is shown to be as accurate
as harmonic analysis whilst requiring comparatively few input data and outperforms harmonics by
identifying non-celestial influences; however, the model remains site specific.

Keywords: high-frequency radar; neural networks; tidal resource assessment; ocean currents

1. Introduction

As the demand for electricity increases globally, with the concurrent commitment of
many countries to lower emission levels, the number of renewable energy developments
is soaring. Tidal stream is likely to play a role in this increase due to the predictability of
its power, unlike the other offshore technologies of wind and wave. The kinetic energy
caused by flood and ebb tides is too low in most areas. However, in some locations, the
combination of tidal factors and local bathymetry can result in velocities that have an
energy potential that is high enough over a large spatial and temporal range in order to
enable production of electricity at a cost-efficient rate, potentially even higher than an
efficient wind site [1]. Currently, tidal energy is a maturing technology with multiple single
devices deployed and arrays in the planning stages, the most progressed of these being
the 398 MW Meygen Tidal Project in Pentland Firth. As high-energy sites are developed,
and turbine technology improves to viably produce energy at lower velocities, resource
assessments will need to be conducted for site characterisation of new areas.

The rate of movement and directionality of water are caused by influences from tidal
harmonics, wind, depth, and other factors, each being specific to a site. Site characterisation
is important for tidal energy as current speeds are the primary determining factor for
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power, translating to revenue for a developer. In situ measurements are essential for tidal
resource assessment, with additional analysis using modelling or harmonics [2]. ADCPs
are useful for point measurement resource assessment, especially for measuring turbulence
and local variabilities [3,4]. To increase the spatial coverage, Gooch et al. [5] employed
spatial interpolation using ADCP data to display the tidal velocity patterns over an area,
with the inclusion of the tidal phase difference. Other research towed an underway ADCP
around Pentland Firth at a high pace and resulted in the ability to resolve the vertical
velocity profiles of the tidal current including its spatial and temporal anomalies [6], this
has a high resource consumption and only provides data for a short period. It was shown in
their research that the combination of their in situ results with the constraints of a numerical
model could produce an accurate four-dimensional representation of tidal velocity outputs.
Evidently, observations from ADCPs do show that they are effective to use, especially
in the measurement of turbulence and small-scale variations, and also as validation for
hydrodynamic models. However, ultimately, they are disadvantaged by their inability
to easily assess the spatial and temporal range required in a resource assessment [7].
Alternatively, modelling has proven its potential for current mapping through validation
by ADCPs and is now often used for tidal resource assessment [8–10]. However, these
require high computational power as well as a lot of detailed data including bathymetry
and boundary conditions, which may not be available in many worldwide locations.

Harmonic analysis methods predict the amount of tidal forcing at a point as spectral
lines which represent the sum of a set of sinusoids at specific frequencies (cycles per hour).
These are obtained as combinations of the totals and differences of integer multiples of
six fundamental frequencies, named Doodson Numbers [11], which come about from
the motion of celestial bodies [12]. In order to define the amplitude of each frequency,
harmonic analysis uses the least squares fit. The amplitude and phase of each frequency
characterise a compression of the data in the complete tidal time series. Harmonic analysis
is a useful tool for tidal prediction at a point but has a number of drawbacks, namely, the
long measurement history required for accurate predictions [13].

The use of shore-based high-frequency (HF) radars for the remote sensing of offshore
surface currents and conditions has become increasingly more prevalent [14–16], but has
been applied on few occasions for the assessment of subsurface currents. Measurement
of surface currents from HF radar works through the transmission of vertically polarised
electromagnetic waves which are intercepted and are returned causing an energy spectrum
at the receiver. The reflection, when used for ocean currents, is in the form of a Bragg scatter,
which results from the reflection of energy by ocean waves with exactly half the wavelength
of the transmitted radar waves [17]. Bragg scatter is used because it is the strongest return.
The backscatter is returned to the radar carrying information of the surface current velocity
and wave spectra. Studies by Thiébaut and Sentchev [18,19] did incorporate a technique
using an HF radar, principal component analysis numerical modelling, and a depth power
law correlated with ADCP measurements, resulting in a three-dimensional grid of tidal
current variability and power density in the water column. It was found that the power
available in the bottom layer of their study area was three times lower than near the surface.
This is important for the assessment of the optimum hub height of any potential tidal
turbine which may be deployed, and the variability of tidal strength allows for design
loads for the support structures of devices to be recognised. The HF radar in the study
allowed them to apply the technique to the entire area while using real, remotely sensed
data rather than modelled, proving the usefulness of the combination of remote sensing
with field measurements. New techniques that may increase the ease of assessment are
always sought after; an Artificial Neural Network (ANN) could prove a more simple and
quicker method than modelling to achieve the same outcome.

