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Abstract: Chang’e-5 (CE-5) successfully landed on the young basalts area in the northeastern Oceanus
Procellarum on 1 December 2020. Recent studies on the CE-5 landing area have shown that the
lack of gas-related volcanic morphology indicates that the volatile elements captured in the interior
of the Moon within late-stage magma is relatively low. Typical lunar gas-related volcanic features
include dark mantle deposits, volcanic pits, irregular mare patches and so on. Based on orbital
images, topography, and spectral data obtained from multiple missions restricted by the morphologic
and compositional characteristics of typical volcanic explosive features, this study investigated the
morphological characteristics of the volcanic features in detail and found that there are three dark
mantle deposits (DMDs) near the source area of Rima Mairan that have unusually low albedo and
abnormally high titanium and iron content than those of the surrounding material. Combined with
M3 spectral analysis, it is shown that DMDs contain some volcanic glass components, which indicates
a gas-rich explosive eruption process. In addition to DMDs, irregular mare patches (IMPs) and
a volcanic depression/pit have been recognized in this area, both of which indicate a history of
gas-related volcanic eruptions. Based on this study and combined with past studies, we determined
the volcanic history in the source area of Rima Mairan, including both effusive and explosive volcanic
activities.

Keywords: Chang’e-5; Rima Mairan; dark mantle deposits; irregular mare patches; volcanic glass;
volcanism and thermal evolution

1. Introduction

Chang’e-5 (CE-5) landed in the dark basalts area of Northeastern Oceanus Procellarum
at 23:11 (UTC) on 1 December, 2020 and successfully returned with lunar samples on
17 December. The CE-5 landing area is located at the junction of Oceanus Procellarum and
Sinus Roris, with highlands in the east, Imbrian basalts in the west, and Mons Rümker at
~130 km in the southwest (Figure 1). The absolute model age (AMA) of the P58/Em4 unit
where the CE-5 landing zone located is ~1.3–2.2 Ga, which belongs to the Eratosthenian and
makes the CE-5 landing area as one of the youngest mare basaltic units on the Moon [1–4].
The morphology near the CE5 landing area has been extensively investigated. In addition
to the non-mare domes and the mare domes within Mons Rümker, the other volcanic
features include extensive mare basalts, Rima Sharp, Rima Mairan, and multiple possible
volcanic vents [3,5,6]. The lack of gas-related volcanic morphology indicates that the
amount of volatile elements captured in the interior of the Moon in magma is relatively
low in the area where CE-5 is located [5].

Volatile elements provide insight into planet formation models and play a fundamental
role in planetary evolution through their influence on melting, viscosity, and magma
crystallization [7]. Traditional views believed that the Moon was poor in terms of volatile
components. However, laboratory analyses on the composition of lunar samples have
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shown that lunar volcanic glass and some melt inclusion contains a small amount of
volatile components [7,8]. A widespread occurrence of indigenous magmatic volatiles in
pyroclastic materials sourced from deep lunar interiors have been identified using remote
sensing observations [9]. Although the volatile content in the primitive magma is low,
basaltic eruptions were always accompanied by different degrees of explosive processes
due to the low gravity and vacuum environment of the Moon. These volatile components
are mostly composed of the carbon monoxide (CO) generated at a depth of ~50–300 km in
dikes as well as the water vapor and sulfides that dissolved within a few hundred meters
of the top of the dikes [10,11]. According to the volatile content of the magma, volcanic
eruptions on the moon can be divided into different stages, corresponding to the formation
of various volcanic morphologies [12]. Among them, gas-related typical volcanic features
include dark mantle deposits (DMDs), pyroclastic cones and irregular mare patches (IMPs),
ring-moat dome structure (RMDS), volcanic pits, etc. [12].
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Figure 1. The location of the Chang’e-5 landing area and the spatial extent of this study (dashed box).
The base map is Chang’e-2 (CE-2) DEM data.

Dark mantle deposits (DMD), also known as lunar pyroclastic deposits (LPD), gener-
ally present a dark and smooth surface and are often accompanied by lunar valleys, asym-
metric depressions, or candidate volcanic vents of explosive volcanic origin (e.g., [13,14]).
DMDs can be divided into two types according to their sizes: regional DMD and local
DMD. Reginal DMDs are larger and are formed in long-duration Hawaiian-style eruptions,
while smaller local DMDs result from Vulcanian/Strombolian explosive eruptions [13,14].
DMD material comes from the rapid ascent of the gas-rich primitive magma or late-stage
cumulates. Analyses of lunar samples and remote sensing data both reveal that DMDs
are composed of mafic materials, while they are more volatile-enriched and less fraction-
ated compared to mare basalts. Volcanic glasses, which are often accompanied by DMDs,
come from primary magma or late-stage magma remnants, which make them a probe
for researching the interior of the Moon. Volcanic glasses are therefore of great signifi-
cance when attempting to reveal the origin and evolution of basaltic magmatism on the
Moon. Laboratory sample analysis and remote sensing data interpretation have shown
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that DMDs are mainly composed of iron- and titanium-enriched mafic components coated
with volatile-rich materials, including Fe2+-bearing glass, iron- and titanium-rich glass,
and devitrified beads with a similar composition [14–19]. The samples collected by CE-5
contain some glasses [20], but it is not yet clear whether they are from impact or volcanic
origin. Therefore, it is necessary to conduct research on the related volcanic background.

