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Abstract: The release of high-spatiotemporal-resolution Sentinel-1 Synthetic Aperture Radar (SAR) 
data to the public has provided an unprecedented opportunity to map soil moisture at watershed 
and agricultural field scales. However, the existing retrieval algorithms fail to derive soil moisture 
with expected accuracy. Insufficient understanding of the effects of soil and vegetation parameters 
on the backscatters is an important reason for this failure. To this end, we present a Sensitivity 
Analysis (SA) to quantify the effects of parameters on the dual-polarized backscatters of Sentinel-1 
based on a Water Cloud Model (WCM) and multiple global SA methods. The identification of the 
incidence angle and polarization of Sentinel-1 and the description scheme of vegetation parameters 
(A, B and α) in WCM are especially emphasized in this analysis towards an optimal estimation of 
parameters. Multiple SA methods derive identical parameter importance ranks, indicating that a 
highly reasonable and reliable SA is performed. Comparison between two existing vegetation 
description schemes shows that the scheme using Vegetation Water Content (VWC) outperforms 
the scheme combing particle moisture content and VWC. Surface roughness, soil moisture, VWC, 
and B, are most sensitive on the backscatters. Variation of parameter sensitivity indices with 
incidence angle at different polarizations indicates that VV- and VH- polarized backscatters at small 
incidence angles are the optimal options for soil moisture and surface roughness estimation, 
respectively, while VV-polarized backscatter at larger incidence angles is well-suited for VWC and 
B estimation and HH-polarized backscatter is well suited for roughness estimation. This analysis 
improves the understanding of the effects of vegetated surface parameters on multi-angle and 
multi-polarized backscatters of Sentinel-1 SAR, informing improvement in SAR-based soil moisture 
retrieval. 

Keywords: microwave remote sensing; synthetic aperture radar; global sensitivity analysis; 
soil moisture

1. Introduction
Retrieving soil moisture using high-spatiotemporal-resolution Synthetic Aperture 

Radar (SAR) allows for an insight into the spatial distribution of soil moisture details at 
field scale and temporal variety within a weekly scale, which greatly benefits precision 
agriculture [1]. This unique scientific and practical prospect has gradually become a 
reality, especially since the launch of Sentinel-1 satellites [2]. However, insufficient 
understanding of the microwave backscattering mechanism is one of the most challenging 
issues for retrieving highly accurate soil moisture from SAR [3]. A comprehensive 
understanding of the response of SAR observations to the surface permittivity and 
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geometric properties is key to estimating soil moisture accurately because of the 
complicity of the interaction between radar observations and soil surface variables, that 
is, the SAR observations are jointly determined by various surface properties, such as soil 
moisture, surface roughness, vegetation parameters, and others. Under this background, 
various surface backscattering models, such as the Integral Equation Model (IEM) [4], 
Advanced IEM [5], and Oh model [6], have been proposed and widely applied in soil 
moisture retrieval algorithms. These models serve as key tools that reproduce the radar 
observation from the surface parameters, quantitatively interpreting the dependence of 
SAR observations on multiple surface parameters and providing prior information for soil 
moisture retrieval. However, not all surface parameters of the model equally contribute 
to the model outputs due to the complicity of the model structure and distinct 
contribution of the parameters; thus, quantitatively evaluating the effect of each input 
parameter into the model output is important to understand the model mechanism and 
hence, to retrieve these parameters by inverting the models. 

Over the vegetated surface, the backscattering by the vegetation canopy and the soil 
surface beneath is much more complicated than that by the soil surface. Thus, modeling 
vegetated surface backscattering is more difficult. A Water Cloud Model (WCM) is 
frequently used in vegetation canopy modeling and parameter estimation because it 
simplifies the complex canopy backscattering process [7,8]. To assess the effects of the 
surface parameters on the SAR observations, many efforts have been made by using local 
and/or global Sensitivity Analysis (SA) to identify and quantify parameter sensitivities 
and screen the influential parameters on SAR observations. However, the effects of soil 
and vegetation parameters on backscatters under a vegetated surface, which is important 
to soil moisture retrieval in planted agricultural fields, are still unclear and have not 
attracted attention. To this end, we analyze the parameter sensitivity of a WCM. 
Particularly, the canopy backscattering contribution/component in the WCM can be 
described by various indexes, such as Vegetation Water Content (VWC) or canopy height 
[9], Normalized Difference Vegetation Index (NDVI) [10], and Leaf Area Index (LAI) 
[11,12]. However, there is no consensus on the optimal index (or vegetation description 
scheme) to better describe the vegetation canopy backscattering contribution and best soil 
moisture retrieval. For example, Kumar et al. [12] demonstrated that the LAI-based 
descriptor results in the best soil moisture retrieval from C-band SAR, while EI Hajj [13] 
found that the VWC, LAI, and NDVI resulted in equal accuracy of soil moisture retrievals 
from X-band SAR. Thus, it is necessary to find an optimal selection of vegetation 
description schemes for the retrieval of soil moisture. The global SA presented in this 
paper can rank the parameter importance and hence provide prior knowledge for the 
optimal selection of vegetation description scheme. 

