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Abstract: Land surface temperature (LST) is a crucial biophysical parameter related closely to the
land–atmosphere interface. Satellite thermal infrared measurement provides an effective method to
derive LST on regional and global scales, but it is very hard to acquire simultaneously high spatiotem-
poral resolution LST due to its limitation in the sensor design. Recently, many LST downscaling and
spatiotemporal image fusion methods have been widely proposed to solve this problem. However,
most methods ignored the spatial heterogeneity of LST distribution, and there are inconsistent image
textures and LST values over heterogeneous regions. Thus, this study aims to propose one framework
to derive high spatiotemporal resolution LSTs in heterogeneous areas by considering the optimal
selection of LST predictors, the downscaling of MODIS LST, and the spatiotemporal fusion of Landsat
8 LST. A total of eight periods of MODIS and Landsat 8 data were used to predict the 100-m resolution
LST at prediction time tp in Zhangye and Beijing of China. Further, the predicted LST at tp was
quantitatively contrasted with the LSTs predicted by the regression-then-fusion strategy, STARFM-
based fusion, and random forest-based regression, and was validated with the actual Landsat 8 LST
product at tp. Results indicated that the proposed framework performed better in characterizing LST
texture than the referenced three methods, and the root mean square error (RMSE) varied from 0.85 K
to 2.29 K, and relative RMSE varied from 0.18 K to 0.69 K, where the correlation coefficients were all
greater than 0.84. Furthermore, the distribution error analysis indicated the proposed new framework
generated the most area proportion at 0~1 K in some heterogeneous regions, especially in artificial
impermeable surfaces and bare lands. This means that this framework can provide a set of LST
dataset with reasonable accuracy and a high spatiotemporal resolution over heterogeneous areas.

Keywords: land surface temperature; spatiotemporal resolution; heterogeneity; random forest;
image fusion

1. Introduction

Land surface temperature (LST) is a crucial terrestrial geophysical variable that affects
the heat transformation process between the land surface and the atmospheric boundary
layer [1]. Its spatiotemporal dynamics play an important role in impacting the surface
energy balance, soil moisture content, evapotranspiration, and surface thermal environ-
ment [2,3]. As such, continuous spatiotemporal estimation of LST is essential for related
fields of terrestrial surface process on a regional or global scale, such as soil moisture
content monitoring, vegetation evaporation estimation, water and heat flux measurement,
and urban heat island (UHI) monitoring [4].
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Thermal infrared (TIR) technology based on the polar-orbiting satellite observations
provides an alternative method for obtaining LST data at different temporal and spatial
scales [5]. The famous TIR sensors mainly include the Landsat 5 Thematic Mapper (TM),
the Landsat 7 Enhanced Thematic Mapper Plus (ETM+), the Landsat 8 Thermal Infrared
Sensor (TIRS), the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), the Visible Infrared Imaging Radiometer Suite (VIIRS), the Advanced Very High
Resolution Radiometer (AVHRR), and the Moderate Resolution Imaging Spectroradiometer
(MODIS) [6]. However, owing to the trade-off between spatial and temporal resolutions in
TIR sensors, these sensors either provide high-resolution LST data with a longer revisiting
period or low-resolution LST data with a quick revisiting period [7]. For instance, TIR
images of Landsat series sensors can provide some LST images with a spatial resolution
of 60~120 m, but the revisiting cycle is 16 days; in contrast, MODIS LST products have a
1-km resolution, whereas the revisiting cycle is four times per day. Obviously, it is very
difficult to obtain LST with high spatial and temporal resolutions at the same time using a
single TIR sensor [8], which greatly confines potential research in the global environment
and ecology fields. Especially in the research field of agricultural yield estimation, at the
critical crop growth stage, the continuous and rapid monitoring of agricultural drought,
evapotranspiration, and soil heat change urgently requires the LST data at both high spatial
resolutions and short revisiting periods [9–12].

Acquiring the LST with high spatiotemporal resolutions is an urgent task at present.
In recent years, two major categories of approaches have been widely used to cope with
this problem, including the LST downscaling and spatiotemporal image fusion [13]. The
LST downscaling is a simple method to generate high spatiotemporal resolutions LST.
This method is mainly used to sharpen the spatial resolution of low-resolution daily LST
such as MODIS LST. It first aggregates high-resolution LST predictors (e.g., normalized
difference vegetation index, NDVI; surface albedo, α; normalize difference build-up in-
dex, NDBI; normalized difference water body index, NDWI; land surface emissivity, LSE;
land-use/land-cover, LULC; digital elevation model, DEM) to the spatial resolution of
MODIS LST and then uses different statistical regression models to establish a linking
model between MODIS LST and upscaled LST predictors at coarse resolution. Finally, this
constructed regression model is then applied to the initial LST predictors for generating
high-resolution LST by assuming that the regression relationship between MODIS LST and
its predictors is scale-invariant at various resolution scales [14]. Representative methods
include the Thermal sHARPening (TsHARP) algorithm [15], the high resolution urban ther-
mal sharpener (HUTS) algorithm [16], the non-linear DisTrad (NL-DisTrad) algorithm [17],
geographical weighted regression-based (GWR-based) algorithm [6], and the Random
Forest-based (RF-based) algorithm [18]. In contrast, the spatiotemporal image fusion is
a more reliable method than the LST downscaling since it can inherit the spatial image
textures from high-resolution LST, including Landsat LST and the variation information
determined by low-resolution LST images such as MODIS LST from the start time to the
end time [19–22]. However, different from the traditional image fusion methods, such as
the wavelet transform, principal component analysis (PCA), and intensity-hue-saturation
transformation (IHS), this method requires at least one pair of Landsat LST and MODIS LST
images at a base time tb (i.e., the time with the high-resolution LST) and a series of MODIS
LST image at the prediction time tp (i.e., the time without the high-resolution LST) as data
input [23]. Since Gao et al. [24] proposed a spatial and temporal adaptive reflectance fusion
model (STARFM) for detecting the land surface reflectance changes of various land-cover
types, many spatiotemporal image fusion models have been widely proposed to fuse high-
resolution LST time series, such as the spatial-temporal adaptive data fusion algorithm
for temperature mapping (SADFAT) model [19], spatiotemporal integrated temperature
fusion model (STITFM) [21], wavelet artificial intelligence fusion approach (WAIFA) [25],
and deep learning-based spatiotemporal temperature fusion network (STTFN) [11].

