
remote sensing  

Article

LR-TSDet: Towards Tiny Ship Detection in Low-Resolution
Remote Sensing Images

Jixiang Wu 1,2,3 , Zongxu Pan 1,2,3,* , Bin Lei 1,2,3 and Yuxin Hu 1,2,3

����������
�������

Citation: Wu, J.; Pan, Z.; Lei, B.; Hu,

Y. LR-TSDet: Towards Tiny Ship

Detection in Low-Resolution Remote

Sensing Images. Remote Sens. 2021, 13,

3890. https://doi.org/10.3390/

rs13193890

Academic Editor: Peter Hofmann

Received: 16 August 2021

Accepted: 23 September 2021

Published: 28 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Institute of
Electronics, Chinese Academy of Sciences, Beijing 100190, China; wujixiang19@mails.ucas.ac.cn (J.W.);
leibin@mail.ie.ac.cn (B.L.); yxhu@mail.ie.ac.cn (Y.H.)

2 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
3 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,

Beijing 100049, China
* Correspondence: zxpan@mail.ie.ac.cn; Tel.: +86-010-58887208

Abstract: Recently, deep learning-based methods have made great improvements in object detection
in remote sensing images (RSIs). However, detecting tiny objects in low-resolution images is still
challenging. The features of these objects are not distinguishable enough due to their tiny size
and confusing backgrounds and can be easily lost as the network deepens or downsamples. To
address these issues, we propose an effective Tiny Ship Detector for Low-Resolution RSIs, abbreviated
as LR-TSDet, consisting of three key components: a filtered feature aggregation (FFA) module, a
hierarchical-atrous spatial pyramid (HASP) module, and an IoU-Joint loss. The FFA module captures
long-range dependencies by calculating the similarity matrix so as to strengthen the responses of
instances. The HASP module obtains deep semantic information while maintaining the resolution
of feature maps by aggregating four parallel hierarchical-atrous convolution blocks of different
dilation rates. The IoU-Joint loss is proposed to alleviate the inconsistency between classification
and regression tasks, and guides the network to focus on samples that have both high localization
accuracy and high confidence. Furthermore, we introduce a new dataset called GF1-LRSD collected
from the Gaofen–1 satellite for tiny ship detection in low-resolution RSIs. The resolution of images
is 16m and the mean size of objects is about 10.9 pixels, which are much smaller than public RSI
datasets. Extensive experiments on GF1-LRSD and DOTA-Ship show that our method outperforms
several competitors, proving its effectiveness and generality.

Keywords: tiny ship detection; remote sensing images (RSIs); convolutional neural network (CNN);
self-attention; atrous convolution

1. Introduction

Object detection [1–3] in remote sensing images (RSIs) aims to locate objects of interest
(e.g., ships [4,5], airplanes [6,7] and storage tanks [8,9]) and identify corresponding cate-
gories, playing an important role in urban planning, automatic monitoring, geographic
information system (GIS) updating, etc. With the rapid development and large-scale ap-
plication of earth observation technologies, the RSIs obtained from satellites have become
increasingly diversified, and the amount of RSIs has greatly increased. Among them, the
very high-resolution (VHR) RSIs provide abundant spatial and textural information regard-
ing their targets, and are widely used in target extraction and recognition [10], landcover
classification [11], etc. The low-resolution RSIs tend to have a large field of view and
contain more targets than VHR images of the same size, therefore attracting much attention
in object detection [4,12,13] and tracking [14] tasks.

However, due to the limitations of low-resolution images, objects in low-resolution
RSIs only occupy a few pixels (e.g., ships of 8 pixels) which are much smaller than normal,
making it difficult to extract sufficient information. Moreover, in real-world scenarios, the
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quality of RSIs is always affected by the imaging conditions (e.g., illumination and clouds)
and the characteristics of the sensors. These distractors make the image background more
complicated, further increasing the difficulty of detection. Thus, detecting tiny objects in
low-resolution RSIs is still a uniquely challenging task.

In general, we define the type of objects as follows: tiny objects are <16 pixels, small
objects are 16~32 pixels, medium objects are 32~96 pixels and large objects are >96 pix-
els. Much research has been conducted to improve the performance of object detection,
which can be roughly divided into traditional methods and deep learning-based meth-
ods. Specifically, traditional approaches mostly rely on prior information and handcrafted
features to extract and classify regions of interest. Taking ship detection as an example,
Gang et al. [15] presented a harbor-based method based on the assumption that the harbor
layout is relatively stable. This method uses geographic information template matching
technology to complete sea-land segmentation. Xu et al. [16] utilized a special threshold
for segmentation, because the gray values and distributions of sea and land are usually
different. Geometric features (e.g., aspect ratios and edge contours) and statistical features
(e.g., HoG [17], LBP [18] and SIFT [19]) are adopted to represent candidate reigons, and
classifiers (e.g., SVM [20] and AdaBoost [21]) are exploited to distinguish them.

With the release of large-scale datasets (e.g., ImageNet [22], PASCAL VOC [23] and
MSCOCO [24]) and the benefits of the great power of feature representation capabil-
ities of convolutional neural networks (CNN), deep learning-based methods, such as
Faster-RCNN [25] and RetinaNet [26], have become mainstream in the nature image
community. Likewise, researchers have also built remote sensing benchmarks [2,3,27,28],
such as HRSC2016 [28], DOTA [2] and DIOR [3], successfully transferring deep learning-
based object detection methods into the remote sensing community [29–32]. For example,
Pang et al. [13] proposed R2-CNN for real-time detection with a lightweight backbone,
Tiny-Net. Ding et al. [29] introduced RoI Transformer, which converts horizontal RoIs
to rotated RoIs and extracts rotation-invariant features. R3Det [30] added the feature re-
fine module between two cascaded detection heads to further encode rotated position
information.