ANNs are mathematical models which work similarly to the biological nervous system.
ANNs have been extensively used for the prediction of natural processes over the last
30 years, including many successful applications within the marine environment [20,21].
They have shown their worth in tidal range prediction, instead of harmonic analysis,
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demonstrating their ability to predict 30 days of hourly tidal height variation using only
a small initial dataset and learning period of one day, in contrast to the length of records
required by harmonic analysis [22–26].

For tidal analysis, a recurrent neural network (RNN) architecture is preferable, which
are capable of learning features and long-term dependencies from time-series data [27],
making it an appropriate choice for the oscillatory nature of the tides to get a sense of
where the wave amplitudes are likely to be heading. The defining equation of the RNN is
such that given values of the time series, y(t), and the input series, z(t), the model is able
to predict new values of y(t) [28].

y(t) = f
(
y(t − 1), y(t − 2), . . . , y

(
t − ny

)
, z(t − 1), z(t − 2), . . . , z(t − nz)

)
The n past values are tapped delay lines, storing previous y(t) and z(t) values. The

recurrent feature of the network is where these values are regressed onto the new input signal.
The aim of this paper is to assess the capability of a technique combining HF radar

surface currents and ANNs for quantification of subsurface currents, to show comparable
accuracy to in situ measurements and harmonic analysis, decreasing the resources required
for a reliable tidal stream resource assessment of a large area. This will be achieved through
the creation of various structured neural networks to find the highest performing network
for subsurface current prediction. The ANN will be validated through statistical compari-
son to an independent ADCP dataset, and subsequently used for tidal power calculations.
The ANN will then be used to associate HF radar surface currents to subsurface currents at
another location, followed by discussion of network capabilities and behaviours.

2. Materials and Methods
2.1. Site and Datasets

The Celtic Sea off the north coast of Cornwall has a high-energy wave regime, suitable
for the deployment of wave energy converters. The site is not a potential candidate for a
large tidal stream development but is suitable for demonstrating this technique. The tidal
movement is predominantly meridional, with a lesser zonal component [29], due to the
proximity and morphology of the coast.

Data for the ANN were pre-collected (Conley, 2013, unpublished data), continuously
available between March and December 2012.

The surface velocity data used as inputs for the ANN were obtained from a system of
two high-frequency Wellen Radar stations positioned 40 km apart at Pendeen and Perran-
porth and overlooking the WaveHub test site on the north coast of Cornwall (Figure 1). At
each site, there is a 16-element phased-array receiver and a square four-element transmitter
orientated parallel to the coast. At Pendeen, the receiver is orientated 113◦ clockwise from
true north, hence its boresight is directed 23◦ from north. At Perranporth, the receiver
is orientated 35◦ from north with its centroid beam pointed 305◦N so it aligns with the
prevailing westerly swell. The radar stations independently measure the surface current
velocity for 17 m 45 s every hour with a range resolution of approximately 1 km and
angular resolution of 7◦. The radars use a “listen before talk” mode [30], which determines
the best frequency for transmission within a 250 kHz bandwidth centred on a frequency of
12 MHz. This results in transmitted waves being backscattered off ocean waves 12.5 m long
at a range of up to 101 km. Surface currents are recordable over the full range while wave
products are only available over half the range due to the large signal-to-noise ratio of the
second-order returns compared to the first-order echo. The backscattered information is
transformed into an orthogonal coordinate system to set it to a 1 km grid [16].
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Figure 1. Map showing the locations of the HF radars at Pendeen and Perranporth and their coverage.
The red squares represent ADCP west and east. The rectangle represents the WaveHub test site.

Two upward-looking Teledyne RD WorkHorse ADCPs were deployed to collect
subsurface velocity data to train and validate the ANN. ADCP-West was placed 16 km
from Pendeen and 29 km from Perranporth, deployed at a mean depth of 34 m, while
ADCP-East was located 24 km from Pendeen and 19 km from Perranporth deployed at
a mean depth of 37 m, with a separation of approximately 10 km between the two. The
ADCPs operate at 600 kHz in the Janus configuration with four beams located 20◦ from
vertical. Current velocities were measured at bin depth intervals of 0.75 m every 10 minutes
at 2 Hz, with the first bin being 1.86 m above the seabed. At 600 kHz, the accuracy of the
sensor is ±0.3%. The ADCPs were periodically recovered for data retrieval and battery
replacement, then redeployed as close to the previous location as possible.

2.2. Metrics Used in Neural Network

The metrics used as inputs to the ANN in this paper must be covered by the radar or
be from readily available data to maintain the advantage of this method over traditional
methods. This means that while density differences and other factors may have had some
influence on the subsurface currents, they were excluded. The metrics used as inputs are:
the surface velocity above where the subsurface current was to be predicted, along with
the surrounding four surface velocities and the tide varying depth. The surrounding eight
velocities were also trialled. However, the network had lower performance. Wind velocity
and wave field data could have been obtained and applied to the network. However,
Lu and Lueck found that 91% of the subsurface flow velocity in their test site could be
attributed to the lunar- and solar-influenced tides [31], showing these additional methods
would be of small importance while adding extra neurons and training time to the network.
Additionally, the network performed sufficiently well without these inputs, so they were
not added to reduce network complexity. This ANN technique combined with the radar
has a huge advantage over an ANN alone, the constant radar input means that errors will
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increase less over time, whereas an ANN alone would soon begin predicting off its own
predictions and reduce in accuracy over time.