However, the LST spatial downscaling can only sharpen MODIS LST when there
are high-resolution LST predictors and has poorer performance when the ratio of the
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fine/coarse resolution is too large [26,27]. The spatiotemporal data fusion method could
produce long time-series LSTs but is limited by the resolution of high-resolution LST [28].
Thus, making full use of the advantages of LST downscaling and spatiotemporal image
fusion to generate LST with high spatiotemporal resolutions has attracted much attention in
recent years. At present, many scholars have developed some hybrid strategies [23,28]. For
instance, Bai et al. [28] used the extreme learning machine algorithm to first downscale the
Landsat ETM+ TIR to 30-m and then used the SADFAT to fuse MODIS LST time series and
the downscaled LST for generating 30-m resolution LST time series. Xia et al. [23] proposed
the regression-then-fusion (RF) strategy, applied the RF algorithm to downscale the Landsat
8 LST data to the 30-m resolution, and then used the downscaled LST as input for the
STARFM to sharpen MODIS LSTs. These methods blend the advantages of regression and
data fusion and present better performances than the first two kinds of methods. In spite
of this, some key issues still need to be fully considered for the hybrid strategy. On the one
hand, due to the large difference in resolution between MODIS LST and Landsat LST, if the
MODIS LST is directly re-sampled to fine pixels within the 100-m range for subsequent
spatiotemporal data fusion, a large amount of LST change information will not be captured.
On the other hand, since the previous hybrid strategies usually employed the STARFM and
SADFAT algorithms that do not fully consider the LST pattern heterogeneity of complex
landscapes to produce the high-resolution LST time-series, the LSTs generated over the
heterogeneous surface usually present out poor accuracy. As a result, it is very necessary
to develop a more effective method to gain accurate high spatiotemporal resolution LSTs
in non-uniform regions.

According to the above statement, the main objective of this study is to develop
a new framework for producing an LST dataset with reasonable accuracy and a high
spatiotemporal resolution. Similar to the RF strategy, the proposed new framework also
will blend the regression-based LST downscaling process and the spatiotemporal image
fusion technology. However, different from the previous RF strategy, this framework will
take into full account the optimal selection of LST predictors, the downscaling of MODIS
LST, and the spatiotemporal fusion of Landsat 8 LST in complex landscapes for maintaining
the accuracy and detailed texture of LST image. As a whole, there are the following two
advantages: (1) it can greatly improve the LST prediction accuracy using the downscaling
of MODIS LST to better capture the change in MODIS LST from basic time tb to target time
tp; and (2) it can acquire fine spatial texture of LST in the heterogeneous landscape using
the flexible spatiotemporal data fusion (FSDAF) algorithm that considers the landscape
heterogeneity of land surface fully.

The rest of this article is organized as follows. Section 2 introduces our study area and
data set. Section 3 describes the establishment process of this framework. Section 4 shows
the results, and Sections 5 and 6 give the discussions and conclusions, respectively.

2. Study Area and Data Collection
2.1. Study Area

A total of two areas with complex landscapes in China were selected as cases in
our study in order to make our framework more representative. Figure 1 presents the
geolocations of the study areas with two LULC maps generated from the global land cover
(GLC) dataset.
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Figure 1. Geographical locations and land-cover maps of study areas (The land cover maps in two
study areas are acquired from the 30-m resolution global land cover dataset).

Study area A is located in Zhangye of Gansu Province in China, which belongs to
the middle reach of the Heihe River Basin. The coordinate range is between latitudes
38◦42′ N and 39◦08′ N and longitudes 100◦08′ E and 100◦41′ E. This region possesses a
temperate continental arid climate type, the annual average temperature is approximately
7 ◦C, and the annual average precipitation is less than 200 mm. The topography is high in
the northeast part and southwest part and low in the central region. From the perspective
of land-cover type, this region is mainly characterized by cultivated lands, deserts, bare
lands, and artificial surfaces. In recent years, with the continuous implementation of the
Heihe Watershed Allied Telemetry Experimental Research (Hi-WATER), this region is
frequently selected as the case to implement the scientific experiments on satellite and
ground observations [22,29].

Study area B is located in Beijing of China, which belongs to the transitional zone
between the North China Plain and the Inner Mongolian Plateau. The coordinate range
is between latitudes 40◦03′ N and 40◦30′ N and longitudes 116◦03′ E and 116◦37′ E. This
region has a warm temperate continental climate type, the annual average temperature is
approximately 10~12 ◦C, and the annual average precipitation is approximately 483.9 mm.
The topography is high in the north part and low in the south part. Regarding the land-
cover type, this region is mainly characterized by artificial surfaces, cultivated lands, forest
lands, and water bodies. Among them, urban artificial surfaces and forest lands are two
kinds of main land-cover types, and they are widely distributed from the north part of the
study area and the south part of the study area, respectively. Because the landscape type of
this region is complex, this study area is of significant meaning for our experiment.

2.2. Data Collection and Image Processing

Since the Earth observation time of Terra and Landsat 8 satellites are similar, this paper
used eight periods of MODIS and Landsat 8 remote sensing images collected in the two
study areas to realize the construction of this framework. Study area A used four periods
of satellite images collected on 5 July 2013, 21 July 2013, 24 July 2014, and 9 August 2014
(Image ID: A1, A2, A3, A4). Study area B used four periods of satellite images acquired on
4 September 2014, 6 October 2014, 12 September 2017, and 28 September 2017 (Image ID:
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B1, B2, B3, B4). All selected satellite images were collected under clear sky conditions, and
Table 1 shows the information of the data set used.

Table 1. The used data set and their main information.

Satellite Data Collection Factors Provided Spatial
Resolution

Temporal
Resolution

Terra/MODIS

MOD11A1 LST, LSE 1-km 1 day
MOD09GQ NDVI, PV 250-m 1 day

MOD09GA NDVI, PV, SAVI, NDMI,
NDBI, BSI, IEI, MNDWI 500-m 1 day

MCD12Q1 LULC 500-m 1 year
Landsat 8 RTU LST product LST 100-m 16 days

ASTER ASTER GDEM longitude, latitude,
elevation, slope, aspect 30-m

(1) MODIS product

The MODIS sensor provided plentiful satellite products for understanding the surface
change at the global scale and has a moderate spatial resolution with daily continuous
global coverage. In this study, the MOD11A1 (collection 6) was used to provide the LST
data, and the MOD09GA and MCD12Q1 were used to extract the candidate predictors.
The MOD09GQ was used to calculate the final predictors for performing the MODIS LST
downscaling. All selected MODIS products were downloaded from the Next Generation
Earth Science Discovery Tool (https://ladsweb.modaps.eosdis.nasa.gov/search/, accessed
on 28 September 2021).

The MOD11A1 includes the pixel-by-pixel LST and LSE with a 1-km resolution in a
sequence of swath-based to grid-based global products, whose LST is derived from the
channels 31 and 32 of MODIS using the generalized split-window algorithm [30]. Previous
studies have indicated that the estimated LST has good accuracy with less than 1.3 K for
most homogeneous surfaces, which has been widely used in LST change analysis [31].
The MOD09GA provides seven bands with 500-m resolution in the Sinusoidal projec-
tion. The MCD12Q1 provides seventeen kinds of land-cover information with a 500-m
resolution each year. The MOD09GQ provides two bands with 250-m resolution in the
Sinusoidal projection.