Nevertheless, most existing methods focus on general object detection (e.g., scale
variations and oriented bounding box regression) while ignoring the poor performance and
special demands of tiny object detection. Meanwhile, the available remote sensing datasets
are not perfectly suitable for tiny object detection in many aspects. As shown in Figure 1b,c,
the resolution of most images is much higher (e.g., 0.20 m), and most labeled objects are
larger than 32× 32 pixels, which are defined as medium targets in MS COCO [24].

In this article, we seek to solve the remaining problems of detecting tiny ships in
low-resolution RSIs. To this end, we propose a novel tiny ship detection framework
called LR-TSDet. The objects are always surrounded by various backgrounds due to their
small-scale characteristics, which will affect the feature expression. However, the back-
ground information can also provide certain indicative information for target identification.
Therefore, we utilize global contextual information to capture the correlation between
backgrounds and objects, thereby enhancing responses of objects in the feature maps. We
propose the filtered feature aggregation (FFA) module to make use of complex backgrounds,
which can be plugged into the feature pyramid network (FPN) [33]. As a self-attention
mechanism [34], FFA calculates a similarity matrix to suppress background noise and
strengthen features of objects. Secondly, we can only obtain limited information from low-
resolution images, because the tiny objects can easily disappear due to the downsampling
of the network. Thus, we have designed a hierarchical-atrous spatial pyramid (HASP)
module to obtain deep semantic information while avoiding network downsampling. We
reconstruct an enhanced atrous convolution layer [35] called hierarchical-atrous convolu-
tion block (HACB) using group convolution and hierarchical residual connection [36]. The
HASP module aggregates four parallel HACBs, wherein each HACB represents different
receptive fields, thereby enriching the semantic information of feature maps. Thirdly, in
order to tackle the inconsistency between classification and regression subnets, we propose
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the IoU-Joint loss to guide the training of a classification network, in which the labels used
to mark samples are replaced with an IoU score, inspired by [37]. The IoU is defined as the
coincidence quality between the predicted bounding box and the ground-truth box. In this
way, the network would prefer to predict high classification scores for positive samples
with high IoU scores, thereby further improving the sample quality and localization accu-
racy. Furthermore, we have developed a new dataset named GF1-LRSD for the evaluation
of tiny ship detection in low-resolution RSIs. It contains 4406 images with a resolution of
16 m and 7172 labeled instances, of which the mean size is 10.9 pixels; Figure 1 displays
some samples. Our main contributions are summarized as follows.

• An effective detector, LR-TSDet, is proposed to achieve tiny ship detection in low-
resolution RSIs; this detector is equipped with a filtered feature aggregation (FFA)
module, a hierarchical-atrous spatial pyramid (HASP) module and the IoU-Joint loss.

• The FFA module is plugged into the FPN, which aims to suppress the interference
of redundant background noise and highlight the response of regions of interest by
learning global context information.

• The HASP module is designed to extract multi-scale local semantic information
through aggregating features with different receptive fields.

• The IoU-Joint loss utilizes the IoU score to jointly optimize the classification and
regression subnets, further refining the multi-task training process.

• Extensive experiments on our built datasets, GF1-LRSD and DOTA-Ship, validate the
performance of our proposed method, which outperforms other comparison methods
by a large margin.

(a) (b) (c)

Figure 1. Image samples of different datasets, including (a) GF1-LRSD, (b) DOTA and (c) HRSC2016. For fair comparison,
images have been cropped to the same size of 512 × 512. As can be seen, the objects in GF1-LRSD are significantly smaller
than others.

The rest of this article is organized as follows. Section 2 briefly introduces the related
works. Section 3 illustrates the proposed tiny ship detector, LR-TSDet, in detail, including
the structure of each module, the design of the loss function, etc. In Section 4, we first
describe the construction process and statistics of the collected dataset, and then present
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experimental results and discussions, respectively. Finally, conclusions are drawn in
Section 5.

2. Related Work
2.1. Object Detection in Remote Sensing Images

With the application of deep learning-based methods, we have witnessed the rapid de-
velopment of object detection in remote sensing images in the past few years. Xia et al. [2]
introduced a large-scale dataset named DOTA, which has gradually developed into a
benchmark to evaluate the performance of various algorithms. Li et al. [3] built a more
comprehensive dataset on both object categories and amount of images, further promot-
ing the research of remote sensing. Generally, the CNN-based object detection methods
can be approximately divided into two categories: anchor-based methods and anchor-
free methods. The anchor-based methods [25,26,38–41] utilize preset anchor boxes with
different scales and aspect ratios to match and locate objects. YOLT [12] inherited and
fine-tuned the YOLO network [40] and partitions large-scale images into slices for rapid
detection. Zhang et al. [42] presented the CAD-Net, which revealed a special relationship
between the background and object by capturing global and local contextual information.
Furthermore, many studies have been performed to encode rotated features better, such
as those on RoI transformer [29], DRBox-v2 [43], GWD Loss [44], Gliding vertex [45], S2A-
Net [46], etc. The anchor-free methods [47–50] have been given more attention recently.
These methods cancel all kinds of hyperparameters of anchors and provide a more concise
pipeline for detection. For example, Wei et al. [51] proposed O2DNet, which encodes
oriented objects as pairs of middle lines. Other models [52–54] have also been adopted
using anchor-free strategies.

2.2. Tiny Object Detection

Researchers have attempted to alleviate the problem of tiny object detection from all
aspects, including data augmentation [55], image pyramids [56] and super-resolution [57].
Yu et al. [58] proposed the Scale Match (SM) strategy, which aligns the scale distribution of
a used dataset to be consistent with the pre-training dataset. SCRDet [59] obtained features
of small objects by a tailored feature fusion structure. Hu et al. [60] found tiny faces by
utilizing the contextual information around objects. In our work, we first exploit the FFA
module to highlight useful features of tiny objects by capturing the mutual information
between each pixel in the feature map. It can be observed that the background could
indicate categories or locations of candidate objects, e.g., ships usually sail in the ocean.
Furthermore, we apply improved atrous convolutions with different receptive fields to
gather the features and capture deeper semantic information.