Moreover, as the first free-access high-spatiotemporal-resolution SAR satellite 
mission, the Sentinel-1 satellites provide an unprecedented opportunity for soil moisture 
retrieval at an agricultural field scale within a weekly-revisit temporal frame. In addition 
to the merit of the high spatiotemporal resolution, the incidence angle of Sentinel-1 spans 
a wide variety of ranges (from 20 to 46 degrees) under different orbit directions (ascending 
and descending orbit). The dual-polarization (VV+ VH or HH+HV) combination is also an 
important merit of Sentinel-1, which provides an additional option for surface parameter 
estimation and monitoring. Although plenty of research on the retrieval of soil moisture 
based on Sentinel-1 observations has been reported, such as the work of Amazirh et al. 
[14], Ma et al. [15], and Attarzadeh et al. [16], the optimal selection of incidence angle for 
soil moisture retrieval is still not clear. Previous research found that VV-polarized 
backscatter is better than VH-polarized backscatter in soil moisture retrieval over 
agricultural fields [15], but neither discusses the influence of incidence angle on soil 
moisture retrieval nor discuss the influence of polarization and incidence angle on the 
estimations of other parameters, such as surface roughness and VWC. Thus, searching for 
the best incidence angle and polarization for retrieval soil moisture and of other surface 
parameters is of importance, as is feasibility from the parameter sensitivity aspect. 
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This paper aims to comprehensively understand the effects of the soil surface and 
vegetation parameters on backscatters by the vegetation canopy, hence to provide prior 
information for accurately estimating soil moisture and other surface parameters based 
on high-resolution Sentinel-1 data at the precision agricultural scale. Specifically, two key 
issues are addressed: 1) which vegetation description scheme is better to represent the 
canopy backscattering component in WCM, and 2) which incidence angle (range) and 
polarization are better for soil moisture retrieval? To answer these questions, an SA of 
WCM is conducted under two vegetation description schemes proposed by Bindlish and 
Barros [8] and Park et al. [17], respectively. For each scheme, five SA approaches are 
deployed to ensure the reasonability of the analysis result. The SA experiments are 
conducted under various VWC and SAR configurations (in terms of incidence angles and 
polarization) to select the optimal option for corresponding surface parameter estimation. 
The parameter Sensitivity Indices (SIs) are quantified for parameter importance ranking. 
This work advances original knowledge involving the following aspects: (1) the SA is 
conducted for a coupled soil-vegetation backscattering model that combines a bare soil 
backscattering model and a canopy backscattering model, and the model embraces two 
different vegetation description schemes that may influence the forward modeling and 
surface parameters retrieval; (2) multiple SA methods with different mathematical 
principles are deployed to ensure the reasonability and reliability of the analysis, which 
also provides an opportunity to test these methods; and (3) special experiments are 
designed according to different vegetation description schemes, VWC ranges and the 
configuration of Sentinel-1 SAR towards a better application of the WCM model and SAR 
data to precision agriculture. 

2. Models and Methods 
2.1. Backscattering Models 

Among many backscattering models for vegetation canopy, the WCM [7] proved to 
be simple and effective in modeling non-woody vegetation canopy and widely applied in 
soil moisture retrieval algorithms [15,18]. With consideration of simulating cross-
polarized backscatters corresponding to the configuration of Sentinel-1 SAR, this paper 
used the Oh model [6] (hereinafter called Oh-2004) to simulate bare soil backscatter and 
to integrate the simulations into WCM. 

2.1.1. Oh-2004 Model 
The Oh-2004 model [6] is an improved version of a semiempirical backscattering 

model that was proposed in 2002 [19] based on the physical scattering models and 
database of ground parameters and airborne scatter meter backscatter over the bare soil 
surface. The cross-polarized backscatter σ𝑉𝑉𝑉𝑉0 , the co-polarized ratio 𝑝𝑝  and cross-
polarized ratio 𝑞𝑞 for bare soil surface are formulated as: 

𝜎𝜎𝑉𝑉𝑉𝑉0 = 0.11𝑚𝑚𝑠𝑠
0.7(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2(1 − 𝑒𝑒−0.32(𝑘𝑘𝑠𝑠)1.8) (1) 

𝑝𝑝 =
𝜎𝜎𝑉𝑉𝑉𝑉0

𝜎𝜎𝑉𝑉𝑉𝑉0
= 1 − (

𝑐𝑐
90𝑜𝑜

)0.35𝑚𝑚𝑠𝑠
−0.65𝑒𝑒−0.4(𝑘𝑘𝑠𝑠)1.4 (2) 

𝑞𝑞 =
𝜎𝜎𝑉𝑉𝑉𝑉0

𝜎𝜎𝑉𝑉𝑉𝑉0
= 0.095(0.13 + 𝑐𝑐𝑠𝑠𝑠𝑠 (1.5𝑐𝑐))1.4(1 − 𝑒𝑒−1.3(𝑘𝑘𝑠𝑠)0.9) (3) 

where 𝑚𝑚𝑠𝑠 , 𝑐𝑐 , 𝑘𝑘 ,  𝑐𝑐  are soil moisture, incidence angle, wave number, and surface 
roughness, respectively; 𝜎𝜎𝑉𝑉𝑉𝑉0  and 𝜎𝜎𝑉𝑉𝑉𝑉0  are the backscatters at vertical and horizontal co-
polarization, respectively, and are calculated as: 

𝜎𝜎𝑉𝑉𝑉𝑉0 =  𝜎𝜎𝑉𝑉𝑉𝑉
0

𝑞𝑞
                                       (4) 

𝜎𝜎𝑉𝑉𝑉𝑉0 = 𝑝𝑝𝜎𝜎𝑉𝑉𝑉𝑉0                                       (5) 
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The model is valid in the condition of ks<3.5 and ms>0.068 m3/m3. This is the baseline for 
determining the ranges of soil moisture and roughness in SA experiments. 

2.1.2. Water Cloud Model 
The WCM was proposed to describe the backscattering from vegetation canopy, with 

a general form as: 

σ𝑇𝑇0 = σ𝑣𝑣0 + γ2σ𝑠𝑠0  (6) 

where σ𝑇𝑇0 , σ𝑣𝑣0  and σ𝑠𝑠0  are the total backscatter, contribution of vegetation canopy and 
that of the soil surface, respectively, and 𝛾𝛾2 is the two-path vegetation attenuation (note 
that the multiple scattering involving vegetation and soil interaction is not included in the 
equation because it can be neglected in many cases [17]). The soil contribution is simulated 
by the Oh-2004 model. The vegetation contribution and the vegetation attenuation are 
computed as: 

σ𝑣𝑣0 = AV1(1 − γ2)cosθ (7) 

𝛾𝛾2 = 𝑒𝑒−2BV2/𝑐𝑐𝑜𝑜𝑠𝑠𝑐𝑐  (8) 

where 𝑐𝑐 is the incidence angle; A and B are the are empirical parameters depending on 
the canopy type; V1 and V2 are the vegetation descriptors, which are usually described 
with VWC or canopy height [9], NDVI [10], LAI [11,12] and so forth. A most recent paper 
by Park et al. [17] demonstrated that particle moisture content and VWC were the best 
descriptors for V1 and V2 , respectively. Thus, we use Park’s scheme as one vegetation 
description scheme here. Moreover, to account for possible heterogeneity of canopy, 
Bindlish and Barros [8] introduced a radar-shadow coefficient (α) and parameterized the 
vegetation contribution σ 𝑣𝑣

0  as: 

𝜎𝜎 𝑣𝑣
0 = AV1(1 − 𝑒𝑒−2B𝑉𝑉2/𝑐𝑐𝑜𝑜𝑠𝑠𝑐𝑐)(1 − 𝑒𝑒−𝛼𝛼)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (9) 

In the parameterized model of Bindlish and Barros [8], V1 = V2 = VWC (denoted in 𝑚𝑚𝑉𝑉). 
We called this scheme here the Bindlish scheme. Thus, two 𝜎𝜎 𝑣𝑣

0  schemes were applied in 
this paper to analyze their impacts on parameter sensitivity.  