(2) Landsat 8 product

Landsat 8 data provides eight 30-m resolution visible and infrared bands and two
100-m resolution thermal infrared bands for the Earth’s monitoring, but there is a relatively
long revisiting period of 16 days. In this study, the Ready-To-Use (RTU) Landsat 8 LST
product provided by the Chinese Academy of Sciences was used for helping the spatiotem-
poral fusion of LST and was further used as an actual reference for the evaluation of the
predicted LSTs. The RTU product can be acquired from the DATABANK Remote Sensing
Data Engine (http://databank.casearth.cn, accessed on 28 September 2021).

The RTU LST product is produced with the generalized single-channel (GSW) algo-
rithm and covers China and central Asia. It provides the LST estimate after 2000 [32].
Previous studies have indicated the comparison between the RTU LST product and in-situ
LST measurement in three regions (Xuanwu Lake, Zoucheng, Huairou of China) shows
good accuracy, with an average RMSE of 0.83 K [33]. Thus, it can be ensured the RTU LST
product can reveal the actual distribution condition of LST to some extent.

(3) DEM image

Because the LST distribution also depends on the geographical location and topo-
graphic factors [34], the DEM derived from the ASTER GDEM was collected in this pa-
per to yield five LST predictors: elevation, slope, aspect, longitude, and latitude. In
this paper, the GDEM data were collected from the Center for Earth Observation at

https://ladsweb.modaps.eosdis.nasa.gov/search/
http://databank.casearth.cn
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Yale University (https://yceo.yale.edu/aster-gdem-global-elevation-data/, accessed on
28 September 2021).

The GDEM data were mainly generated from the ASTER sensor onboard the Terra
and has been applied in topography studies from 83◦ S latitude to 83◦ N latitude. It has a
resolution of 30 m with an absolute vertical error of less than 20 m [35].

(4) Image processing

Using the MODIS re-projection tool (MRT), all MODIS products in the HDF-EOS
format were re-projected to the Universal Transverse Mercator (UTM) WGS-1984 projection
and re-sampled to 1-km, 500-m, 500-m, and 250-m resolutions. In addition, for better
matching the geographic location between MODIS product and Landsat 8 product, the
collected MODIS products were all geo-referenced to the locations of the RTU LST products
by selecting control points such as road and river intersections using the image-to-image
module of ENVI 5.3 software.

3. Methodology
3.1. Overview

The proposed framework mainly consists of three steps, including (1) the optimal
selection of LST predictors; (2) the downscaling of MODIS LST product; and (3) the
spatiotemporal image fusion of Landsat 8 LST at tp. For simplicity, we refer to the new
framework as the three-step method for short. The detailed implementation is illustrated
in Figure 2.
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To be specific, in step 1, LST predictors used for downscaling MODIS LSTs are de-
termined according to the variable importance in the RF algorithm. In step 2, to better
capture the change information of MODIS LST from tb to tp, the MODIS LSTs at tb and
tp are sharpened to 250-m by using the RF-based LST downscaling. In step 3, after the
100-m resolution RTU Landsat 8 LST product at tb is obtained, the downscaled 250-m
MODIS LSTs at tb and tp are together imported into the FSDAF algorithm to generate
the 100-m Landsat 8-like LST at tp. Finally, the actual RTU LST at tp is used to evaluate
the predicted LST at tp objectively. For each study area, we used the Terra/MODIS LST
products and Landsat 8 remotely sensed images from the same year with different basic
and prediction times to achieve this framework. One input date pair is regarded as the
base data at tb, while the other is used as the prediction data at tp. Using the proposed
three-step method, we can obtain the Landsat 8-like LST at tp given one LST date pair at tb
and one downscaled MODIS LST at tp. The specific implementation of this framework is
expounded in Section 3.2.

3.2. Construction of the Framework

Step 1: Selection of LST predictors

The choice of LST predictors plays an essential role in implementing the spatial
downscaling of MODIS LST. Since the LST in heterogeneous areas is strongly affected by
various biophysical factors, a large number of predictors associated with LST have been
widely adopted to characterize LST change in previous studies [14]. However, selecting
a number of LST predictors to reveal LST patterns can lead to data redundancy and
multicollinearity among variables. In addition, this process will waste lots of time to
establish the LST downscaling model. Thus, in order to provide a relatively robust LST
downscaling model, this step aims to determine the optimal LST predictors from a number
of auxiliary parameters by reducing the redundancy of relevant factors.

By referring to a large number of studies [8,18,36–41], our study selected a total of fif-
teen parameters significantly correlated with LST as candidate factors to determine reliable
LST predictors. Eight remotely sensed indexes impacting the LST were extracted from the
MOD09GA (i.e., NDVI; percent vegetation, PV; the normalized difference moisture index,
NDMI; bare soil index, BSI; the soil adjusted vegetation index, SAVI; NDBI; integrated
ecological index, IEI; and MNDWI). Five terrain elements that are highly correlated with
LST differentiation were acquired from the GDEM (i.e., elevation, slope, aspect, longitude,
and latitude). The land-cover type that effectively reveals the change in LSTs was acquired
from the MCD12Q1 product. In view of the importance of LSE in the process of LST
retrieval, LSE was also calculated using the NDVI threshold method proposed by Sobrino
et al. [42]. Partial factors were calculated as follows:

NDVI =
NIR− RED
NIR + RED

(1)

SAVI =
(NIR− RED)(1 + 0.5)
(NIR + RED + 0.5)

(2)

PV =

[
NDVI−NDVImin

NDVImax −NDVImin

]2
(3)

NDMI =
NIR− SWIR2

NIR + SWIR2
(4)

BSI =
(SWIR1 + RED)− (BLUE + NIR)
(SWIR1 + RED) + (BLUE + NIR)

(5)

NDBI =
SWIR1 −NIR
SWIR1 −NIR

(6)
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MNDWI =
GREEN− SWIR1

GREEN + SWIR1
(7)

IEI = 1− PC1{[ f (SAVI, NDMI, BSI, NDBI)]}
= 1−

m
∑

i=1
aiPCi (8)

ε =


0.973 , NDVI < 0.05

0.99 , NDVI > 0.7
0.004PV + 0.986, 0.05 ≤ NDVI ≤ 0.7

(9)

where NIR is the near-infrared band reflectance; RED is the red band reflectance; SWIR1
is the shortwave infrared band reflectance in 1.560~1.660 µm; BLUE is the blue band
reflectance; SWIR2 is the shortwave infrared band reflectance in 2.100~2.300 µm; and
GREEN is the green band reflectance. IEI is the integrated ecological index proposed by
Zhu et al. [43], which is calculated using the PCA with SAVI, NDMI, BSI, and NDBI indexes,
and has been normalized to the range of 0~1. PC1 is the first principal component of PCA;
ai is the variance contribution weight of the principal component; PCi is the first principal
component for each ecological factor; and m is the number of surface ecological factors.