3. Methods

In this section, we first give an overview of the proposed network, LR-TSDet, for
tiny ship detection, and show how it works. Next, we detail the design of the filtered
feature aggregation (FFA) module for noise suppression and feature enhancement. Then,
the hierarchical-atrous spatial pyramid (HASP) module is introduced to acquire larger
receptive fields. Finally, we elaborate on the IoU-Joint loss function for high-precision
detection.

3.1. Overview

Figure 2 illustrates the details of the proposed LR-TSDet. We adopted the one-stage
detector RetinaNet [26] as the baseline, which is a widely used anchor-based detector. Given
an input image, we fed it into a backbone network to extract multi-scale features, which
can usually take different forms of CNNs from existing detectors, such as ResNet [61],
EfficientNet [62], Swin-Transformer [63], etc. Taking ResNet [61] as an example, different
residual stages represent hierarchical semantic information. Therefore, we applied the fea-
ture pyramid network (FPN) [33] to construct a multi-scale convolutional feature pyramid
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with a top-down pathway and lateral connections. Finally, each FPN level was followed by
a detection head, which included two different branches, named the classification subnet
and box regression subnet. These two subnets are small fully convolutional networks
(FCN) [64] with four stacked 3 × 3 convolution layers for predicting the probability and
location of the object, respectively.

Different from RetinaNet, we constructed the pyramid from P3 to P5 using {C3, C4,
C5} in ResNet, where Pl and Cl indicate the pyramid level and residual stage, respectively
(l means the feature map resolution is 2l lower than the input). ResNet50 pre-trained by
ImageNet [22] was used as a backbone network. In our network design, we adopted a
filtered feature aggregation (FFA) module in lateral connections to improve the quality of
feature maps produced by FPN. In order to capture deeper semantic information better,
we presented the hierarchical-atrous spatial pyramid (HASP) module before the detection
heads, which uses dilated convolution [35] to obtain multiple receptive fields with different
dilation rates while maintaining the spatial resolution of the features.

FFA
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Figure 2. The network architecture of LR-TSDet. It consists of a backbone network, a feature pyramid network (FPN) [33]
and multiple detection heads. The filtered feature aggregation (FFA) module is inserted between the backbone and FPN to
enhance the capability of the top-down pathway. The detection head is appended to each FPN level, having a hierarchical-
atrous spatial pyramid (HASP) and two subnets for object classification and box regression. (a) The pipeline of the network.
(b) Filter Feature Aggregation (FFA) Module. (c) Hierarchical-Atrous Spatial Pyramid (HASP).

During training, the classification and regression losses were calculated by the defined
loss function, and we applied the back-propagation algorithm to update network weights.
We presented an IoU-Joint loss to evaluate the network classification ability better, which
merges the detection confidence and intersection-over-union (IoU) between the predicted
result and the ground truth as the class label. For model inference, our LR-TSDet is
straightforward. An image is fed and passed through the network to obtain the final results.
We employed the non-maximum suppression (NMS) strategy with a threshold of 0.6 for
removing redundant detections.
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3.2. Filtered Feature Aggregation (FFA) Module

Convolutional neural networks extract features through locally connected layer and
weight sharing while ignoring the long-range dependencies. Meanwhile, the feature
maps obtained by the backbone often come with some disadvantages, such as the error
response of the non-object with object-like and ambiguous responses of the objects to be
detected. Concretely, the tiny objects in low-resolution RSIs do not always have sufficient
discriminative features due to limitations in size, which makes them easy to confuse with
backgrounds and other distractors. From the perspective of human vision, we distinguish
the objects with the help of their surrounding environment information, and this indicates
that global information is helpful to detect tiny objects.

To address these issues, we introduced the Filtered Feature Aggregation (FFA) module,
which helps to suppress background noise and capture global contextual information. As
illustrated in Figure 2b, the FFA exploits the non-local block [34] as the main component.
Given an input feature map X ∈ RH×W×C, where C, H and W denote the channel number,
height and weight of the feature map, respectively, we first employed a 1× 1 convolution
layer to reduce channel dimensions to 256 (we set the channel C = 256 in all pyramid
levels following [26]). Then, we transformed X̂ ∈ RH×W×256 to three different embed-
dings, marked as Query (Q ∈ RH×W×Ĉ), key (K ∈ RH×W×Ĉ) and value (V ∈ RH×W×Ĉ),
calculated as below:

Q = WQ(X̂), K = WK(X̂), V = WV (X̂) (1)

where Ĉ is the channel number of the three embeddings, and WQ, WK and WV are weight
matrices to be learned and implemented by different 1× 1 convolution layers. Then, Q,
K and V were reshaped to size Ĉ× N, where N = H ×W represents the number of the
spatial pixels. Next, we computed the similarity matrix S ∈ RN×N of Q and K, which
represents the relation between each pixel in the feature maps, formulated as follows:

S = QT ⊗K (2)

where ⊗ denotes the matrix multiplication. Afterward, we obtained the spatial attention
map by applying the softmax function, expressed as:

sij =
exp

(
sij
)

∑N
j=1 exp

(
sij
) (3)

where sij represents the normalized pairwise relationship between position i and j. Thus,
we computed the output matrix as follows:

O = S ⊗ VT (4)

where O ∈ RN×C. Then, we reshaped O to the size H ×W × Ĉ, and a 1× 1 convolution
layer was employed to recover the initial dimension. Finally, we obtained the filtered
feature map via a residual connection [61], calculated as follows:

Y = F
(
X̂
)
+ X̂ (5)

where F (·) denotes the aforementioned self-attention mechanism [65].
The FFA module leverages information from all locations to gain more discriminative

feature representation, and we applied it to the top-down pathway, as shown in Figure 3.
We replaced a 1× 1 convolution layer with the FFA module to build a more robust FPN. The
feature map was upsampled by a factor of 2 with bilinear interpolation. In particular, we
visualized the feature maps of FPN after adopting the FFA module, as shown in Figure 4c.
Figure 4b shows the original feature maps produced by RetinaNet. It can be observed that
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the false responses of backgrounds are suppressed and the network focuses on the targets
more choicely.