To summarize, Table 1 lists the input parameters to be analyzed of the coupled Oh–
WCM model and parameter validity range under the two vegetation description schemes. 
The model under both schemes has 7 parameters to perform SA, of which four are 
common parameters (ms, s, θ and mV) with the same meaning and ranges. Although 
parameters A and B have the same meaning under the two schemes, they are with 
different ranges according to the corresponding references [17] and [8], respectively. The 
mg under Park scheme denotes the second vegetation descriptor, while α under Bindlish 
scheme is introduced to describe the radar-shadow. 
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Table 1. Parameters in the coupled Oh–WCM model and their ranges for SA. 

Schemes Parameter Meaning(unit) Ranges Reference 

Park:  
V1 = mg 
V2 = mV 

ms soil moisture (m3/m3) 0.05–0.50 [8] 
s rms of surface height (cm) 0.2–3.1 [8] 
θ incidence angle(degree) 29–46 Sentinel-1 

mV vegetation water content (VWC, kg/m2) 0.1–6.0 [20] 
mg particle moisture content (g/g) 0.0–0.9 [17] 
A canopy type parameter 0.05–0.13 [17] 
B canopy type parameter 0.34–1.12 [17] 

Bindlish  
V1 = mV 
V2 = mV 

ms soil moisture (m3/m3) 0.05–0.50 [8] 
s rms of surface height (cm) 0.2–3.1 [8] 
θ incidence angle(degree) 29–46 Sentinel-1  

mV VWC (kg/m2) 0.1–6.0 [20] 
A canopy type parameter 0.0009–0.0018 [8] 
B canopy type parameter 0.032–0.138 [8] 
α radar-shadow coefficient  1.29–10.6 [8] 

2.2. Global Sensitivity Analysis Methods 
The global SA methods applied in this paper include Sobol’ [21,22], Fourier 

Amplitude Sensitivity Test (FAST) [23–26], Derivative based Global Sensitivity Measures 
(DGSM) [27], Delta test [25,28,29], and Morris methods [30,31], of which FAST and Sobol’ 
methods are quantitative while the rest are qualitative methods. This section briefly 
introduces the main principles of the methods. 

2.2.1. Sobol’ Method 
Sobol’ method is a variance decomposition-based quantitative SA method that can 

quantify the parameter SIs, including the first-order effect (main sensitivity index, MSI) 
and total effect (total sensitivity index, TSI), on model outputs [21,22], with the equations 
of: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = 𝑉𝑉𝑖𝑖
𝑉𝑉(𝑌𝑌)

= 𝑉𝑉[𝐸𝐸(𝑌𝑌|𝑋𝑋𝑖𝑖)]
𝑉𝑉(𝑌𝑌)

  (10) 

𝑇𝑇𝑀𝑀𝑀𝑀𝑖𝑖 =
𝑉𝑉[𝐸𝐸(𝑌𝑌|𝑋𝑋−𝑖𝑖)]

𝑉𝑉(𝑌𝑌)
= 1 −  

𝑉𝑉−𝑖𝑖
𝑉𝑉

 (11) 

where 𝑉𝑉𝑖𝑖 , 𝑉𝑉−𝑖𝑖  and 𝑉𝑉 are the first-order variance, variance without considering the ith 
parameter, and total variance of the model outputs, respectively; the subscript −𝑠𝑠 refers 
to all the parameters except parameter 𝑠𝑠; the 𝐸𝐸(. ) operator represents the mathematic 
expectation. The relation between 𝑉𝑉𝑖𝑖 and 𝑉𝑉 is described as: 

𝑉𝑉 =  �𝑉𝑉𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ � 𝑉𝑉𝑖𝑖,𝑗𝑗 + ⋯+ �𝑉𝑉1,2,…𝑛𝑛

𝑛𝑛

1<𝑖𝑖<𝑗𝑗<𝑛𝑛

 (12). 

The second-order sensitivity is therefore formulated as: 

𝑀𝑀2 =  𝑀𝑀𝑖𝑖,𝑗𝑗 =
𝑉𝑉�𝐸𝐸�𝑌𝑌�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�� − 𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑗𝑗

𝑉𝑉(𝑌𝑌)
 (13). 

2.2.2. FAST Method 
The FAST [23–26] applied here is the new version [32] that combines the merit of the 

1973 version [33] and the Sobol’ method [21,22]. Compared to the Sobol’ method, the FAST 
computes the SIs by scanning the parameter space with periodic functions such that the 
entire sample space can be analyzed. A multidimensional integration is reduced to 1D 
integration along a curve by associating each variable with a sampling frequency of the 
system in the Fourier transform space. Thus, the sampling efficiency of the new FAST is 
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significantly improved. The calculation of SIs (both MSI and TSI) in the FAST method uses 
the same formulation as the Sobol’ method; detailed information regarding the principle 
and usage of the FAST method can be found in the literature [23–26]. 

2.2.3. DGSM Method 
DGSM was initially proposed by Sobol’ regarding linking derivative-based and 

variance-based SA [27]. The method assumes the differentiable and square-integrable 
function 𝑓𝑓(𝑥𝑥1, … 𝑥𝑥𝑛𝑛)  that depends on 𝜕𝜕𝑓𝑓 𝜕𝜕⁄ 𝑥𝑥𝑖𝑖  as an estimator for the influences of 
parameter 𝑥𝑥𝑖𝑖 on the values of the function. An integral function and the SI are defined in 
Equations (14) and (15), respectively. 