Both the data processing and ANN creation were carried out in MathWorks’ Matlab
and the Matlab Neural Network Toolbox.

The surface velocities above the ADCP which were to be used as inputs to the ANN
were identified using the average coordinates of the ADCP placement locations. Surface
velocity time series were made at these locations. Two linear interpolations were applied
to the data; first of all, the HF radars occasionally failed to record if the data received
from a particular cell were below a quality threshold, these were interpolated using their
surrounding time points to provide continuous data. Secondly, due to the difference in
sampling rates and times of the two instruments, the ADCP data, which collected data
more frequently, was linearly interpolated over the times at which the surface velocities
were collected, producing surface, subsurface velocity (both east and west components),
depth and time data with 6825 hourly time points spanning the same period. The upper
10% of the water column was removed from the ADCP data as this near-boundary region
is subject to sidelobe interference [32]. The radar data were then arranged into a format
which the ANN would take as an input, while the ADCP data would be the output.

2.3. Neural Network Creation and Analysis

The architecture of the RNN in this work consists of 6 input neurons, equivalent to the
five radar surface velocities surrounding the ADCP and one depth predictor. The predicted
velocity at 52 depth bins is represented by the network output, thus, there are 52 neurons
in the output layer. The learning ability of an ANN is dependent on the architecture. If
the network is too small (too few hidden neurons), it may not have a large enough degree
of freedom to learn the relationships between the data. Whereas, if the number of hidden
neurons is too large, it can bring about overfitting, where the network fails to generalise
with new datasets. The number of hidden neurons was varied (1–50), and the highest
performing was chosen, based on statistical tests explained further down this section,
comparing unseen data and the network’s predictions.

Several training functions were also employed to obtain a network with the highest
performance and generalisation to new data. These training methods were, the gradi-
ent descent method with adaptive learning rate (GDA), the scaled conjugate gradient
method (SCG), the Levenberg–Marquardt algorithm (LM), and the Bayesian regularisation
backpropagation method (BR), which is based on LM.

In formulating the network, available data for 2 weeks were used, representing an
entire tidal cycle, making 336 hourly time points (6–19 June 2012). Data for more than
2 weeks were also used for training (4 and 8 weeks), but there was no improvement in
performance. Performance began to deteriorate once data for 1 week were used. These
training data were further split into 70% for training, 15% for model validation, and 15%
for testing. The data were divided sequentially, rather than randomly, in order to enable the
feedback delays in the recurrent to learn relationships between neighbouring data points.
This left any of the remaining 6151 time points for manual testing to assess the capability of
the ANN on predicting unseen data. The model was trained by the reduction in the mean
square error (MSE) criterion to evaluate performance during training.

Since the performance of a network varies between each training session with the same
inputs, due to its ability to find different solutions to problems, each network was required
to be trained multiple times in order to obtain a high-performing network. Following the
calculations of Iyer and Rhinehart [33], the networks should be trained 90 times each to be
99% confident that the best version trained was within the best 5% of possible networks.
Through undertaking network training in a loop, starting with random initial weights
each time, the 4 training functions, along with trialling 1 to 50 hidden neurons, trained
90 times each resulted in 18,000 networks being trained. These were assessed using the
statistical tests below. Tapped delay lines were placed connecting the output of the first
to fourth hidden neurons back to the input of the first neuron to let the network have
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memory of the previous four timesteps to predict the next. This number of lines produced
the highest performing networks; when there were less than four hidden neurons, delay
lines were present on all hidden neurons. Once trained sufficiently, the network was used
to predict velocities at any height above the seabed, at any time in the available data, and
subsequently used to produce products necessary for tidal resource assessment [2]. In
addition, the networks were used to predict subsurface currents at the location of ADCP-E,
10 km from where the network was trained.

Statistical tests were used to assess the network’s performance on unseen data. It is
imperative to use multiple statistical tests as single tests such as the coefficient of correlation
might show good correlation for consistent errors. The tests used were: coefficient of
correlation (r), coefficient of determination (r2), root mean square error (RMSE), mean error
(ME) (to show prediction bias), mean absolute error (MAE), mean absolute percentage error
(MAPE), and the Nash–Sutcliffe hydrological efficiency (used to assess the predictive power
of hydrological models where the output ranges from −∞ to 1, and where E = 1 would be
a perfect match) [34].