    1!1 
Conv

2! up

(a) Default top-down pathway.

 

FFA

2! up

(b) Improved top-down pathway.

Figure 3. Comparison between the default top-down pathway and the improved method.

(a) (b) (c) (d)

Figure 4. The visualization of feature maps of FPN generated by different networks. (a) The input
RGB images. The ‘red boxes’ in the images indicate the locations of the objects. (b) The original
feature maps produced by RetinaNet. (c) The feature maps produced by adding the FFA module.
(d) The feature maps produced by LR-TSDet.

3.3. Hierarchical-Atrous Spatial Pyramid (HASP)

Deeper networks usually require larger rates of downsampling to obtain richer se-
mantic information. However, there is a trade-off between the scale of the object and the
downsample rate. The tiny object may be lost in the feature map due to the decrease of
spatial resolution. To this end, we propose the Hierarchical-Atrous Spatial Pyramid (HASP)
module to mitigate this problem. Figure 2c describes the structure details.

An enhanced dilated convolution layer called Hierarchical-Atrous Convolution Block
(HACB) was imported for stronger feature extraction capabilities. As shown in Figure 5, we
replaced the standard convolution with the group convolution while connecting adjacent
groups with residual connections. The HACB can capture deep semantic information in
images from different depths, and the outputs of the current group were fed into the next
group. Therefore, the equivalent receptive field increased consistently, and the module
could integrate richer semantic information.
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Figure 5. Illustration of the hierarchical-atrous convolution block (HACB). It adopts the group
convolution and the hierarchical connection style to generate information, and the “channel shuffle”
operator is used for information communication between different splits.

For a given feature map X ∈ RC×H×W , the HACB first splits X into g groups, denoted

by xi ∈ R
C
g×H×W , where i ∈ {1, 2, · · · , g}. Except for x1, each xi is used to produce yi

through a 3× 3 dilated convolution layer Di(·) with the same dilation rate r (shown in
Figure 6). Specifically, if i > 2, the sub-feature xi is first added with the output yi−1 and
then fed into Di(·). Each Di(·) is followed by a group normalization (GN) layer [66] and a
ReLU layer [67]. The implementation can be expressed as follows:

yi =


xi, i = 1;
ReLU(GN(Di(xi))), i = 2;
ReLU(GN(Di(xi + yi−1))), 2 < i 6 g

(6)

Subsequently, all groups were aggregated by the concatenation operation, and the
channel shuffle [68] operator was adopted for further information fusion, which can also
be replaced with a simple 1 × 1 convolution layer for simplification. Notice that the
feature information contained in each yi is gradually enriched by the hierarchical residual
connections. Meanwhile, the use of dilated convolution can retain more details without
reducing the spatial resolution of the feature maps.

(a) (b) (c)

Figure 6. The dilated convolution with different dilation rates, representing the different receptive
fields. (a) Rate = 1. (b) Rate = 2. (c) Rate = 3.

In the HASP design, we first used a 1× 1 convolution layer to reduce the channel
dimension for less computation. Then, four parallel HACBs with different dilation rates
were applied to obtain multiple receptive fields. Next, the four branches were concatenated
and passed through a 1× 1 convolution layer, followed by a GN layer for adjusting the
channel dimension. Finally, a skip-connection with an element-wise sum operator was
utilized to gather the input and output for better information transmission.
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3.4. Loss Function Design

In line with [25,26], our multi-task training loss function consists of two parts: the
classification loss and the regression loss, formulated as follows:

Ltotal =
λ1

Npos

N

∑
i=1
Lcls(pi, q∗i ) +

λ2

Npos

N

∑
i=1

M

∑
j=1

1∗i,jLreg(pbi, gt∗j ) (7)

where Ltotal , Lcls and Lreg denote the total training loss, classification loss and regression
loss, respectively. Npos is the number of positive samples, pi represents the predicted
probability value of the i-th anchor and q∗i is the corresponding class “soft-label”, which
will be explained in the following subsection. pbi is the i-th predicted bounding box and gt∗j
is the j-th ground-truth box corresponding to pbi. 1∗i,j indicates the indicator function, being
1 for foreground and 0 for background, which means only positive samples contribute to
the regression loss. The hyper-parameters {λ1, λ2} are two balancing weights and are set
to {1, 1} by default.

3.4.1. IoU-Joint Classification Loss

Most of the existing detectors adopt two independent subnets for classification and
regression tasks. These two branches optimize their own loss function and are almost
irrelevant. Before calculating the loss, we defined the positive and negative samples in
the same way as most detectors, such as Faster-RCNN and RetinaNet (the IoU > 0.5 is
for positive samples and the IoU < 0.4 is for negative samples; they stand for one of the
two-stage and one-stage detectors, respectively). This division is coarse, ignoring the
impact of IoU changes, where different IoUs indicate different overlaps with ground truths
and the different features in use. To alleviate these inconsistencies, we propose the IoU-joint
classification loss, which utilizes the IoU calculated by the regression subnet as an auxiliary
object index.