𝑣𝑣𝑖𝑖 =  � (𝜕𝜕𝑓𝑓 𝜕𝜕⁄ 𝑥𝑥𝑖𝑖)2
𝑛𝑛

𝑉𝑉
𝑑𝑑𝑥𝑥 (14) 

𝑀𝑀𝑖𝑖𝑡𝑡𝑜𝑜𝑡𝑡 ≤
𝑣𝑣𝑖𝑖𝜎𝜎𝑖𝑖2

𝐷𝐷
 (15) 

In both equations, 𝜎𝜎𝑖𝑖2 is the variance of 𝑥𝑥𝑖𝑖 and 𝐷𝐷 is the model output. Larger values of 
𝑣𝑣𝑖𝑖  and 𝑀𝑀𝑖𝑖𝑡𝑡𝑜𝑜𝑡𝑡  represent the larger sensitivity of the parameters on the model output. 
However, the former represents a derivative-based sensitivity, and the latter represents a 
synthetical sensitivity that links the derivative- and variance-based sensitivity. Thus, the 
𝑀𝑀𝑖𝑖𝑡𝑡𝑜𝑜𝑡𝑡 was applied in this analysis to describe the parameter sensitivity in the coupled Oh–
WCM model. 

2.2.4. Delta Test Method 
The Delta test method is a moment-independent SA method, which is based on the 

nearest neighbor approach for estimating the variance of the residuals [25,28,29]. The 
method assumes the residuals of a model function to be independent and identically 
distributed with a zero mean, and the residual is defined as the difference between the 
entire model simulations and its subset (S) as:  

𝛿𝛿(𝑀𝑀) =
1
𝑁𝑁
�(𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑁𝑁𝑠𝑠(𝑠𝑠))2
𝑁𝑁

𝑖𝑖=1

 (16) 

where 𝑌𝑌𝑖𝑖 is the model function (here refers to the coupled Oh–WCM model) and 𝑁𝑁 is the 
sample size; 𝑌𝑌𝑁𝑁𝑠𝑠(𝑠𝑠) = argmin𝑘𝑘≠𝑖𝑖||𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑘𝑘||2 denotes the nearest neighbors of ith samples 
of the parameters.  

2.2.5. Morris Method 
The Morris method is an efficient SA approach that identifies the influential 

parameter(s) from those insensitive to the model outputs [31]. The method is based on 
computing for incremental ratios named elementary effects [30], which is defined as:  

𝑑𝑑𝑖𝑖(𝑋𝑋) = [𝑓𝑓(𝑋𝑋1, …  𝑋𝑋𝑠𝑠 − 1,𝑋𝑋𝑠𝑠 + ∆,𝑋𝑋𝑠𝑠 + 1 … ,𝑋𝑋𝑘𝑘) − 𝑓𝑓(𝑋𝑋)]/∆ (17) 

where ∆ is a value in [1/(p-1),...,1-1/( p-1)], p is the number of levels, 𝑋𝑋 is any selected 
values in the parameter space. In the coupled Oh–WCM model, 𝑋𝑋 represents the selected 
values of parameter and 𝑓𝑓(𝑋𝑋) represents one of the model outputs. To overcome the 
limitation of the original methods failing to simultaneously measure the parameter 
sensitivity, Campolongo et al. [30] proposed a revised measure (μ*) that is sufficient to 
provide a reliable ranking to estimate the mean of the distribution of the absolute values 
of the elementary effects. This paper utilized the newly proposed measures (μ*) to 
describe the parameter SI. 
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2.3. Design of Experiment 
The general workflow of the presented SA experiment consisted of three main steps 

(Figure 1): sampling, modeling, and analyzing. In the sampling step, the ranges and 
distributions of the parameters were investigated, and parameter samples were generated 
within their ranges. Determining the parameters to be analyzed and setting their ranges 
and distributions are the first key tasks for a global SA. In this analysis, seven parameters 
were analyzed (see Table 1). Notably here, we regarded all the inputs, including soil and 
vegetation variables (soil moisture, surface roughness, VWC, particle moisture content), 
radar configuration parameter (incidence frequency and angle), and empirical parameters 
in WCM (A, B, and α), as model parameters. The ranges of soil and vegetation parameters 
were determined according to their physically valid ranges and model validity range. The 
radar frequency and range of incidence angles were set according to those of the Sentinel-
1 configuration, with the incidence angle ranging from 29 to 46 degrees (interferometric 
wide swath mode) and the frequency being 5.405 GHz. Ranges of parameters A, B, and α 
were determined according to the corresponding literature of Park et al. [17] and Bindlish 
and Barros [8]. All parameters were uniformly distributed within the given ranges. Details 
of parameter ranges and corresponding references are listed in Table 1. 

In the modeling step, the generated parameter samples were input into the coupled 
Oh–WCM model to reproduce SAR backscatter ensembles. Three of the seven parameters 
(ms, s,θ) were input into the Oh model to reproduce the backscatters of bare soil surface. 
The rest of the four parameters were directly input into the WCM. Because two different 
vegetation description schemes were utilized in the WCM, slightly different parameters 
were used in each scheme (see details in Table 1 and Figure 1). 

 
Figure 1. Flowchart of the presented global SA procedure. 

The analyzing step is the core of the presented global SA, in which the parameter SIs 
are calculated based on the simulated backscatter ensembles. To systematically evaluate 
the effects of parameters on the Sentinel-1-like SAR observations, various numeric 
experiments were performed, and the following four specific issues were addressed: (1) 

Sobol’
FAST

mV, mg, A, B,ms, s, θ,mV, A, B, α,

② Modeling

Oh model 

WCM model

Backscatters

DGSM
Delta test

Morris
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Bindlish
scheme

① Sampling

Park 
scheme

Parameter SIs and 
importance rank
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The SA ensuring that the performed SA is reliable and reasonable as the SA results are 
usually difficult to directly validate. (2) As we introduced in Section 2.1.2, various 
vegetation descriptors/schemes were applied in WCM and surface parameter retrieval, 
but there was no consensus on which one was the best descriptor/scheme. 3) Theoretically, 
the parameters can reach the maximum and minimum values within their validity ranges; 
however, in the actual surface conditions, their value ranges maybe not be so wide. For 
example, most mV values fall into the extremely small values range (e.g., close to 0 kg/m2) 
over a bare to sparsely vegetated surface, while most values may fall into the very large 
values range (e.g., close to 6 kg/m2) over a densely vegetated surface; thus, how the 
parameter ranges influence their SIs and ranks needs to be clear. 4) The incidence angle of 
Sentinel-l SAR can range from 20 to 46 degrees (extra wide swath mode). In soil moisture 
retrieval practice, the local incidence angles usually need to be normalized to a reference 
angle; however, no consensus has been reached on which reference incidence angle is 
most suitable for soil moisture retrieval. Additionally, Sentinel-1 has a dual-polarization 
configuration (VV+ VH or HH+HV), which provides an opportunity to retrieve surface 
parameters with multiple channels, but the SIs of parameters on the cross-polarized 
backscatters (HV, VH) are still not clear and have yet to be reported.  