Since the multicollinearity has little effect on the predictive ability of the RF regression
model, this article used the variable importance score of each candidate LST predictor to
select the optimal LST predictors [44]: (1) the resolutions of fifteen candidate factors were
resampled to 1 km using the pixel aggregation tool of ENVI software; (2) corresponding
pixels from the 1-km resolution factors and the MODIS LST were selected; (3) after the
outlier removal, RF regression was used to implement the non-linear fitting one-by-one
by removing or replacing certain factor; and (4) after the variable importance of fifteen
factors were all calculated, the factors with a high Gini index were chose to implement
the non-linear regression until the residual up to the minimum; (5) via the incessant tests,
the optimal LST predictors were determined based on the fitting residual of RF regression
model. In this paper, the selected LST predictors were fixed as the PV, elevation, slope,
longitude, and latitude in the end.

Step 2: Downscaling of MODIS LST

Since previous fusion methods usually re-sample the MODIS LST data from 1-km
resolution to the resolution within 100-m for the subsequent spatiotemporal data fusion,
this process will lose detailed spatiotemporal change information of LST. Fortunately,
the Terra/MODIS sensor can provide two kinds of resolutions PV images (i.e., 250-m
and 500-m) every day to assist the downscaling of MODIS LST. Meanwhile, these PV
images have the same instantaneous observation time as MODIS LST images. In our
study, for better capturing the spatial texture information of LST change and enhancing
the performance of LSTs fusion procedures in the following process, we chose the 250-m
resolution PV image derived from Terra/MODIS to sharpen MODIS LSTs from 1-km to
250-m resolutions. This is because that the introduction of a 250-m resolution meets the
requirement that the resolution difference is less than 3~5 times in the spatially non-uniform
surfaces [26] and offers more abundant spatiotemporal change information of LST in the
process of LST downscaling.

In previous MODIS LST downscaling studies, GLR, MLR, and GWR regression models
have been extensively applied to estimate model coefficients and then to predict the high-
resolution LSTs with calibrated parameters and LST predictors [14]. However, under the
assumption that the local atmospheric condition is homogeneous, the physic mechanism
of a linear regression model is very hard to apply in complex regions due to the changes
in land-cover types. Since the RF algorithm has remarkable performance in automatically
settling the non-linear relationship between the LST and its predictors by constructing
and averaging a large number of randomized and de-correlated decision trees [18], in this
study, we used the RF-based non-linear regression model to implement the downscaling of
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MODIS LST. With the selected LST predictors in step 1, the detailed process of the MODIS
LST downscaling is displayed in Figure 2 and is summarized as follows:

(1) The 250-m resolution MOD09GQ product and 30-m resolution GDEM were used
to calculate the selected LST predictors and then were aggregated to 1 km and 250
m, respectively. LST predictors with a resolution of 1 km belong to the MOD11A1
pixel level, and LST predictors with a resolution of 250 m belong to the MOD09GQ
pixel level.

(2) The RF regression model was used to construct the relationship between MODIS LST
and five predictors at the resolution of 1 km, which can be expressed as follows:

LST1km = f (PV1km, elevation1km, slope1km, longitude1km, latitude1km) + ε1km (10)

where LST1km denotes the MODIS LST and is fitted by the RF regression with f as a
non-linear function; f denotes the function between LST and its predictors; PV1km
is the aggregated PV image using the MOD09GQ with the resolution of 1 km; eleva-
tion1km, slope1km, longitude1km and latitude1km are all the aggregated LST predictors
derived from the GDEM with the resolution of 1 km; and ε1km is the residual of RF
regression at a spatial resolution of 1 km.

(3) By assuming that regression residuals are uniformly distributed in space, the ordinary
kriging interpolation were used to interpolate the residual with a 1-km resolution to
250 m.

(4) By assuming that the relationship between LST and its predictors within 1-km reso-
lution is scale-invariant for 250-m resolution, the MODIS LST was sharpened at tb
and tp to 250 m based on the linking model at 1-km resolution and combined with
the residual and predictors at 250-m resolution:

LST250m = f
(

PV250m, elevation250m, slope250m, longitude250m, latitude250m) + ε250m (11)

where LST250m is the downscaled MODIS LST with a resolution of 250 m; PV250m
is the aggregated PV from the MOD09GQ with a resolution of 250 m; elevation250m,
slope250m, longitude250m, and latitude250m are all the aggregated terrain factors derived
from the GDEM with a resolution of 250 m; E250m is the regression residual with a
resolution of 250 m.

Step 3: Spatiotemporal image fusion of LST.

After the MODIS LST products at tb and tp were downscaled to a 250-m resolution,
and the FSDAF algorithm was used to predict the Landsat 8-like LST product at tp in
combination with the RTU LST product at tb. Initially, this algorithm was mainly used to
fuse land surface reflectance with the high spatiotemporal resolutions in heterogeneous
areas using daily low-resolution MODIS surface reflectance and high spatial resolution
reflectance. Later on, many studies also used this algorithm to estimate the other surface
physical parameters (e.g., NDVI and LST). This algorithm makes full use of the image
texture details from the neighboring pixels and effectively considers the abrupt land-
cover type changes in the heterogeneous regions. It requires the same input data as
two widely used spatiotemporal fusion methods, including STAFRM [24] and STITFM
algorithms [21], whereas its prediction performance is more accurate than the STAFRM and
STITFM by uniting the advantages of spectral unmixing analysis and a thin plate spline
(TPS) interpolator [45].

The LST spatiotemporal fusion based on the FSDAF is mainly implemented by using
six steps as follows [45]: (1) classifying the RTU LST product at tb into five main levels
based on the SVM classifier; (2) estimating the temporal change information of each LST
level in the downscaled MODIS LST image from tb to tp; (3) predicting the Landsat 8-like
LST at tp using the class-level temporal change information, and calculating the residuals at
each downscaled MODIS LST pixels; (4) using the TPS interpolation to predict the Landsat
8-like LST at tp from the downscaled MODIS LST at tp; (5) distributing the residuals at each
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pixel of the downscaled MODIS LST using the TPS prediction; and finally (6) acquiring the
prediction image of Landsat 8-like LST using the information in neighboring pixels.