To be specific, we replaced the standard one-hot category label with the localization
quality (i.e., the IoU score). The label was softened to a continuous variable q ∈ (0, 1),
where 0 < q ≤ 1 indicates positive samples by IoU score and q = 0 is utilized for
negative samples. In this way, each sample was weighted correspondingly, and the weight
coefficient was directly correlated with the regression performance. Therefore, the network
was guided more properly to suppress suboptimal results and predict detections having
both high probability and high localization accuracy. Moreover, the discrete cross-entropy
function − log(p) was needed to expand into a continuous form, written as −q log(p) +
(1− q) log(1− p). We defined the IoU-joint classification loss as:

Lcls(p, q) =

{
−(1− log(1 + pq))β(q log(p) + (1− q) log(1− p)), q > 0

−pβ log(1− p), q = 0
(8)

where p denotes the predicted probability of the object, and q is the localization quality
score (IoU between the predicted box and ground truth). (1− log(1 + pq))β is inherited
from Focal Loss [26] as a modulating factor. We used the product of p and q to balance the
contributions of samples, and the function log was used to smooth the decay of pq. When
q = 0, the factor pβ would be adopted to scale the loss. The hyper-parameter β was set as 2
by default.

3.4.2. Bounding-Box Regression Loss

Similar to the anchor-based detectors [25,26,38], we needed to parameterize the coor-
dinates of the bounding box, formulated as follows:

tx = (x− xa)/wa, t∗x = (x∗ − xa)/wa

ty = (y− ya)/ha, t∗y = (y∗ − ya)/ha

tw = log(w/wa), t∗w = log(w∗/wa)

th = log(h/ha), t∗h = log(h∗/ha)

(9)
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where (xa, ya, wa, ha) represents the two coordinates of the box center, width and heigth
of the anchor box. (x, y, w, h) and (x∗, y∗, w∗, h∗) represent the predicted box and ground-
truth box, respectively.

The width and height of tiny objects in our dataset are generally about 10 pixels, and
the smooth L1 loss [38] is sensitive to scale variance, leading to difficulty in convergence.
IoU evaluates the quality of the predicted box as a whole unit rather than four independent
parameters, showing robustness to scale changes. Thus, we adopted the GIoU loss [69] for
the bounding box regression. It is calculated as follows:

Lreg = 1−GIoU, GIoU = IoU− Ac −U
Ac

(10)

where Ac denotes the area of the smallest convex enclosing both the predicted box pb and
the ground-truth box gt, and U is the area of union of pb and gt.

4. Experiments

In this section, we conduct different experiments to investigate the effectiveness of
the proposed LR-TSDet. First, we introduce the datasets used in experiments. For the
special demand of detecting tiny objects in low-resolution RSIs, we build a novel dataset
called GF1-LRSD. The construction process and statistics of GF1-LRSD are also described.
Furthermore, we build the DOTA-Ship dataset from DOTA-v1.5 [2] for further evaluation.
Then, the implementation details and evaluation metrics are presented. Next, we conduct
sufficient ablation experiments to evaluate the proposed modules. Finally, we compare
the proposed method with other state-of-the-art (SOTA) methods and achieve the best
performance. The implementation of this study will be publicly available after the article is
accepted and the check procedure is completed.

4.1. Dataset
4.1.1. GF1-LRSD

Object detection in remote sensing images has made great progress with the help
of open-source aerial images datasets, such as HRSC2016 [28], DOTA [2], DIOR [3], etc.
Nonetheless, the image resolution in these datasets tends to be very high (e.g., 0.20 m,
1.07 m), and objects are always multi-scale. These characteristics are more suitable for
evaluating general detection tasks rather than tiny object detection. There is still a lack of a
reliable dataset that can meet the practical migration application. To this end, we built the
GF1-LRSD dataset to promote the research of the problem.

Construction Process

1. Raw Data Acquisition and Preprocessing
Gaofen–1 (GF–1) is an optical remote sensing satellite equipped with four 16 m resolu-
tion multispectral cameras which can obtain rich remote sensing images. Meanwhile,
its complex imaging environment increases the difficulty of detection compared to
other data. In order to build a sufficiently effective dataset, we collected a total of
145 wide–field–of–view (WFV) scenes of 1A level with a resolution of 16 m to filter
the needed targets. The images with 12,000 × 12,000 pixels are 16-bit and have four
bands (the extra is near-infrared), which are difficult to directly apply to the network.
Figure 7 shows the detailed data processing flow. We converted the 16-bit data into
8-bit and cropped the large-scale images into a set of slices with the size of 512× 512.
Different from the regular sliding window mechanism, we directly cut the image
without overlap for efficiency. As a result, nearly 83,520 sub-images were obtained. To
enhance the contrast of images, we used the 2% truncated linear stretch method for
quantification, calculated as follows:

Rx,y,c =
(

Ix,y,c − Tdown
)
× 255

Tup − Tdown

Rx,y,c = min
(
max

(
Rx,y,c, 0

)
, 255

) (11)
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where Ix,y,c and Rx,y,c denote the pixel value at (x, y) in the c-th band of the input and
output image, respectively. The Rx,y,c is finally limited to 0∼255 to meet the standard
format. Tup and Tdown are the truncated upper and lower thresholds.

2. Image Annotation
We kept the data organization the same as PASCAL VOC [23] for convenience,
wherein (xmin, ymin, xmax, ymax) is used to describe the labeled bounding box. Let
(xmin, ymin) and (xmax, ymax) denote the coordinates of the top-left and bottom-
right corners of the bounding box, respectively. The toolbox LabelImg [70] was used to
finish the annotation, and we used the horizontal rectangular box to locate the objects.
After the identification and correction by experts, we collected, in total, 4406 images
and 7172 labeled instances labeled as ship. For dataset splits, 3/5, 1/5, 1/5 of the
images were used to form the training set, validation set and test set. Some
samples are shown in Figure 1a.