Specifically, the SA experiments were performed with the following considerations: 
1) In order to address the reliability issue of the SA results, five global SA methods were 
exploited to see whether the SA results were consistent with each other. 2) In order to 
provide information for optimal selection of vegetation description, we respectively 
conducted SA experiments under the Park scheme and Bindlish scheme, hence suggesting 
an optimal descriptor towards the retrieval of parameters in future work. 3) ) In order to 
address the influence of parameter ranges on their SIs and ranks, an experiment was 
performed to see the parameter SIs and their importance rank under various VWC ranges, 
which was expected to provide an implication as to the feasibility of soil moisture retrieval 
at various surface conditions; the full range of VWC (0-6.0 kg/m2) was artificially divided 
into four sub-ranges, 0-1.5 kg/m2, 1.5-3.0 kg/m2, 3.0-4.5 kg/m2, 4.5-6.0 kg/m2, and SA tests 
were conducted under each subrange to see the variation of the parameter SIs. 4) To 
address the issue of selecting an optimal SAR configuration for parameter estimation, an 
experiment was designed to search the optimal incidence angle and polarization for key 
parameters retrieval through analyzing parameter SIs under different polarizations and 
incidence angles; through changing the incidence angle from 20 to 46 degrees (note this 
range is set according to the configuration of extra wide swath mode, which is slightly 
larger than the range of 29 to 46 degrees of interferometric wide mode) with a step of 1 
degree, we computed parameter SIs at each incidence angle and observed the changes in 
them. 

3. Results 
The results of various SA experiments are presented here. First, the parameter SIs 

under two vegetation description schemes are presented in Sections 3.1 and 3.2, 
respectively. Within each scheme, five SA methods were exploited to ensure that the 
parameter SIs and their rank derived from different SA methods are reliable. Through 
comparison of the parameter SIs and their ranks under the two vegetation description 
schemes, we can judge which vegetation description scheme is better to describe the 
vegetation backscattering contribution towards the retrieval of soil moisture. Section 3.3 
is presented to answer the issues regarding the influence of VWC ranges on parameter 
SIs. Section 3.4 is presented to check the influence of incidence angle and polarization of 
Sentinel-1 SAR on parameter SI, hence, to provide suggestions for optimal selection of the 
SAR configurations for corresponding surface parameter estimation. 
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3.1. Parameter SIs under Bindlish Vegetation Description Scheme 
Generally, observable differences in SI parameters but highly consistent parameter 

ranks were shown from five methods under the Bindlish scheme (i.e., V1=V2=mV) as shown 
in Figures 2 and 3, respectively. The two quantitative methods (Sobol’ and FAST, Figure 
2) consistently showed that the surface roughness s was the most sensitive parameter to 
VV-, HH-, and VH-polarized backscatters, with its MSIs to three polarized backscatters 
greater than 0.45. Soil moisture ms was the second most sensitive parameter. Additionally, 
soil moisture was more sensitive to VV- than to VH- and HH-polarized backscatters, while 
roughness was more sensitive to HH- and VH- than to VV-polarized backscatter. These 
observations are consistent with the previous findings in the SA of AIEM [26]. Following 
roughness and soil moisture, VWC mV acted as the third sensitive parameter to the 
backscatters at all three polarizations, with its SIs closed to those of soil moisture. 
Empirical parameter B was also sensitive, while A and α were insensitive to the 
backscatter. This observation is consistent with a recent finding of local sensitivity analysis 
[15]. Under this scheme, almost no interactions between parameters (TSI-MSI) were 
observed to co-polarized backscatter, except that a small interaction between roughness 
and VWC was observed to the VH-polarized backscatter. This observation might be 
potentially helpful for the future application of VH-polarized backscatter in surface 
roughness and vegetation water content estimation. Relatively, the SIs derived from 
Sobol’ method were slightly larger than the those derived from the FAST method, but this 
small difference did not influence the parameter importance rank. 

 
Figure 2. Parameter SIs from the two quantitative methods (Sobol’ and FAST) under Bindlish vegetation description 
scheme. MSI and TSI-MSI represent the first-order effect (main sensitivity index, MSI) and the difference between total 
effect (total sensitivity index, TSI) and MSI, respectively. 

Although three qualitative methods (DGSM, Delta test, and Morris) showed different 
values of the parameter SIs, they showed high consistency in parameter importance ranks. 
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These ranks were also consistent with those derived from the two quantitative methods 
(Figure 3). Surface roughness s, soil moisture ms, VWC mV were still the most sensitive 
parameters to the backscatters at three polarizations. Taking the results of DGSM as an 
example, the sums of the SIs of s, ms, mV to three polarized backscatters were up to 91%, 
91%, and 96%, respectively, which means these parameters absolutely dominate the 
behavior of the model outputs. All three methods showed that the empirical parameters 
A and α were the least sensitive parameters to the backscatters, which indicates that they 
can be set to constant when conducting forward modeling and/or the inversion procedure.  

Overall, the high consistency in parameter ranks among the two quantitative and 
three qualitative methods demonstrated the reliability and reasonableness of the SA 
results presented here. Additionally, ranks of s and ms in present SA were consistent with 
previous findings in AIEM SA [26], which can further demonstrate that the presented SA 
was reliable and reasonable. The relative rank among the empirical parameters A and α 
was consistent with findings in [15], which suggests that Bindlish’s scheme can reasonably 
describe the vegetation backscattering components and be helpful for soil moisture 
retrieval, with parameters A and α being able to be fixed to constant due to their 
insensitivity to the backscatters.   