3. Results
3.1. Performance of Neural Network Structures

The independent data on which the network was tested were for 110 days spanning
from August to December. The best-performing network size of each training function
from the 18,000 created is shown in Table 1, for the east velocity component, along with
statistical differences between the network predicted time series and the unseen measured
time series. Training speed was between 15 seconds and 2 minutes for all GDA and SCG
network sizes, while LM and BR began at <10 seconds, but exceeded two minutes after three
hidden neurons were added and training with these functions became impractically slow
at 10 neurons so was discontinued. The highest performing network from each training
function was similarly capable of prediction of the subsurface currents. The RMSE was
sufficiently lower than the standard deviations of the models, showing good predictability.
The best-performing network was BR with 1 hidden neuron, shown by its high r, r2, and
E values, along with its notably lower error values. In addition, the BR model was carried
forward due to its reduced complexity whilst having the best capability, along with its
smoother velocity profile predictions shown in 3.2. Results for the north component ANN
showed slightly inferior performance, but still very high. BR with one hidden neuron was
also the best architecture for the north component (Table 2).

Table 1. Best-performing east network for each training function with their respective statistics, rounded to three decimal places.

Network
Function

Hidden
Layers r r2 STD (ms−1) RMSE (ms−1) ME (ms−1) MAE (ms−1) MAPE (%) E

GDA 22 0.986 0.972 0.514 0.082 0.0114 0.060 9.915 0.971

SCG 27 0.987 0.974 0.511 0.081 0.0036 0.054 1.372 0.974

LM 1 0.988 0.976 0.511 0.081 0.0037 0.056 2.757 0.975

BR 1 0.989 0.978 0.464 0.067 0.002 0.048 4.630 0.979

Table 2. Best-performing network for north component with statistics. MAPE = N/A due to zeros in data, rounded to three
decimal places.

Network
Function

Hidden
Layers r r2 STD (ms−1) RMSE (ms−1) ME (ms−1) MAE (ms−1) MAPE (%) E

GDA 22 0.961 0.924 0.247 0.127 −0.018 0.059 N/A 0.917

SCG 27 0.975 0.951 0.251 0.050 −0.008 0.046 N/A 0.949

LM 1 0.982 0.964 0.263 0.043 −0.008 0.039 N/A 0.963

BR 1 0.979 0.958 0.239 0.050 −0.005 0.0037 N/A 0.958
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The scatter plot in Figure 2, showing predicted vs. measured velocities over the time
series using the best BR network, shows that the network can reliably predict tidal velocities
from the short training dataset (2 weeks).
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Figure 2. Scatterplot of the measured vs. predicted east velocities at 20 m above the seabed by BR,
around the exact fit line.

3.2. Vertical Velocity Profile

Knowledge of the vertical variation in current velocity is a critical step in tidal resource
assessment and was also important in this work to confirm BR as the highest performing
network. While it seemed the GDA and SCG functions were capable of accurate prediction
of current time series at select depths, upon averaging the vertical current profile on
16 spring flood tides, these methods predicted a large net underprediction. Through
visual assessment and by using r and ME, the BR function produces the profile which
best represents the real measured profile (Figure 3, Table 3). The depth-averaged velocity
predicted by the network was 0.833 ms−1, compared to 0.824 ms−1 measured. r and ME
could not be calculated above 29 m where the ADCP data had been removed.
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Table 3. r and ME of the different trained functions on the predictions of vertical velocity profiles.

Function GDA SCG LM BR

r 0.925 0.989 0.996 0.997
ME −0.0519 −0.0170 0.0155 0.0087

BR was also the best training function for the north current profile. These networks
were used from henceforth.

3.3. Time Series Prediction

Figures 4 and 5 illustrate how the network was able to predict the E-W velocities at all
depths of the water column, showing the diminishing velocities toward the seabed, using
only surface velocities. The error in prediction shown in Figure 4b is mostly contained
below ±0.05 other than a few exceptions. The measured and predicted velocities are in
phase and the fortnightly cycle is reproduced.
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Figure 5. (a) Enhanced comparison of measured velocity variation. (b) Network predicted velocity variation.
Red line = water depth. White space below red line is the location of the inaccurate ADCP data.

The predictions for the north component network also showed good agreement,
although the error figure contained more instances of blue, showing a general underpredic-
tion, more so at neap tides.

3.4. Total Velocity and Direction

Figure 6 shows the current rose generated from measured and network predicted
values, once the northern and eastern current velocities had been combined, showing good
predictability of the network.

3.5. Tidal Power

The tidal power was calculated using the combined velocities. The impact of the
incident current angle on the power take-off of a non-yawing bi-directional turbine was
calculated by adding the cosine response. Table 4 shows the measured mean raw power
before the angle was considered, followed by the measured power considering the angle,
and then each network predicted power considering the angle, showing again that BR
predicted the best network, closely followed by LM.