16-bit raw data Delete the 
near-infrared band

2% truncated
linear stretch

Crop with
sliding windowLabel and filterThe final dataset

Figure 7. The flowchart of the dataset construction.

Dataset Statistics

In this subsection, the statistical characteristics of the proposed GF1-LRSD are analyzed
and compared with other representative datasets. Specifically, we define the absolute size
Sa(·) and relative size Sr(·) to describe the scales of instances, which can be formulated as
follows [58]:

Sa
(
Bij
)
=
√

wij × hij

Sr
(
Bij
)
=

√
wij × hij

Wi × Hi

(12)

where Bij represents the j-th instance’s bounding box of the i-th image Ii in the dataset,
and wij, hij are the width and height of Bij. Wi, Hi denote the width and height of Ii,
respectively. The mean and standard deviation of the instance size for different datasets
are shown in Table 1. The absolute size of 10.9 ± 3.0 pixels in GF1-LRSD is much smaller
than the other datasets.

Table 1. Mean and standard deviation of instance size on different datasets.

Dataset Absolute Size Relative Size

DOTA-v1.0 trainval 55.3 ± 63.1 0.028 ± 0.034
DOTA-v1.5 trainval 34.0 ± 47.8 0.016 ± 0.026

DIOR 65.7 ± 91.8 0.082 ± 0.115
HRSC2016 140.6 ± 67.9 0.149 ± 0.072

GF1-LRSD 10.9 ± 3.0 0.021 ± 0.006

As shown in Figure 8c, most objects in GF1-LRSD are smaller than 16 pixels, accounting
for about 94% of the objects, while more than 50% of the objects in other datasets have scales
greater than 16 pixels, such as 79% of the objects in DIOR. Figure 8a,b further describe the
main characteristics of GF1-LRSD. The width and height of the objects are mostly smaller
than 25 and 30 pixels, respectively. The top 3 sizes are 9, 10 and 11 pixels.
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Figure 8. Statistics of instances in GF1-LRSD and other datasets. (a) Scatter plot of width and height distribution in
GF1-LRSD. (b) Histgram of scale distribution in GF1-LRSD. (c) Comparison of scale distribution between GF1-LRSD and
other datasets.

4.1.2. DOTA-Ship

DOTA [2] is a large-scale dataset for object detection in remote sensing images. DOTA-
v1.5 contains 2806 images and 403,318 instances of 16 object categories. It is an updated
version of DOTA-v1.0, where the tiny instances (less than 10 pixels) are additionally
annotated. To evaluate our LR-TSDet more accurately, we selected the objects labeled as
ship and built a new dataset, named DOTA-Ship, which includes 573 images and 43,738
instances in total. DOTA-Ship was divided into training and test sets, consisting of 435 and
138 images, respectively. During training, we cropped the original images into 800× 800
patches with an overlap of 200 pixels and subsequently ignored the sub-images that do not
contain targets.

4.2. Implementation Details

We implemented LR-TSDet based on mmdetection [71], and the pre-trained ResNet-50
was adopted as the backbone network for all experiments. The models were trained for
100 epochs using the Stochastic Gradient Descent (SGD) optimizer with an initial learning
rate of 0.005. The learning rate was divided by a factor of 10 at the 70th and 90th epochs.
The momentum and weight decay were set as 0.9 and 1 × 10−4, respectively. We applied
the linear warm-up strategy for the first 500 iterations with a ratio of 0.001 to stabilize the
training process. The batch size was set as 8 on 2 RTX 2080Ti GPUs (4 images per GPU) and
the random image flipping was adopted for data augmentation. The other hyper-parameter
was the same as mmdetection unless specified.

4.3. Evaluation Metrics

In all experiments, the average precision (AP) was adopted to evaluate the model
performance. We followed the setup proposed in the VOC2010 challenge [23] using a
threshold of 0.5. The AP is formulated as follows:

AP =
∫ 1

0
p(r)dr (13)

where r denotes different recalls, and p(r) is the precision-recall (PR) curve. The AP was
calculated as the area under the PR curve. In general, we defined the recall and precision
as follows:

Recall =
TP

TP + FP
(14)

Precision =
TP

TP + FN
(15)
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where TP, FP and FN represent the true positive, false positive and false negative samples.
For a detection result, if the IoU between it and the ground truth was greater than the set
threshold, then it was defined as TP; otherwise, it was defined as FP. If a ground-truth did
not have a matched predicted result, it was defined as FN.

4.4. Ablation Studies

In this subsection, we conduct several ablation experiments to explore the effectiveness
of the proposed method. We adopt ResNet50 as the backbone network and the flops
computation tool in mmdetection is utilized to analyze model performance.

4.4.1. RetinaNet as Baseline

Before applying RetinaNet [26] as the baseline, we first modified the default model
(called RetinaNet-D) to reduce useless operations. In the RetinaNet-D design, {P6, P7} in
FPN are obtained by strided convolutions. This is done with the aim of improving large
object detection, which may miss tiny object information and generate many unmatched
negative samples that adversely affect the network training; our experiments also proved
this. We removed the last two stages, {P6, P7}, and added a GN [66] layer in each detection
head, named RetinaNet-B. The GN layer normalizes the data distribution by dividing the
channels into groups and computing the mean and variance respectively. GN is a useful
trick [47] and we applied it to stabilize the training process. The results are presented in
Table 2. Compared with RetinaNet-D, our RetinaNet-B produced +0.75 AP gains with less
computation complexity (51.57 G vs. 52.28 G), and the model size was reduced from 36.1 M
to 30.8 M, indicating that the RetinaNet-D is more suitable as a baseline.

Table 2. Results of different RetinaNet architecture on GF1-LRSD. RetinaNet-D and RetinaNet-B
denote the default network and the improved network, respectively. ‘Head’ means the detection
subnet, including regression and classification branches.