 
Figure 3. Parameter SIs from the three qualitative methods (DGSM, Delta test, and Morris) under Bindlish vegetation 
description scheme. The SIs are represented by SI, δ, and μ*, respectively. 
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3.2. Parameter SIs under Park Vegetation Description Scheme 
Under the Park scheme (i.e., V1 = mg, V2 = mV), the SA results of the two quantitative 

methods are shown in Figure 4. The vegetation parameter mg dominated the backscatters 
at all three polarizations, with its MSIs to VV-, HH- and VH-polarized backscatters greater 
than 0.92 (taking FAST result as an example). The empirical parameter A had a certain 
sensitivity to the backscatters, while soil moisture ms and roughness s almost had no 
effects on backscatters. This observation is inconsistent with our existing understanding. 
In a large vegetation parameter range (0–6 kg/m2 for VWC and 0.1–0.9 g/g for particle 
moisture content) under the uniform distribution, bare and vegetated soil surface (VWC 
close to 6) samples can be basically obtained with equal possibility. Leaving the SIs of 
roughness aside, for the bare and sparsely vegetated surface, soil moisture dominated 
backscatter, while for the densely vegetated surface, the main contribution of backscatter 
came from vegetation. In a large VWC range, soil moisture and vegetation parameters (mg 
and mV) should have similar effects on the backscatters, rather than the effect of vegetation 
being much greater than that of soil moisture and surface roughness.  

 
Figure 4. Parameter SIs from the two quantitative methods (Sobol’ and FAST) under the Park vegetation description 
scheme. MSI and TSI-MSI in Sobol’ and FAST methods represent the first-order effect (main sensitivity index, MSI) and 
the difference between total effect (total sensitivity index, TSI) and MSI. 

As has been shown in the two quantitative methods, the three qualitative methods 
also consistently showed high sensitivity of mg to the backscatters under the Park scheme 
(Figure 5). The high consistency in parameter ranks among five methods demonstrated 
the reliability of the SA result, and this result indicated that the Park vegetation 
description scheme failed to describe the contribution of the parameters, especially soil 
moisture and surface roughness, to backscatters. 
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Figure 5. Parameter SIs from the three qualitative methods (DGSM, Delta test, and Morris) under the Park vegetation 
description scheme. The SIs are represented by SI, δ, and μ*, respectively. 

3.3. Parameter SIs under Varied VWC Ranges 
The original range (0.0-6.0 kg/m2) of VWC was artificially divided into four equal 

sub-ranges, and the parameter SIs under each sub-range was calculated (Table 2). The 
FAST method, having the merit of Sobol’ method, was used for SIs calculation in this 
analysis. When the range of VWC was divided into narrow sub-ranges, almost no change 
was observed in parameter importance rank under both Bindlish and Park vegetation 
description schemes, e.g., s and ms were always the most sensitive parameters under 
Bindlish’s scheme. The rank of mV decreased from third- to fourth-place, which is because 
the range of mV decreased sharply. Although the rank of mV and mg was exchanged under 
the Park scheme, both parameters were vegetation descriptors, and the contributions of 
soil moisture and roughness were still rather small.  

With the values of VWC increasing, SIs of s and ms decreased under both vegetation 
description schemes, while SIs of mg under Park scheme and of B under Bindlish scheme 
increased dramatically. This means that the valuation range of VWC can influence the SIs 
of itself and other parameters. Such decreasing in SIs of s and ms and increasing in SIs of 
mg can be easily understood. In the smaller value region of VWC (e.g., VWC in 0-1.5 
kg/m2), the backscatters can be dominated by soil surface parameters s and ms, and 
vegetation parameters (e.g., mV) had limited/no effect on the backscatters. On the contrary, 
when the surface was fully covered by dense vegetation (e.g., VWC in 4.5-6.0 kg/m2), the 
effect of soil surface parameters gradually decreased, and that of vegetation parameters 
increased. 

Notably, s and ms rank second and third, respectively, when VWC was less than 1.5 
kg/m2, under Park scheme, and mg ranked fifth. However, when VWC was greater than 
1.5 kg/m2, mg ranked first, while s and ms ranked the last two positions. The range of VWC 
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strongly influenced the contribution of the soil surface and vegetation canopy to the 
backscatters. Too much influence of mg with almost no effect of soil surface parameter to 
backscatters should not be the real backscattering processing over sparsely vegetated 
and/or bare soil surface. This issue may lead to a failure of the Park scheme for modeling 
the backscatters at a low-to-mid frequency (e.g., P-, L-, and C-band) because the sparse 
vegetation canopy can be penetrated by the low-to-mid frequency microwave, and the 
soil surface can be sensed. 

Table 2. Parameter SIs under different ranges of VWC (kg/m2). 

Scheme  

SIs (MSI/TSI) and Rank 
Range1 
(0.0-1.5) 

Range2 
(1.5-3.0) 

Range3 
(3.0-4.5) 

Range4 
(4.5-6.0) 

MSI TSI Rank MSI TSI Rank MSI TSI Rank MSI TSI Rank 

Park 

ms 0.153  0.182  3  0.012  0.025  7  0.001  0.011  7  0.000  0.005  7  
s 0.205  0.243  2  0.020  0.046  6  0.002  0.012  6  0.000  0.010  5  
θ 0.085  0.094  6  0.034  0.048  4  0.010  0.019  4  0.005  0.010  3  

mV 0.254  0.341  1  0.026  0.052  5  0.001  0.009  5  0.000  0.006  6  
mg 0.123  0.207  5  0.657  0.753  1  0.857  0.893  1  0.910  0.925  1  
A 0.009  0.018  7  0.041  0.049  3  0.058  0.065  2  0.059  0.065  2  
B 0.132  0.204  4  0.103  0.167  2  0.022  0.057  3  0.004  0.019  4  

Bindlish 

ms 0.256  0.259  2  0.250  0.252  2  0.227  0.230  2  0.204  0.210  2  
s 0.600  0.613  1  0.574  0.586  1  0.514  0.526  1  0.457  0.472  1  
θ 0.102  0.103  3  0.106  0.107  3  0.122  0.123  3  0.138  0.140  3  

mV 0.010  0.011  4  0.015  0.017  5  0.009  0.011  5  0.008  0.010  5  
A 0.000  0.000  6  0.000  0.000  6  0.000  0.001  6  0.001  0.002  6  
B 0.005  0.007  5  0.051  0.053  4  0.095  0.097  4  0.218  0.224  4  
α 0.000  0.000  7  0.000  0.000  7  0.000  0.001  7  0.000  0.001  7  