Specifically, the equation used to fuse the Landsat 8-like LST at tp through the FSDAF
algorithm is given as follows:

F̂2(xij, yij, LST) = F1(xij, yij, LST) +
n

∑
k−1

wk × ∆F(xk, yk, LST) (12)

where F̂2(xij, yij, LST) is the final LST prediction value of the target pixel (xij, yij) at tp;
F1(xij, yij, LST) is the LST value of the j-th fine pixel (i.e., Landsat 8 LST) within the coarse
pixel at location (xi, yi) observed at tb; n is the number of similar pixels for (xij, yij) in a
sliding window; wk is the weight for the k-th similar pixel; and ∆F(xk, yk, LST) is the LST
prediction of the total change in a fine pixel between tb and tp.

wk is an important parameter for the spatiotemporal data fusion and is determined by
the spatial distance between similar pixels and the target pixel with:

wk = (1/Dk)/
n

∑
k=1

(1/Dk) (13)

Dk = 1 +
√
(xk − xij)

2 + (yk − yij)
2/(w/2) (14)

where wk is the weight; Dk is a relative distance ranging from 1 to
√

2; (xk, yk) and (xij, yij)
denote the target pixel and similar pixels in a sliding window, respectively; and w is the
size of the neighborhood, which is determined by the homogeneity of the study area and
the size of coarse pixels. The schematic diagram of similar pixels in a moving window is
displayed in Figure 3.
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∆F(xij, yij, LST) depends on the changes in MODIS LSTs from tb to tp, which can be
estimated using the distributed residual r and temporal change information ∆F:

∆F(xij, yij, LST) = r(xij, yij, LST) + ∆F(L, LST) (15)

where r(xij, yij, LST) is the LST residual distributed to the j-th fine pixel; ∆F(LST) is the
changes in LSTs of different LST levels (L) at fine resolution from tb to tp.

Among them, r(xij, yij, LST) can be further described as follows:

r(xij, yij, LST) = m× R(xi, yi, LST)×W(xij, yij, LST) (16)
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where m is the number of fine pixels (also named as subpixels) within one coarse pixel;
R(xi, yi, LST) is a residual term between the true values and temporal prediction of fine
pixels; W(xij, yij, LST) is the weight of residual distribution.

For a more detailed description of the FSDAF algorithm, we can refer to Zhu et al. [45].

3.3. Comparison with Other Methods

For highlighting the proposed framework, three LST prediction approaches were
additionally applied in this study to serve as contrasts: (1) the RF strategy; (2) the STARFM-
based fusion; and (3) the RF-based LST downscaling. These three methods, respectively,
represent the hybrid strategy, spatiotemporal data fusion method, and LST downscaling
method. They all have obvious advantages within their respective fields.

Different from the previous RF strategy, in our study, the RF strategy used the RF
regression model to downscale the MODIS LSTs at tb and tp to 250-m resolution based on
the NDVI, then adopted the STARFM to fuse the downscaled 250-m resolution MODIS
LSTs at tb and tp and the 100-m resolution RTU LST product at tb to generate the 100-m
resolution Landsat 8-like LST at tp. In terms of the operating step, this method is similar to
the three-step method. However, the three-step method adopted the optimal LST predictors
to downscale MODIS LSTs at tb and tp to 250-m resolution, and then used the FSDAF to
fuse the 100-m resolution RTU LST product at tb to generate the 100-m resolution Landsat
8-like LST at tp. Concerning the STARFM-based fusion method, it used the STARFM to
blend the RTU LST product at tb and the re-sampled 100-m resolution MODIS LSTs at
tb and tp for generating the 100-m resolution Landsat 8-like LST at tp. Furthermore, the
RF-based LST downscaling used the RF regression model to downscale MODIS LST from
1-km resolution to 100-m resolution using the selected five predictors derived from the
Landsat 8 PV image and GDEM data. Before all methods were implemented, the RTU LST
product at tb was converted to the corresponding MODIS LST equivalent by establishing
a simple linear transformation relationship between the MODIS LST product and RTU
LST product at a 1-km resolution. This is because the LST images derived from Landsat
8 TIRS and Terra/MODIS differ obviously as a result of the instantaneous time difference
in the local solar time and the sensor configuration of wavelength, signal-to-noise ratio,
and viewing angles.

3.4. Accuracy Assessment

Ideally, to evaluate the performance of the predicted high-resolution LST, in-situ LSTs
or actual LST images with the same resolution should be available as a reference. However,
in practical cases, obtaining sufficient measured in-situ LSTs is very limited. In view of the
higher accuracy of the RTU LST product, we used the RTU LST product at tp as the actual
LST to evaluate the newly proposed framework. The root-mean-square error (RMSE),
relative RMSE (RRMSE), and correlation coefficient (CC) were used as three evaluation
indicators [46]. The RMSE and RRMSE can be used to evaluate the consistency between
the predicted LST (LSTpre) and the true RTU LST product (LSTtrue), and CC can be used
to characterize the spatial similarity degree between the predicted LST (LSTpre) and the
actual RTU LST product (LSTtrue). In ideal circumstances, the closer the RMSE is to 0, the
closer the predicted value is to the actual value; RRMSE well below 0.5 denotes that the
used method is more accurate and reliable; the closer the CC is to 1, and the predicted
image texture details are more similar to the actual image details. These three indices are
depicted as follows:

RMSE = [
1
n

n

∑
i=1

(LSTpre − LSTtrue)
2]1/2 (17)

RRMSE =
RMSE

1
n

n
∑

i=1
LSTtrue

(18)
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CC = 1−

n
∑

i=1
(LSTpre − LSTpre)

2

n
∑

i=1
(LSTtrue − LSTtrue)

2
(19)

where n is the number of pixels in the LST image; LSTpre is the predicted LST; LSTtrue is
the true RTU LST product; LSTpre is the mean of the predicted LST image; and LSTtrue is
the mean of the RTU LST product.

4. Results
4.1. Selection Analysis of LST Predictors

The optimal selection of LST predictors plays an essential role in performing the
spatial downscaling of MODIS LSTs. Taking Image A1 as a case, Table 2 lists the variate
importance of fifteen predictors in the RF regression model. The %IncMSE denotes the
percentage increase in the mean squared error (MSE), and the IncNode Purity denotes the
increase in the tree node purity [18]. For convenient comparison, we also put forward the
integrated contribution index (IC) by calculating the average value between %IncMSE and
IncNode Purity to represent the synthetic importance of each parameter. It is very evident
from Table 2 that, as two important parameters closely correlated with the LST distribution,
PV and NDVI showed high ICs, and their values were 14,997.52 and 11,714.01, respectively.
This is because the natural surfaces covered by large areas of vegetation play an important
role in the regulation of LST by absorbing latent and sensible heat. The elevation impact
on LST was also apparent with an IC of 5412.84 since the elevation presents a negative
relationship with the LST in terrain with many mountainous landscapes [47]. Meanwhile,
the soil dryness degree and soil moisture content impacts on the LST were also crucial,
which can be represented through the bare soil index (BSI) and the soil humidity index
(NDMI, SAVI). However, we found that variate importance was stronger in the aspect and
LULC in terms of the MSE, with values of 1.58 and 2.04, respectively. It seems clear that
the aspect in mountainous areas presented a pronounced impact on the solar illumination,
and the land-cover type had a higher weighting of heat distribution in various areas.

Table 2. Variable importance of each factor in the RF regression for Image A1 (%IncMSE denotes the percentage increase
in the mean squared error (MSE), IncNode Purity represents the increase in the tree node purity, and IC is integrated
contribution index by calculating the average value between %IncMSE and IncNode Purity).