Model FPN Head AP (%) FLOPs (G) #Params (M)

RetinaNet-D {P3, P4, P5, P6, P7} - 79.00 52.28 36.1
RetinaNet-B {P3, P4, P5} + GN 79.75 51.57 30.8

4.4.2. Individual Contributions of Each Component

In order to investigate the performance of design elements, we conducted a series of
experiments with different combinations of modules. The quantitative results are reported
in Table 3. We adopted RetinaNet-B (mentioned before) as the baseline, and it achieved an
AP of 79.75, as shown in Experiment #1 in Table 3.

Table 3. Ablation studies on LR-TSDet. We adopted RetinaNet-B as the baseline and applied each
module gradually to evaluate the effectiveness.

ID FFA HASP IoU-Joint Loss GIoU Loss AP (%)

#1 - - - - 79.75
#2 X - - - 81.04
#3 X X - - 81.87
#4 X X X - 82.66
#5 X X - X 82.62
#6 X X X X 83.87
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• Efficacy of FFA. As discussed in the previous section, FFA processes the feature
maps of each residual stage, aiming to suppress the non-object responses. We first
applied FFA to the baseline, and it lead to a considerable gain of 1.29 AP, as shown
in Experiment #2 in Table 3. FFA utilizes non-local blocks [34] to capture long-range
dependencies, which is helpful to obtain global contextual information. Meanwhile,
as a kind of attention mechanism, FFA could enhance the feature expression of targets
and make it more discriminative.

• Influence of HASP. The purpose of designing HASP was to obtain more abundant
semantic information while maintaining the resolution of feature maps. To verify its
impact, we added HASP on the basis of Experiment #2, and the result is shown in
Experiment #3 in Table 3. The detection AP was improved by 0.83 (81.04→ 81.87).
HASP aggregates four parallel hierarchical-atrous convolution blocks (HACB) to
obtain multi-scale information, where HACB consists of cascaded group dilation
convolution. Furthermore, the integration of FFA and HASP further boosted the
performance by 2.12, as shown in Experiment {#1, #3} in Table 3.

• Effect of the loss function. As analyzed above, our network is optimized by a multi-
task loss, including the classification loss and regression loss. The default setting
was focal loss [26] and smooth L1 loss [38] in our experiments. As can be seen in
Experiment {#3, #4, #5, #6} in Table 3, both losses contributed to the improvement
of the final detection AP. By replacing focal loss with IoU-Joint loss, the network
achieved an AP of 82.66, 0.79 higher than the default setting (81.87 vs. 82.66). The
reason is that the IoU-Joint loss merges the localization score (i.e., IoU) into the
calculation of classification loss, which could strengthen the connection between the
two detection branches. Similarly, the performance was improved by 0.75 (81.87→
82.62) by replacing smooth L1 loss with GIoU loss. The GIoU loss treats the position
information as a whole during training, which could result in more accurate training
effects. It is worth mentioning that the combination of the two losses brought different
degrees of improvement of the detection AP (82.66→ 83.87, 82.62→ 83.87). Finally,
the LR-TSDet achieved the best performance of 83.87 AP, which outperformed the
baseline by 4.12 AP, demonstrating the effectiveness of the proposed strategies.

4.4.3. Evaluation of HASP

In this subsection, we study the choice of the dilation rates and the utility of HACB
architecture in HASP. It can be observed from Table 4 that as the dilation rate increases, the
performance first increases and then decreases. We conjecture that excessive rates would
incur the “gridding problem” [72], where the useful local information may be lost; thus
we choose {2, 4, 6, 8} as the final parameters. Moreover, two sets of controlled experiments
{#2, #3} and {#4, #5} in Table 4 prove the superiority of the HACB over the standard atrous
convolution by adopting the hierarchical residual connection structure, where the HACB
brings considerable gains of +0.60 and +0.56 AP under different settings of dilation rates,
respectively.

Table 4. Detailed ablation studies on the dilation rates and the hierarchical-atrous convolution block
(HACB) of HASP. The item “-” in the table indicates replacing HACB with standard atrous convolution.

ID Dilations HACB AP (%)

#1 {1, 1, 1, 1} X 82.98

#2 {1, 2, 3, 4} - 82.84
#3 X 83.44

#4 {2, 4, 6, 8} - 83.31
#5 X 83.87

#6 {6, 6, 6, 6} X 83.15
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4.5. Comparisons with Other Approaches
4.5.1. Experiments on LR-TSDet

To verify the performance of our proposed LR-TSDet, we compared it with other
methods on the GF1-LRSD dataset, including two-stage detectors (e.g., Faster-RCNN [25]
and SCRDet [59]), one-stage detectors (e.g., YOLOv3 [40], SSD [39] and R3Det [30]) and
anchor-free detectors (e.g., FCOS [47] and ATSS [73]). SCRDet and R3Det are two typical
methods for detecting tiny objects in remote sensing images. It should be noted that
we kept all training settings the same, except the network backbone. As observed in
Table 5, we achieved the best performance of 83.87 AP with a competitive model size and
computation complexity. For example, our LR-TSDet outperformed Faster-RCNN by a
large margin (+23.38 AP) with fewer FLOPs (54.67 G vs. 63.25 G) and parameters (32.53 M
vs. 41.12 M), and the LR-TSDet surpassed FCOS by 9.71 AP with a slight increase in FLOPs
and parameters. Qualitative detection results of LR-TSDet on GF1-LRSD are presented in
Figure 9. The data were collected from real satellite imaging scenes, including the occlusion
and interference of clouds, and the presence of vast land backgrounds. According to the
detection results, our method works well under different conditions, proving its robustness.
Figure 10 displays the P-R curves of the different approaches. The LR-TSDet is shown to
locate objects more accurately with higher confidence.