Figure 7 shows a short period of measured, and network predicted powers. The
network appeared to underpredict some of the largest, abnormal peaks but overpredicted
the medium-sized peaks. This pattern of predictions resulted in a mean power difference of
only 0.51 Wm−2 over the 3.5 months. The inclusion of the cosine response showed that the
tides have a very high angular fidelity, showing only 0.58 Wm−2 decrease in power. The
power–frequency plot (Figure 8) shows high similarity between network and measured
values, showing that using the network predicted or measured values may have little
impact on power prediction.
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Table 4. Measured mean power before accounting for the angle of current (raw power), considering incident angle
(measured), and each training method’s best-performing networks prediction of mean power and error.

Mean Power (Wm−2) Network Percentage Error
from Mean Measured (%) Max Power (Wm−2)

Raw power 127.72 - 904.95
Measured 127.14 - 904.82

GDA 124.03 −2.48 928.03
SCG 126.17 −0.77 777.68
LM 128.10 0.75 931.42
BR 126.63 −0.40 875.88
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3.6. Application to Other Areas

Using the trained network to predict nearby subsurface currents would be a pinnacle
finding to reduce the resources required for a resource assessment. The current velocities
at the east ADCP were consistently slower than at the training location. Using the same
network as the previous sections, the network consistently overestimated peak velocities.
Despite the mean absolute velocity difference between the measured and predictions
being only 0.03 m s−1, this translated to a large difference in the resulting mean power;
29.73 Wm−2 measured and 41.25 Wm−2 predicted.

To achieve better predictions at ADCP-E, with a network trained at ADCP-W, a number
of network modifications were made. Firstly, the SCG network with the optimum 27 hidden
neurons produced the most accurate predictions, along with increasing the number of
delay lines to 12. Finally, removing the depth as input improved predictions at ADCP-E,
due to the different bathymetry. Training of the ANN using the same period of data it
was to be tested on also improves predictions, i.e., when trained using August-October at
ADCP-W, it could better predict the subsurface currents 10 km east over the same period.
This greatly lessened the consistent overprediction, reducing the mean current difference
to 0.016 m s−1 and reducing mean power difference to 4.8 Wm−2 (36.83 Wm−2 measured
and 41.59 Wm−2 predicted), peaks were also suppressed, although still higher than the
ADCP-W predictions, shown by the far higher MAPE (Table 5).

Table 5. Statistics of the ADCP-E prediction by SCG network.

Network
Function

Hidden
Layers r r2 STD (ms−1) RMSE (ms−1) ME (ms−1) MAE (ms−1) MAPE (%) E

SCG 27 0.976 0.953 0.377 0.079 −0.013 0.054 10.68 0.941

Comparison of the mean spring flood velocity profiles in Figure 9 shows that at
ADCP-E, there is a large overprediction bias in all but the lowest 6 m of the water col-
umn. The largest error being 0.1 ms−1 (14.60% error). The network similarly overpredicts
velocities during ebb, contributing to the overall negative mean error of the network.
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4. Discussion
4.1. Neural Network Performance and Behavior-ADCP-W
4.1.1. Current Velocity Time Series

Despite all training functions being able to adequately predict both the pattern and
magnitude of the tidal velocities, it was imperative to choose the best-performing network
as cubing the velocity for power would enhance inaccuracies. The RMSE values ranged
from between 13–16% of their corresponding STDs while the Nash–Sutcliffe Efficiency was
always over 90%, suggesting high prediction efficiency [35]. While the difference in errors
is minimal between training function outputs due to all functions accurately predicting
the majority of the tidal cycle, the small difference in error was caused by the network’s
differing abilities to predict peak currents. The GDA function was the most variable, often
underestimating during spring tides, sometimes by 0.1 ms−1 at peak ebbing tide. As
found previously in a wide variety of problems, the LM functions, including BR, which
is based on LM, outperform the simple gradient descent and scaled conjugate gradient
methods [36–39]. Based upon r and MAPE values of the BR network (0.99 and 4.63%,
respectively), this model can be described as a good predictor for tidal modelling [40]. The
high-quality statistics of the BR network in comparison to the measurements show that
the HF radar-ANN technique proves a useful tool for analysis of subsurface current time
series over any period at the training location.

The major limitation of the ANN is that it is a black box model, failing to simulate the
internal physical processes of a tidal system. The simulation of this is of vital importance
for resource assessments. In addition, because the black box model does not allow insight
into the calculations made to reach the target, assumptions of hydrodynamics which caused
network behaviours are made.

Analysis of the colour plots (Figures 4 and 5) shows that the network generally has a
positive bias around spring tide, and negative around neap tide. To determine the cause,
a network was trained over a different period to identify if unique conditions during the
initial two weeks caused errors. There was no significant difference in errors to the original
training period. The error must, therefore, be in the network’s application of weights
and calculations.