3.4. Parameter SIs on Different Incidence Angles and Polarizations 
In view of the findings in Section 3.1 and 3.2 that the Bindlish vegetation description 

scheme can better describe the backscattering characteristics over the vegetated surface, 
the discussion of the influences of incidence angle and polarization on parameter SIs in 
this analysis is conducted under the Bindlish scheme. Parameter MSIs were computed 
based on FAST method due to its advantage in combining the merits of the original FAST 
and Sobol’ method. Variation of the four most sensitive parameters (ms, s, mV, B) MSIs with 
the changing of incidence angle was analyzed here to search for the optimal incidence 
angle for surface variable estimation (Figure 6).  

In addition to the previous observation that soil moisture was more sensitive to VV- 
than to VH-polarized backscatter and more sensitive to VH- than to HH-polarized 
backscatter, we observed here that the sensitivity of soil moisture to all three polarized 
backscatters decreased as the incidence angle increased (Figure 6a). Relatively, the 
decrease in MSIs of soil moisture to VV- and HH-polarized backscatters were more 
significant than that to VH-polarized backscatter. This means that when VV- and HH-
polarized backscatters are applied for soil moisture retrieval, it is better to use the 
backscatters at a smaller incidence angle, while when VH-polarized backscatter is used 
for soil moisture retrieval, the incidence angle has a limited effect on the performance of 
the retrieval.  

The MSIs of s to VV- and VH-polarized backscatters decreased dramatically as 
incidence angle increased (Figure 6b), while MSI of s to HH-polarized backscatters did not 
show a significant decrease with increasing of incidence angle. The MSI of s to VH-
polarized backscatter was larger than both that to HH- and VV-polarized backscatter at 
small incidence angles, but MSI of s to VH-polarized backscatter became smaller than that 
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to HH-polarized backscatter when the incidence angle was larger than 37 degrees. Surface 
roughness s was most sensitive to VH-polarized backscatter at incidence angles less than 
37 degrees, while it is most sensitive to HH-polarized backscatter at incidence angles 
greater than 37 degrees. This observation provides an optionable opportunity for surface 
roughness estimation from VH- and HH-polarized backscatters at varied incidence 
angles. 

The MSIs of mV and B to VV- and HH-polarized backscatters increased as incidence 
angle increased, while that to VH-polarized backscatter did not show an increase or 
decrease (Figure 6c and d). Both mV and B were most sensitive on VV-polarized backscatter, 
followed by HH- and had almost no effect on VH-polarized backscatters. These 
observations indicate that VWC and B can be better estimated by using VV-polarized 
backscatter at a greater incidence angle. 

 
Figure 6. Variations of parameter MSIs with incidence angle and polarization. 

4. Discussion 
4.1. SA with Multiple Methods 

The results of SA, especially those of global SA for complicated non-linear models, 
are usually hard to directly validate, which makes it challenging to ensure the 
reasonability and reliability of the SI parameters and their importance ranks. However, 
several indirect approaches can be utilized to validate the reliability of the SA results. 1) 
Referring to the previous knowledge from literature is often the most intuitive method. 
For example, the finding that the surface roughness is the most sensitive to the SAR 
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backscatters has been extensively reported in previous research papers [26,34–36], which 
could provide a reference for our present results (e.g., Figures 2–5). 2) Comparing with 
the local SA-based results can also provide evidence for global SA results; that is, one can 
judge the local sensitivity of an independent variable by observing the slope of the 
dependent variable against the independent variable. However, some local method-based 
SA results in previous research showed that soil moisture is more sensitive to HH- 
polarized than to VV-polarized backscatter [37]. Nevertheless, most recent global SA 
research reported the opposite results, i.e., soil moisture is more sensitive to VV- than to 
HH-polarized backscatter [26,34,35]. The results presented in this paper showed that soil 
moisture is more sensitive to VV- that to HH-polarized backscatter, which is supported 
by the findings in [26,34,35]. Thus, not all the local methods can be utilized to support the 
results of the global SA methods. 

Here we utilized multiple global SA methods to estimate the parameter sensitivity. 
Since the methods were with different mathematic principles, we can demonstrate that 
the present SA is reasonable if most methods derive the same parameter importance 
ranks. Five methods derived identical parameter importance ranking, enabling a 
reasonable SA result. The derived parameter importance rank is also partly supported by 
the previous findings [26], i.e., surface roughness is the most sensitive parameter to the 
backscatters, and soil moisture stands at the second most sensitive parameter position. 
Parameter (especially the vegetation and empirical parameters in WCM) SIs on VH-
polarized backscatter were estimated, and their ranks were witnessed to be identical 
based on different SA methods. To the best knowledge of the authors, this is the first 
attempt on the global SA of soil, vegetation, and empirical parameters on cross-polarized 
backscatters, so it cannot be validated by using previous references, and application of 
multiple SA methods is a feasible option. Therefore, ensemble application of multiple SA 
methods to estimate parameter sensitivity cannot only test the SA methods themselves 
but also ensure the reasonability and reliability of the SA result through comparison with 
each other. 

4.2. Vegetation Descriptors for WCM 
Describing the backscatter component of vegetation canopy in WCM has long been 

an important research topic in model improvement and application. Various descriptors 
or description schemes are reported, but no consensus has been reached on the best 
descriptor/scheme. The present SA provides a feasible approach to identify the optimal 
descriptor through quantifying the parameter sensitivity. Taking the Park and Bindlish 
schemes as examples, this paper demonstrated that the Bindlish scheme is reasonable to 
describe the vegetation backscatter components, while the Park scheme unreasonably 
exaggerates the effect of particle moisture content on the backscatters at multiple 
polarizations. The reason why we drew this inference is due first to the parameter results 
derived under the Bindlish scheme being partly supported by previous findings in [26,34–
36]. Second and more generally, over bare to vegetated crop field (i.e., VWC ranges from 
0 to 6.0 kg/m2), both soil and vegetation parameters had an equal possibility to affect the 
backscatter at C-band that can penetrate across the canopy and sense the soil surface, i.e., 
the backscatter cannot be controlled only by the vegetation canopy without being affected 
by the soil parameters. Notably, only two description schemes are discussed in this paper, 
which impossibly concluded the best description by exhausting all descriptions. 
However, we provide here an SA-based approach to select the optimal vegetation 
description scheme for WCM. 