Factors %IncMSE IncNode
Purity IC Factors %IncMSE IncNode

Purity IC

PV 14.855 29,980.19 14,997.52 NDBI 12.62 1942.49 977.55
NDVI 12.48 23,415.53 11,714.01 Slope (◦) 23.13 1735.58 879.36

Elevation (m) 47.51 10,778.17 5412.84 LSE 18.47 1225.81 622.14
NDMI 10.21 8176.55 4093.38 IEI 6.01 1183.08 594.55

BSI 5.42 7164.63 3585.02 MNDWI 15.33 854.29 434.81
SAVI 5.82 4341.67 2173.75 aspect 1.58 561.02 281.30

Longitude (◦) 44.10 3932.90 1988.50 LULC 2.04 45.36 23.70
Latitude (◦) 38.30 3148.78 1593.54

Although the involved predictors have various importance in Table 2, the final selec-
tion of LST predictors mainly depends on the interaction of included factors. In the RF
regression, removing or replacing some factors involved may change the importance scores
because different inter-correlated variables could act as surrogates. Thus, in addition to
referring to the %IncMSE, IncNode Purity, and IC values, the LST predictors need to be
determined according to the regression fitting goodness of the RF model. Via incessant
experiments, this paper selected the PV, elevation, slope, longitude, and latitude as LST
predictors in the end. Similar to previous studies [6,39], the selected predictors had good
representativeness in performing the LST downscaling and were shown to be key factors
affecting LST. This result means that the vegetation biomass has a particularity during
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the LST downscaling. Meanwhile, the spatial configuration of the terrain and geographic
location (i.e., elevation, slope, longitude, and latitude) also played obvious roles in the LST
downscaling since they determined the incident solar radiation that was available to heat
the surface and the area’s exposition to long-wave surface cooling [34].

However, for further discussing the reliability of the selection of LST predictors,
Figure 4a,b also present the impacts of PV, elevation, slope, longitude, and latitude on the
LST downscaling model for Image A1. With the RF algorithm, after the regression relation-
ship between MODIS LST and selected predictors at a 1-km resolution was established,
via assuming that the standard deviations (STD) of five predictors vary from 0.01 to 0.05,
the white noise error with an average value of 0 and an STD of 0.01 to 0.05 was added
to each factor. Then, we input the processed five LST predictors into the established RF
regression relationship and estimated the LST in sequence. Later on, the LST estimated by
corresponding predictors was evaluated using R2 and RMSE by using the original MODIS
LST as actual LST. To improve the modeling accuracy, after the outliers were removed, a
total of 2000 pixel points were used to build the RF regression model.
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As shown in Figure 4, the R2 of five LST predictors presented an overall descending
trend from 0.01 to 0.05 for white noise, and the change values were 0.038, 0.032, 0.019,
0.016, and 0.009 for elevation, PV, longitude, latitude, and slope, respectively. Their RMSEs
displayed an ascending trend from 0.01 to 0.05 for white noise, and the highest RMSE
difference (0.19 K) was found in the elevation. This finding indicates that the RF-based LST
downscaling will generate a pronounced fluctuation if any errors exist in PV and elevation.
Then, a poor estimation will be found in the subsequent fusion of the LST image. However,
it is encouraging for the established RF model that the fitting goodness was acceptable at
different noise situations (R2 > 0.93); additionally, the final LST prediction accuracy was
also within the rational range (RMSE < 1.72 K).

4.2. Accuracy Evaluation of the Framework

Figures 5 and 6 display the visual comparisons of the four 100-m resolution LST images
predicted by the three-step method and three referenced methods with the actual RTU LST
product for Images A1 and B1. Comparing the LST images, all methods can provide the
LST with high spatial and temporal resolutions for the two study areas, but the specific
details are different. The LSTs predicted by the three-step method (Figures 5b and 6b) more
closely resembled the actual RTU LST product, presenting a relatively clear distribution
pattern (e.g., the zoomed-in sub-regions). This indicates that blending the high spatial
reconstruction from the regression and the daily temporal reconveyance from the image
fusion process to predict high spatial and temporal resolution LSTs has obvious advantages.
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Since the STARFM has some limitations in obtaining pure temporal information from the
homogeneous pixels, the RF strategy (Figures 5c and 6c) and the STARFM-based fusion
method (Figures 5d and 6d) showed unsatisfactory smoothing effects in the desert of Image
A1 and the urban area of Image B1. However, the RF strategy was better than the STARFM
fusion in the farmland of Image A1 and the forest of Image B1. In contrast, the RF-based
LST downscaling (Figures 5e and 6e) exhibited the worst performance, showing many
fragmented patches in the desert and cropland of Image A1. At the same time, when the
land-cover type transitioned from one feature to another feature, obvious blocky artifacts
were observed in both areas. Two possible reasons can explain this phenomenon. First,
the RF-based regression process is based on the minimum mean square error. A common
manifestation is that high values tend to be underestimated, and low values tend to be
overestimated [6]. In addition, this phenomenon is caused by the LST variability in the
coarse spatial resolution images, whereas the LST downscaling process of the RF algorithm
does not fully consider this problem. In short, the three-step method showed an excellent
visual agreement with the actual Landsat 8 LST, which also can be found in the frequency
distribution maps of the four predicted LST images.

Figure 7a–c further displays the RMSE, RRMSE, and CC values between the actual
RTU LST product and the LSTs predicted by the three-step method, RF strategy, STARFM-
based fusion, and RF-based downscaling. Low RMSE and high CC values are indicative of
LST prediction of satisfactory quality; the optimal method would result in the RMSE equal
to 0 and CC value equal to 1. Taking study area A as a case, the mean RMSE decreased
from 4.45 K for the RF-based downscaling to 1.89 K for the three-step method, the mean
RRMSE decreased from 0.63 K for the RF-based downscaling to 0.28 K for the three-step
method, and the mean CC increased from 0.828 for the RF-based downscaling to 0.976 for
the three-step method. It is apparent that the RF-based LST downscaling method had the
worst performance in study area A, the STARFM-based fusion method was better than
the RF-based downscaling, and the three-step method and the RF strategy were better
among the four methods. Especially for the three-step method, in Image A1, it had the best
performance for three evaluation indicators: RMSE, RRMSE, and CC, of 1.62 K, 0.18 K, and
0.987, respectively. However, for study area B, the mean RMSE decreased from 3.02 K of
the STARFM-based fusion to 1.30 K of the three-step method, the mean RRMSE decreased
from 1.00 K of the STARFM-based fusion to 0.45 K of the three-step method, and the mean
CC increased from 0.516 for the STARFM-based fusion method to 0.921 for the three-step
method. It is worth noting that, in study area B, the RF-based downscaling presented higher
accuracies than the RF strategy and STARFM fusion method, whereas its accuracy was still
lower than the three-step method. One possible interpretation is that the STARFM performs
poorly in keeping the texture of the LST image in heterogeneous regions (e.g., the urban
area of Beijing) since the STARFM not fully considered land-cover change information. In
contrast, the RF-based LST downscaling better retained the auxiliary information of LST
predictors by constructing and averaging a large of randomized and de-correlated decision
trees. Thus, the MODIS LST downscaling based on the RF regression has been widely used
in previous studies.
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STARFM fusion, (e) the LST predicted by the RF downscaling.