Along with the above small-magnitude long-period bias, some short but pronounced
errors also exist. Where they occur, they are present throughout the entire water column,
identifiable as distinct bars, a different colour to their surroundings. The network predicts
the time series of each depth bin independently [41], not considering the relationship
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between the present bin and those above and below. Therefore, as the network learns
the recurring features of each depth time series, it is unlikely to make the same error
independently at each bin. The resulting implication is that errors between predictions and
the measured values are caused by abnormal surface currents during training, causing the
network to predict accordingly, or abnormal ADCP measurements in the testing data.

Several behaviours of the network were noted throughout the analysis. The network
attempted to predict the upper 10% of the water column (Figures 4a and 5b), even though
the data were removed from its training data. It is impossible to confirm if the network’s
predictions for this region are correct. However, some suspicions may be discussed. The
upper 10% looks to be well predicted at low tides due to the continuation of the lower
currents to the surface, whereas at high tide, the velocities unrealistically approach 0 ms−1.
It appears the network tries to draw from any values in a depth bin, so as the low waters
are more often submerged and below the 10% threshold, there is more for the ANN to learn
from. At depth bins always in air or the threshold, the network can only predict 0 ms−1,
and heights which are mostly in the upper 10% are inaccurate due to limited data.

4.1.2. Velocity Profiles

In the prediction of the velocity profiles, the alike functions behaved similarly, BR and
LM net-overpredicted while GDA and SCG underpredicted. The BR function predicted
the closest fit to measured values (99.69%), as well as the most natural-looking decrease in
velocity with depth. The GDA method produced the lowest correlation (92.49%) with a
much more sporadic pattern than other methods. This is likely because the appropriate
learning rate could not be found, despite running numerous networks with various learning
rates, in order to find the minimum error and eventually incorporating an adaptive learning
rate. When the learning rate is too large it will not reach the target as it always overshoots,
if too small, the network may never have reached the target [42,43]. This likely occurred
differently at each depth bin due to the random initial weights chosen and various routes
the network takes to find the answer. The LM methods made better predictions. This is
because they interpolate between the gradient descent method and the Gauss–Newton
method [44], using the latter more when the parameters are close to the target, reducing the
square error by assuming the least squared function is locally quadratic, then finding the
minimum of the quadratic. This results in less overshooting. The BR method uses the LM
method but minimises a combination of the square errors and weights, then determines
the correct combination to produce a better generalising network [45], hence the best
predictions on the test data.

Using the BR function, it is obvious from the velocity profile that there is a greater
overprediction bias at 22–29 m above the bottom (ME = 0.0168 ms−1) than from the seabed
to 22 m (ME = 0.0052 ms−1) (Figure 3a). The likely reason for this is the occurrence
of a weather system approaching from the southwest in the first half of the two-week
training period [46], the south-westerly winds (with some gusts up to 100 km h−1) would
have accelerated the surface currents during flood tide and reduced the surface velocity
during ebb tide, while as the distance from the surface increases, the effects from the wind
diminish. The network learns this to be normal. This hypothesis can be complemented
by plotting the mean spring ebb current profile predicted by the network (Figure 10). The
underprediction of the surface currents nearest to the surface suggests that the abnormally
strong south-westerly wind could be slowing the ebb surface current.
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4.1.3. Flow Power

The statistics and power–frequency graph suggest that at this location, the HF radar-
ANN method could be used to reliably estimate power. Misalignment of a turbine with the
incoming current direction can reduce power by 6% if the turbine is 20◦ off the incoming
flow direction and 23% if 40◦ off axis [2,47,48]. This test site is highly bi-directional with
the majority of currents being within 5±, applying the cosine response decreases power by
only 0.005%, with EMEC stating this will capture 100% of possible power [2]. The currents
outside of the 5± are likely below a turbines cut-in speed and are made negligible by the
cubing of the velocity for power.

4.1.4. Potential of the Radar-Network Technique at a Single Location

All products recommended by EMEC for the use of a model to compliment field
surveys have been completed with high agreement [2], proving the potential to replace
some long-term in situ surveys. It could also replace models where only the output is
required, requiring far less computing power and less cumbersome due to the requirement
of models for various data including long time series and bed roughness, whereas the
ANN need not understand these physical aspects. On top of this, not all countries looking
to develop tidal power have satisfactory record keeping for models. The minimal data for
this network would be inexpensive and easy to gather, with 99% accuracy.