4.3. Optimal SAR Configuration for Parameter Estimaiton 
The present SA provides an approach to select optimal SAR configuration for surface 

parameter estimation. In addition to reiterating the previous statement that HH-polarized 
backscatter is better than VV-polarized backscatter in surface roughness retrieval [26,34–
36], this paper also found that the cross-polarized backscatter at incidence angle less than 
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37 degrees was more sensitive than HH- polarized backscatter to surface roughness, 
which indicates that surface roughness can also be estimated by VH-polarized backscatter 
at the smaller incidence angle.  

In retrieval of soil moisture using SAR observations, the local incidence angle is 
usually normalized into a reference angle to improve the performance of the retrieval 
algorithm. For example, Bauer-Marschallinger et al. [38] normalized the local incidence 
angle into 40 degrees, while Zribi et al. [39] normalized the local incidence angle into 30 
degrees. Obviously, it is not clear how to select the optimal reference angle, nor is the 
principle behind the selection of reference angle clear. The SA provides an option to 
address this issue. The presented analysis for the influence of incidence angle on 
parameter SIs demonstrated that backscatters at the smaller incidence angle were better 
than those at the larger incidence angle to estimate soil moisture and surface roughness, 
while those at larger incidence angle were better to estimate VWC and parameter B. This 
observation can be partly supported by findings in [35]. 

4.4. Implication for Backscattering Modeling and Parameter Estimation 
In microwave forward modeling and surface parameter estimation, an SA is an 

important step to understand the mechanism and process of backscattering and/or 
emission. For forward modeling, an SA provides information for the simplification and 
calibration of the backscattering/emission models [25,26]. Through SA, the sensitive and 
insensitive parameters were identified, and their importance was ranked. The sensitive 
parameters that dominate the model behavior should be carefully calibrated or estimated, 
and the insensitive parameters can be fixed as constant, and hence reduce the number of 
the parameters and simplify the model. The presented SA on the coupled Oh–WCM 
model suggests that surface roughness, soil moisture, vegetation water content, and 
empirical parameter B are sensitive to the backscatters and should be carefully estimated, 
while empirical parameters A and α can be set to constant. Moreover, an additional 
suggestion provided by the presented SA for the WCM is the selection of an optimal 
vegetation description scheme. Overall, the presented SA informs the 
calibration/simplification and optimal vegetation description scheme of coupled Oh–
WCM model. 

For parameter estimation, an SA can inform the retrievability of the parameters from 
SAR backscatters. If a parameter is identified as sensitive to backscatters, it can be easily 
estimated based on backscatters. On the contrary, if a parameter is not influential to the 
backscatters, it is hard to retrieve it from the backscatters. The more sensitive a parameter 
is to SAR backscatters, the higher its retrievability. The presented SA not only identifies 
the most influential parameter to backscatters but also the relative sensitivity under 
different vegetation description schemes, incidence angle, and polarization. This can be 
regarded as the relative retrievability from the parameter estimation aspect. 

5. Conclusions 
Enormous efforts have been made to estimate high-resolution soil moisture from 

SAR observations, but there are no SAR-based soil moisture products at global scale 
available to date, partly due to the unavailability of SAR data and partly due to the 
insufficient understanding of the effects of surface parameters on the SAR backscatters. 
The release of Sentinel-1 SAR data has alleviated the issue of data unavailability and the 
introduction of the global SA method to analyzing the sensitivity of bare soil parameters 
on microwave backscatters has improved our understanding of the backscattering 
properties over bare soils. Nonetheless, issues remain regarding the understanding of the 
parameter effects on vegetated surface backscatters and the optimal configuration of the 
SAR for soil moisture retrieval. Thus, this paper presented an analysis to quantify the 
sensitivity of the surface parameters, especially those of the vegetation parameters, on the 
backscatters over the vegetated surface. To comprehensively understand the relations 
between backscatters and vegetated surface parameters, the Oh model was integrated into 
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the WCM. To ensure the reasonability and reliability of the SA, five global SA methods 
were simultaneously exploited. We also identified the optimal vegetation description 
scheme in WCM and optimal configuration (incidence angle and polarization) of Sentinel-
1 SAR for the estimation of surface parameters according to their sensitivity indices. 

Various numerical experiments based on five SA methods were conducted, and an 
improved understanding of the parameter effects on backscatters was drawn. Five 
methods resulted in a fully identical parameter rank, which demonstrated that the SA 
presented here is reasonable and reliable. By comparing vegetation description schemes 
proposed in Park et al. [17] and Bindlish and Barros [8], we found that the descriptor of 
VWC was better than the combination of VWC and particle moisture content for 
describing the vegetation canopy backscatters. Under this scheme, we found that surface 
roughness, soil moisture, VWC, and empirical parameter B were the most sensitive 
parameters on the backscatters. Part of this observation is well supported by the previous 
findings in Ma et al. [26], Bai et al. [34], Zeng and Chen [35]. We also found that soil 
moisture and surface roughness were more sensitive on VV- and VH- polarized 
backscatters at small incidence angles than at larger incidence angles, indicating that they 
can be well estimated by backscatters at smaller incidence angles, while VWC and B were 
more sensitive on VV-polarized backscatter at larger incidence and roughness was more 
sensitive on HH-polarized backscatter at larger incidence. 
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AIEM Advanced Integral Equation Model 
DGSM Derivative based Global Sensitivity Measures 
FAST Fourier Amplitude Sensitivity Test 
IEM Integral Equation Model 
LAI Leaf Area Index 
MSI Main Sensitivity Index 
NDVI Normalized Difference Vegetation Index 
SA Sensitivity Analysis 
SI Sensitivity Index 
SAR Synthetic Aperture Radar 
TSI Total Sensitivity Index 
WCM Water Cloud Model 
VWC Vegetation Water Content 
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