From the above visual comparison and statistical analysis of different methods, an
apparent superiority of the three-step method to other methods in some instances was
observed. This is because the three-step method blended the information of multiple
predicting factors in the downscaling of MODIS LST and also better considered the LST
heterogeneity in the spatiotemporal fusion of LST.
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4.3. Distribution Error Analysis of Predicted LSTs

Taking the predicted LST images in Images A1 and B1 as cases, Figures 8 and 9 also
present the distribution error maps of four predicted LSTs. The distribution error was
defined as the absolute value of the spatial difference between the RTU LST product at tp
and the predicted LST at tp. This indicator can not only better reveal the distribution status
of LST prediction error in the form of images but also reflect the actual size of the LST
prediction error. Prior to the analysis, the distribution error of predicted LST was classified
into five levels: 0~1 K, 1~2 K, 2~3 K, 3~5 K, and >5 K.
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Concerning Image A1, the distribution error of the three-step method was very similar
to that of the RF strategy but observably different in level 4 and level 5. The land-cover types
corresponding to these two kinds of levels were widely covered by impervious surfaces and
sand lands, and they have peculiar thermal conductivity and heat capacity (see rectangle
1 and 2 of Image A1). The STARFM fusion method showed more errors in level 5, whereas
it performed better than the RF-based LST downscaling. Regarding Image B1, the three-step
method occupied the widest error area in level 1, followed by the RF strategy, STARFM-
based fusion, and RF-based LST downscaling. The regions corresponding to level 1 were
mainly distributed in mountainous areas, which were covered by trees (see rectangle 1 of
Image B1). In addition, we found that the three-step method occupied the least error area
in level 5, which was mainly located in the urban area (see rectangle 2 of Image B1).

For the sake of comparison, Table 3 shows in-detail statistics including the area
percentages of these error levels for each method in Images A1 and B1. In Image A1, more
than 43.96% of the study area fell under 1 K for the three-step method and generating the
smallest percentage area in level 5, which was approximately 2.18% of this area. The RF
strategy displayed a similar performance to the three-step method in level 1, with an error
percentage of more than 39% of the area, whereas it had a larger error level (>3 K) than
the three-step method, approximately 13.43% of study area A. In contrast, the STARFM
fusion method performed poorly than the first two methods, with fewer area percentages
in levels 1 and 2. The RF-based LST downscaling generated the most unsatisfactory result
in level 5, displaying the largest error area percentage, approximately 55% of the study area.
Similarly, as for Image B1, the three-step method still performs best, followed by the RF
strategy, STARFM-based fusion method, and RF-based LST downscaling. For the three-step
method, more than 42.30% of study area B fell below 1 K, and a minimum percentage area
of 0.30% is generated outside of 5 K.

Table 3. Area percentage of distribution error for the four predicted LST images at five error levels in
Images A1 and B1 (%).

Image ID Error Levels
(K)

Three-Step
Method RF Strategy STARFM-Based

Fusion
RF-Based

Downscaling

A1

0–1 43.96 39.06 26.86 7.04
1–2 35.12 30.66 25.79 7.78
2–3 14.24 16.80 17.26 9.05
3–5 4.50 9.50 15.05 21.24
>5 2.18 3.93 15.02 54.89

B1

0–1 42.30 43.26 30.05 21.83
1–2 31.65 30.92 25.50 25.88
2–3 16.50 15.76 18.54 24.18
3–5 9.25 9.59 18.16 23.11
>5 0.30 0.47 7.75 5.00

However, due to the surficial property differences, such as the thermal inertia, pyrocon-
ductivity, and vegetation evaporation status, the performance of the proposed three-step
method varies over land-cover types [48]. Thus, Tables 4 and 5 also discuss the mean
distribution errors of predicted LSTs for Images A1 and B1 in five kinds of land-cover back-
grounds. The comparisons in Images A1 and B1 show that all predicted LSTs performed
poorly in the shrub and bare lands with many higher mean errors, whereas they performed
better in the vegetation-covered regions (i.e., cultivated land, forest, and grassland). This
indicates that all methods were suitable for the agricultural lands and forests but were
not applicable to bare lands, especially for the STARFM-based fusion and RF-based LST
downscaling. However, the three-step method still possessed good accuracy than the other
methods in all land-cover types, and the RF-based LST downscaling was unsatisfactory in
these regions. For instance, in Image A1, the three-step method generated the lowest mean
distribution error value (1.84 K) in five land-cover types, and the RF strategy was second,
with a mean distribution error of 2.56 K. The rest two kinds of methods were inapparent,
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but the STARFM-based fusion presented better (with a mean distribution error of 3.31 K)
than the RF-based LST downscaling (with a mean distribution error of 6.27 K).

Table 4. Average distribution errors of the four predicted LST images at five land-cover types in
Image A1 (K).

LULC Types Three-Step
Method RF Strategy STARFM-Based

Fusion
RF-Based

Downscaling
Mean
Error

Cultivated
land 1.36 1.63 2.48 4.36 2.45

Grassland 1.59 2.02 3.91 9.14 4.16
Shrub land 1.62 1.67 2.07 3.40 2.19
Artificial
surface 1.33 1.44 2.30 4.13 2.30

Bare land 3.30 6.07 5.78 10.3 6.36
Mean error 1.84 2.56 3.31 6.27

Table 5. Average distribution errors of the four predicted LST images at five land-cover types in
Image B1 (K).

LULC Types Three-Step
Method RF Strategy STARFM-Based

Fusion
RF-Based

Downscaling
Mean
Error

Cultivated
land 1.24 1.24 1.78 1.58 1.46

Grassland 1.00 0.98 1.83 2.03 1.46
Shrub land 1.07 1.08 1.81 2.66 1.65
Artificial
surface 2.29 2.34 3.07 3.11 2.70