The combination of the remote sensing and ANNs outperforms the forecasting ability
of models or ANNs alone, as the errors will not increase over time due to the constant radar
input. ANNs alone for forecasting hydrodynamic data perform well with high r values
(0.90+), but lower Nash–Sutcliffe efficiencies (0.7–0.9) [49], due to the error increase with
time since the training data. Despite this advantage of the constant input of the HF radar,
Tang et al. showed the prediction of a time series by an ANN is better if the training data
gathered are in the short-term history of the testing period [50]. This could mean that errors
may begin to appear in the network when long-length tidal harmonics or the modulation
of the perihelion occur, for which the network was unable to be trained over. Changes to
bathymetry in the vicinity could also vary tidal dynamics [51]. As well as this, the network
should be statistically tested seasonally to evaluate performance in non-familiar conditions
as this has been shown to vary a network’s performance [49]. It is possible this change over
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time has occurred in the testing data, errors did seem to increase slightly over time. This is
confirmed by the greater MAE of 0.069 ms−1 in the last month in comparison to 0.056 ms−1

in the first two and half months. This higher-than-average MAE could be due to the long
time since the training period, where long-period harmonics may have altered the tide,
or the approaching winter could bring about different coastal conditions to the summer
training period.

4.2. ADCP-E and Beyond

In order to improve the network’s predictions at ADCP-E, the aforementioned alter-
ations to the network were required, of which 90 were trained to find a network in the best
5%. The justifications for the alterations were: the reduction in iterations was to prevent the
network from overfitting to the specific conditions at the training site. Secondly, the SCG
network with 27 hidden neurons allowed the network to learn more complex relationships
between the surface and subsurface currents while the increased layer feedback delays
to 12 also allowed the network to account for more dependencies which the past current
would have on the present. Removal of the depth input improved results, this was sus-
pected to be caused by the original network placing too much weight on the depth input,
then, once applied to the east location which is 3 m deeper, it would associate this increase
in depth with spring tide and, therefore, higher velocities, overestimating the results.

As the network currently stands, and as acknowledged by research creating networks
for tidal range prediction, the model developed is site specific [26]. Although the model
in the current work does show good promise at predicting the small magnitude tidal
velocities and power at ADCP-E based on time series and statistical tests shown in Table 5,
the comparison of velocity profile (Figure 9) proves that these are deceiving and from
the middle of the water column upward, there is up to a 15% overprediction bias by the
network. Chang and Lin [52] demonstrate an ANN certainly is sufficiently capable of
predicting tide heights at sites 10–20 km away from where it was trained (r2 = 0.84–0.95)
unless complex bathymetrical variation occurs. This is precisely where the ANN falters
on ADCP-E. The difference in morphology between sites is such that at ADCP-W, the
mean spring tide measured by the radar at the surface above the ADCP is 0.877 ms−1,
whereas the highest-depth bin from the ADCP where there is accurate data have a higher
mean velocity at spring tide of 0.928 ms−1. Therefore, the network has learned to predict
higher velocities below the surface than the surface data given as the input. In contrast,
at ADCP-E, the mean spring surface current measured by the radar is 0.651 ms−1 whilst
the ADCP bin highest in the water column has a mean spring velocity of 0.582 ms−1,
lower than the surface velocity. The network has not seen this relationship before and acts
as it did at ADCP-W, causing a large overprediction at ADCP-E. Naturally, to test if the
error was due to external factors, the network method was reversed, being trained using
ADCP-E data and tested on ADCP-W, the network underpredicted ADCP-W currents
by a similar bias. Inter-site bathymetric and coastal morphology differences are why
almost all tidal range ANN research has concluded the network can only be used for single
location estimation [22–26], while research which has attempted multi-point prediction
uses astronomical data as network inputs and concludes that prediction error increases
with distance and dissimilarity from the training location [52].

The network structure itself is also causing errors at the new site; during training the
network only learnt how to produce 52 height bins of data, so it can only do the same at
ADCP-E which is 3 m deeper. The upward-looking ADCP, therefore, expects the bins to
be closer to the surface than in reality. This is apparent near the surface, where the ADCP
measurements continue for 3 m extra while the prediction makes a sharp decrease toward
0 ms−1 because it is trained on data where this depth is within the 10% threshold. The
error is lowest near the seabed, as water–seabed interactions will be similar at each site but
increase with height where differing surface interactions also play an increasing role.

Due to issues such as the above, a combination of ANN with hydrodynamic model
nodes could prove useful and is often used to take advantage of the ANN advantages [53,54].
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As ANNs use far less computation power than models, a series of nodes could be created
by a coarse grid model, replacing ADCPs, enabling the network to be trained from multiple
points and predict the surrounding currents. Alternatively, the method used by Makaryn-
skyy et al. for suspended sediment prediction could be used [54], where a model was used
for a short initial period, on which the ANN was trained. In this case, the network would
associate modelled subsurface currents with HF radar surface currents, after which, just
the radar input would be required, saving huge computation cost.