Table 5. Comparisons with other typical methods on the GF1-LRSD dataset.

Method Backbone AP (%) FLOPs (G) #Params (M)

Faster-RCNN [25] ResNet50 60.49 63.25 41.12
RetinaNet [26] ResNet50 79.00 52.28 36.10
SSD512 [39] VGG16 72.28 87.72 24.39
YOLOv3 [40] DarkNet53 67.82 49.62 61.52
FCOS [47] ResNet50 74.16 50.30 31.84
ATSS [73] ResNet50 73.84 51.52 31.89
SCRDet [59] ResNet50 69.29 - -
R3Det [30] ResNet50 73.04 - -

LR-TSDet (ours) ResNet50 83.87 54.67 32.53

Furthermore, we evaluated the performance of our LR-TSDet under different scenarios,
comparing it with RetinaNet. Experiments were conducted for offshore and inshore scenes.
The results are shown in Table 6. It can be seen that our method produced a larger
improvement under both scenes. Specifically, LR-TSDet improved the precision rate by 1.11
and the recall rate by 4.23 in inshore backgrounds, which indicates fewer false alarms and
more correct predictions. In addition, it achieved 86.43 AP and 71.30 AP, outperforming
the baseline by 4.81 AP in offshore backgrounds and 5.05 AP in inshore backgrounds. This
set of controlled experiments shows the superiority of our LR-TSDet.
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Figure 9. Detection results of LR-TSDet on GF1-LRSD with different backgrounds. The bottom-left corner of the image
shows details of magnified results. The four scenes are thick cloud scenes, light cloud scenes, inshore backgrounds and
offshore backgrounds, respectively.
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Table 6. Comparisons of different scenarios.

Scene Method Recall (%) Precision (%) AP (%)

Offshore RetinaNet 89.64 65.96 81.62
LR-TSDet 91.65 66.11 86.43

Inshore RetinaNet 78.46 41.63 65.35
LR-TSDet 82.69 42.74 71.30

4.5.2. Experiments on DOTA-Ship

To further demonstrate our proposed method, we also conducted experiments on
the DOTA-Ship dataset. The models were trained for 48 epochs in total. The results are
shown in Table 7. It can be observed that our LR-TSDet achieved an AP of 82.56 and
performed better than other competitors. For example, our method produced considerable
improvements of 6.98 AP by being carefully designed for tiny ship detection (e.g., the FFA
module for global contextual information and the HASP module for deeper semantic infor-
mation) compared with the baseline RetinaNet [26]. Some detection results are visualized
in Figure 11.

Table 7. Comparisons with other typical methods on the DOTA-Ship dataset.

Method Backbone AP (%)

Faster-RCNN [25] ResNet50 79.49
RetinaNet [26] ResNet50 75.58
SSD512 [39] VGG16 76.92
YOLOv3 [40] DarkNet53 66.17
FCOS [47] ResNet50 77.08
ATSS [73] ResNet50 78.17
SCRDet [59] ResNet50 79.57
R3Det [30] ResNet50 75.15

LR-TSDet (ours) ResNet50 83.62
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Figure 11. Detection results of LR-TSDet on the DOTA-Ship dataset.

5. Conclusions

In this article, we proposed an effective network architecture called LR-TSDet for
improving the performance of tiny ship detection in low-resolution images. LR-TSDet
includes three main components: the FFA module, the HASP module, and the IoU-Joint
loss. Specifically, the FFA module was adopted to filter the background noise with the
ability to capture long-range dependencies in feature maps in order to build a more ro-
bust FPN for detecting tiny objects. The HASP module was presented to obtain richer
semantic information while maintaining the resolution of feature maps by aggregating
four parallel HACBs, which is conductive to distinguishing tiny objects and the back-
ground. The IoU-Joint loss utilized the IoU score to alleviate the inconsistency between
the classification and regression branches, and consequently improved the localization
accuracy. To assess the feasibility of the proposed method, we constructed a dataset for
low-resolution tiny ship detection in remote sensing images, called GF1-LRSD, in which
the resolution (16 m) of images and the average size (10.9 ± 3.0 pixels) of instances are
much smaller than available datasets. Comprehensive experiments on GF1-LRSD and
DOTA-ship datasets demonstrated the efficacy of our LR-TSDet, which outperformed other
comparison approaches.
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reviewed by all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016,

117, 11–28. [CrossRef]
2. Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object

Detection in Aerial Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt
Lake City, UT, USA, 18–22 June 2018.

3. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.
ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]

4. Yang, X.; Sun, H.; Fu, K.; Yang, J.; Sun, X.; Yan, M.; Guo, Z. Automatic ship detection in remote sensing images from google earth
of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sens. 2018, 10, 132. [CrossRef]

5. Zhang, Z.; Guo, W.; Zhu, S.; Yu, W. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination
networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1745–1749. [CrossRef]

6. Liu, L.; Shi, Z. Airplane detection based on rotation invariant and sparse coding in remote sensing images. Optik 2014,
125, 5327–5333. doi: 10.1016/j.ijleo.2014.06.062. [CrossRef]

7. Li, Y.; Fu, K.; Sun, H.; Sun, X. An aircraft detection framework based on reinforcement learning and convolutional neural
networks in remote sensing images. Remote Sens. 2018, 10, 243. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2016.03.014
http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023
http://dx.doi.org/10.3390/rs10010132
http://dx.doi.org/10.1109/LGRS.2018.2856921
doi: doi: 10.1016/j.ijleo.2014.06.062
http://dx.doi.org/10.1016/j.ijleo.2014.06.062
http://dx.doi.org/10.3390/rs10020243


Remote Sens. 2021, 13, 3890 19 of 21

8. Zhang, L.; Shi, Z.; Wu, J. A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite
imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4895–4909. [CrossRef]
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