Bare land 1.38 1.62 1.64 2.77 2.43
Mean error 1.39 1.45 2.03 2.43

5. Discussion
5.1. Impacts of MODIS LST Downscaling

In our study, the proposed three-step method combined the advantages of the regression-
based LST downscaling and the FSDAF-based image fusion to generate LSTs with high
spatiotemporal resolutions. Thus, the LST predicted by this new method is largely affected
by the downscaling of MODIS LSTs at tb and tp. Via implementing the forward fusion and
the backward fusion with the data collected in two days in the same year, Figure 10a–d
display the impacts of the re-sampled MODIS LSTs and downscaled MODIS LSTs on the
predicted LSTs for all images. One input date pair is rewarded as the base time data at
tb, while the other is used as the prediction time data at tp. The impact of the re-sampled
MODIS LSTs on the predicted LST at tp can be denoted as the FSDAF-based fusion. The
impact of the downscaled MODIS LSTs on the predicted LST at tp can be represented with
the three-step method. Specifically, taking Figure 10a as a case, the forward fusion means to
predict the LST on 21 July 2013 using the one LST data pair on 5 July 2013 and one MODIS
LST on 21 July 2013. The backward fusion means to predict the LST on 5 July 2013 using
the one LST data pair on 21 July 2013 and one MODIS LST on 5 July 2013.
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It is very evident from Figure 10a–d that no matter what fusion processes were
used to predict the 100-m resolution LST at tp, the three-step method that combines the
downscaling of MODIS LST performed the best all the time. This is since the three-step
method used the 250-m resolution auxiliary MODIS image as an intermediate resolution
to sharpen the MODIS LST from 1 km to 250 m, and then to a 100-m resolution so that
the downscaled MODIS LSTs at tb and tp was more accurate than the result of direct
re-sampling, maintaining a wealth of LST change information from tb to tp. Thus, it can be
seen that, when using the downscaled MODIS LSTs at tb and tp to further fuse the 100-m
resolution LST at tp, the performance of the new framework is more pronounced in contrast
with the FSDAF-based fusion. Accordingly, the downscaling accuracy of the MODIS LST
lays a critical foundation for the final prediction of the 100-m resolution LST at tp; the
higher its accuracy is, the better the predicted LST image is. In addition, from Figure 10, a
prominent finding indicates that, regardless of which methods were applied in predicting
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the 100-m resolution LST at tp, the more accurate the predicted LST at tp is, the better the
fused LST at tp is, especially for the newly proposed method. We found from Figure 10a
that LST RMSEs obviously decreased from 1.62 K of the backward fusion to 1.50 K of the
forward fusion by using Image A1 and Image A2. Regarding the FSDAF-based fusion
method, LST RMSEs decreased from 1.99 K of the backward fusion to 1.75 K of the forward
fusion. This finding suggests that the downscaling accuracy of the MODIS LST at tp is
more important and plays a crucial role in predicting the 100-m resolution LST at tp.

5.2. Advantages and Disadvantages of the Proposed Framework

Similar to the traditional RF strategy, the proposed method is also an RF strategy, and
it blended the spatial downscaling process of MODIS LST and the spatiotemporal data
fusion process of Landsat 8 LST. However, the traditional RF strategy produced the 30-m
resolution LST at tp by downscaling the Landsat LST (~100 m) into high-resolution (~30 m),
and then used the STARFM to fuse the MODIS LST time series and the downscaled LST
obtained [13,28]. The newly developed framework produced the 100-m resolution LST
at tp by downscaling the MODIS LST (~1000 m) into medium resolution (~250 m) and
then using the FSDAF to fuse the low-resolution LST time series and the downscaled LST
obtained. The main difference between the two methods is the downscaling of MODIS
LST and consideration of LST heterogeneity. In addition, for highlighting the importance
of downscaling MODIS LST, the new method does not downscale the Landsat LST from
100-m to 30-m resolutions; thus, the three-step method only derived the 100-m resolution
Landsat 8-like LST.

On the whole, compared with the previous RF strategies, the three-step method has
more evident advantages for predicting high-resolution LST images in regions with strong
spatial heterogeneity. First, the three-step method selected the optimal LST predictors by
using the importance ranking to perform the MODIS LST downscaling so that reducing
the multicollinearity between one and the other variables and improving the velocity of
the model building since the redundant variables will substantially increase the complexity
and computational cost of the model. Second, to capture more detailed change information
of MODIS LSTs from the basic time tb to the prediction time tp, by introducing the 250-m
resolution LST predictors to downscale the MODIS LST, the three-step method effectively
maintained the accuracy of MODIS LST and inherited the texture information of predictors.
Third, by using the FSDAF algorithm, the three-step method can acquire LSTs with more
clear textures in heterogeneous landscapes and predict 100-m resolution LST time series
using daily 1-km resolution MODIS LST products and 100-m resolution Landsat 8 LST data.

Despite these advantages, the three-step method has several limitations. First, for
better capturing the change information of MODIS LSTs from tb to tp, the spatial down-
scaling of MODIS LSTs needs to take twice at tb and tp. This process will take more time
and cause some regression errors. Second, the selection of regression methods plays an
essential role in the MODIS LST downscaling, which determines the texture and prediction
accuracy of LST. Although the new method used the RF regression to build the non-linear
relationship between LST and its predictors, more regression models still need to be con-
sidered in the future because the RF regression is limited by the number of samples to
a great extent [47]. Third, the proposed three-step method only allows for the clear-sky
condition because the thermal infrared signal cannot penetrate through clouds [49–51]. If
we want to obtain the all-weather LST, it should be essential to remove the cloud effect.
Considering that the combination of regression and data fusion has a number of potential
applications in generating fine-resolution LST time series, we will propose some more
accurate strategies for predicting the high spatiotemporal resolution LSTs in the future. A
variety of spatial and temporal fusion models or algorithms could be adopted to enhance
the texture characteristic of LST images, and more effective regression methods or machine
learning algorithms could be used to improve the accuracy of LST downscaling.
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6. Conclusions

By considering the spatial downscaling of MODIS LST and spatial heterogeneity of
LST, this study developed a new framework (i.e., the three-step method) to predict the
100-m resolution Landsat 8-like LST at tp in two areas. Three key points are involved in
this study: (1) the optimal selection of LST predictors; (2) the downscaling of MODIS LST;
and (3) the implementation of the FSDAF algorithm. These processes can better solve
the problems of inaccurate LSTs and unclear image textures and gain more detailed LST
distribution features and more accurate LST values than other methods.

The visual comparison of the predicted LSTs derived from four kinds of methods
indicates that the three-step method performed better than the other methods over hetero-
geneous regions, especially for the regions with relatively high LST variation and spatially
fragmented landscapes, which obviously removed the blocky effect and blurring effect.
With three evaluative indexes, our results presented similar results to the visual compar-
ison, and the three-step method had the best accuracy: its RMSEs varied from 0.85 K of
Image B4 to 2.29 K of Image A4, and RRMSEs varied from 0.18 K of Image A1 to 0.69 K
of Image B2. Additionally, the distribution error analysis indicated that the three-step
method minimized the predicted LST errors at five levels and five kinds of land-cover
types, especially at bare land, with the minimum average distribution error (3.30 K of
Image A1 and 1.38 K of Image B1, respectively). However, behind the use of the three-step
method, there are still some limitations, such as the uncertainty of the LST downscaling
model and the impacts of MODIS LST downscaling on LST prediction. As a result, to
develop some more accurate LST prediction methods, more statistical regression models,
spatiotemporal data fusion algorithms, and study areas need to be considered in the future.
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