4.3. Comparison to Harmonic Analysis

While the ANN provides a simple way of predicting semi-diurnal tidal velocities at a
site without determining the harmonic parameters, non-tidal induced off-nominal currents
during training would cause the network to apply assumptions made from these to the
test data where the same currents may not occur, while unique currents during testing
will not be acknowledged. In comparison, harmonic analysis does not acknowledge any
non-tidal currents. A total of 38 constituents were considered including the shallow water
M10 constituent, and the analysis was carried out on each vector component separately by
least squares fitting using the T_tide Matlab toolbox as described by Pawlowicz et al. [55].
In Figure 11, the extracted harmonic constituents were used to plot tidal velocities, in
comparison to the ADCP, to which the network was also compared. The residual signal
between the two was also plotted, showing the difference between the harmonic prediction
and the real measurements.
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It can be seen that the residual between the ANN and measurements has fewer
large peaks compared to harmonic analysis since the network can consider some small,
local velocity fluctuations not caused by the tidal constituents, causing fewer errors. This
enhanced accuracy over harmonic analysis is for two reasons. Firstly, the ANN may have
learned regular, non-celestial currents from the training data and applied them to the testing
data, which harmonics cannot identify. Secondly, the constant radar surface measurements
are an advantage in this method, even if there are abnormal currents which do not strictly
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follow the tidal wave, the network has learned how to associate these with the subsurface
currents. An example of this is at approximately 9/15—the tidal cycle seems to occur an
hour later than the harmonics would suggest, so there is a large residual, but the lack of error
in the network values shows that the network could predict this deviation from celestial
tides. However, the analysis also shows that the network sometimes ignores large, multi-
hour, non-tidal variations such as the large error spike at approximately 10/11. There is a
large error in both the network and harmonic predicted values due to a seemingly random
decrease in current velocity (the anomaly does not coincide with an ADCP retrieval). The
sudden change in current velocity was not present in the radar input data so it existed
only in the measured subsurface currents and, therefore, impossible for the network to
predict; perhaps too sudden for the recurrent delay lines of the network to anticipate.
Comparison of the plots complements the network’s capability in predicting a portion
of the real amplitude of current peaks which harmonic analysis overlooks, as long as the
abnormal current is present on the surface. The network demonstrates that its prediction
ability of real currents is slightly greater than the 38-constituent harmonic analysis with
an r2 of 0.978 and MAE of 0.048 ms−1 in comparison to the harmonic predictions r2 of
0.974 and MAE of 0.058 ms−1 when compared to the ADCP data. Overall, this analysis
proves the ADCPs worth in the measurement of small scale non-tidal and large one-off
currents in the resource assessment. It also shows that this HF radar and ANN technique is
a proficient tool for the long-term prediction of subsurface currents with few data records
required, instead of prediction via harmonic analysis.

Despite the network’s inability to predict currents at ADCP-E, harmonic composition
was still carried out on the ADCP data and compared which helped identify an apparent
higher magnitude ebb tide in comparison to flood at the site. This asymmetry is likely
due to bathymetrical features as it is not present in the harmonic prediction, for example,
the various shapes of a shelf seabed can cause the M2 and M4 generated tidal currents to
combine [56], causing a stronger tide in one direction. The network was able to pick up on
this asymmetry as it is an often-recurring feature. However, this resulted in the network
predicting a strong asymmetry, sometimes up to 0.2 ms−1 on every ebb tide, whereas the
asymmetry was more varied in the measured data. A potential reason for this failing is the
recurrent architecture of the network. It uses the happenings at the previous time steps
for the prediction of the next time step [27], meaning that at the approach to peak ebb
tide, the rate of decrease in velocity may have been such that the network did not expect
the peak velocity to occur so soon, hence the overprediction. Despite its failing, it does
show the network’s ability to identify asymmetry at a site which is useful for tidal site
characterisations as the deployment of tidal developments in asymmetric regions is likely
to have a more pronounced impact on sediment dynamics [57,58]

5. Conclusions

This paper explored an alternative technique for tidal resource assessment using a
land-based HF radar and an ANN to estimate subsurface currents from radar-measured
surface currents.

After statistical testing of multiple network training methods and structures, the BR
network with a single hidden neuron produced predictions most accurate to the measured
data. This best network was able to generate both subsurface time series and vertical
velocity profiles with >98% correlation to measured data (time series: r = 0.99, r2 = 0.98,
STD = 0.46 ms−1, MAPE = 4.63%).

The ANN radar technique appears to be as powerful as a 38-constituent harmonic
analysis for prediction at a single point, sometimes outperforming it with the ability to
predict non-tidal currents. The high accuracy of the ANN method is produced from only a
2-week ADCP training dataset, closely matching the prediction of harmonic analysis which
requires lengthy data acquisitions for high accuracy. The high accuracy of this method to
measured data reduces the logistics required for long subsea measurements by reducing
the deployment of offshore instruments from more than a year, to 2 weeks.
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Applying the network at a site 10 km away proved that due to differences in the
vertical structure of the water column between the training dataset and the new location,
the network is not applicable for resource assessments over large areas where complex
bathymetrical variation occurs.

The statistical tests showed that a neural network combined with constant HF radar
surface current data is an effective method for the prediction of subsurface currents, in
comparison to in situ-measured data and harmonic predictions, the results of which
successfully produced data products and figures required for tidal resource assessments.
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