Isolated elongated, circular, and irregular volcanic depressions/pits usually lack high-
raised crater rims and obvious ejecta, which make them different from impact craters. They
usually exist on the top of the volcanic domes or near the mare volcanic source areas [21].
Their formation mechanism varies and is supposed to be related to late magma retreat,
the collapse caused by gas release at the top of dikes, the collapse of lava tubes, or small
explosive eruptions [21]. Irregular mare patches (IMPs) are special geological features
on the lunar surface that are known for their uniquely shaped mounds and depressions.
The most representative IMP is Ina [22], which is located in Lacus Felicitatis and was first
discovered on Apollo 15 orbital photography. Early on, Ina was believed to have resulted
from the collapse on the top of a volcanic dome [23,24]. In addition to the very typical
morphology of protrusions and depressions, newly acquired high-resolution LROC NAC
images provided chances to recognize that another IMP type that is characterized only by
its irregular depressions and that has an extremely “young” appearance. Scholars have
proposed a variety of explanations for what causes them, including degassing in the past
10 million years [25], lava flow expansion [26], young (within 100 million years) volcanic
events [27], dark mantle deposits [28], and magmatic foam extrusions underlying lava
lakes [29–31].

Based on the volcanic morphologic and compositional features described above, this
study was conducted to investigate the volcanic morphology related to the gas eruption
in the CE-5 landing zone. We found that in addition to the volcanic vents and sinuous
rilles at the southern end of the Rima Mairan [5], there are also some unusual explosive
volcanic features. The appearance of gas-related volcanic morphologies implies a volatile-
involved magmatic history and may help deepen our understanding of late-stage lunar
thermal evolution.

2. Materials and Methods

The Chang’e-2 (CE-2) CCD stereo camera acquired digital orthophoto data (DOM)
and a digital elevation model (DEM) of the whole Moon. The DOM data used in this
study were acquired at an orbital height of 100 km with a spatial resolution greater than
7 m/pixel and an imaging spectral range of 0.45~0.52 µm [32]. Most of the CE-2 DOM
images were taken with an incidence angle greater than 30◦, making the images less
affected by terrain shading effects than images obtained with low sun illuminations and
more able to comprehensively display lunar material information [33]. Because the albedo
of DMDs is usually lower than the surrounding materials, the CE-2 DOM data were mainly
used to recognize and distinguish DMD regions in this study. The CE-2 DEM with a
spatial resolution of 7 m/pixel were used to highlight subtle topography variations within
small volcanic features. We also employed CE-2 DOM images and matching DEM data to
construct the local 3D image of the DMDs to illustrate the surrounding topography.

The multiband imager (MI) is a high-resolution multiband imaging camera with a
spatial resolution in visible bands of 20 m/pixel and a spatial resolution in near-infrared
bands of 62 m/pixel from the 100 km SELENE (KAGUYA) orbit altitude [34]. The MI-
derived titanium distribution map created using empirical Equations (1)–(2) from [35] and
the iron distribution map created using an updated method (Equations (3)–(5)) from [36]
were employed to confine and investigate the compositions of the DMD areas in this study.
The calculation equations for TiO2 and FeO are as follows:

θTi = arctan
(

R415/R750 − 0.208
R750 − (−0.108)

)
(1)

wt% TiO2 = 0.72 × θTi
14.964 (2)
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θFe1 = −arctan
(

R950/R750 − 1.39
R750 − 0.04

)
(3)

θFe2 = 0.06563.6681×θFe1 (4)

wt% FeO = (1.0708 × θFe2)− 0.3986 (5)

Moon Mineralogy Mapper (M3) data cover a spectral range from 0.4 to 3 µm, with a
spectral resolution of 20 and 40 nm [37]. The M3 data used in this study are M3G20090209T0
54031_V01_L2, which were acquired in the optical period OP1B with an average spatial
resolution of 140 m/pixel. M3 data were used to analyze the DMD composition and
to recognize potential volcanic glass signals. Integrated band depths (IBD) of M3 data,
which aim to highlight the spectra shape and absorption center, are often used to display
mineralogical differences across the lunar surface. IBD is sensitive to the composition
and abundance of minerals. The absorption peaks of lunar mafic minerals are mainly
located at around 1 µm and 2 µm. Pyroxenes display strong absorption features both at
1 and 2 µm (e.g., [38–40]). While the olivine has a broad and asymmetric absorption at
around 1 µm, it lacks the absorption at 2 µm (e.g., [38]). Fe-rich glasses show a longer
absorption center at 1 µm and a shorter center at 2 µm compared to pyroxenes (e.g., [41]).
The commonly used false-color parameter map is a composite of an IBD around 1 µm (with
red), an IBD around 2 µm (with green), and reflectance at 1580 nm (with blue). The color
therefore depends on the relative strength of Band I and Band II, with a red hue indicating a
stronger Band I absorption, a green hue indicating a relatively stronger Band II absorption,
while blue indicates that both Band I and Band II have weak absorption. Traditionally,
highlands with weak mafic absorptions are blue, whereas regions rich in mafic minerals are
yellow/green to orange/red, depending on the relative ferrous band strengths resulting
from differences in mineralogy and optical maturity [42]. In this study, we also used the
M3 IBD parameter map to emphasize and distinguish the difference between DMDs and
surrounding materials. The IBD calculation method is slightly different from the traditional
method as a result of the special mineralogical composition of DMD. The calculation
equation of IBD [43] at 1 µm and 2 µm were as follows:

IBD1000 =∑26
n=0

(
R(789 + 20n)

RC(789 + 20n)

)
(6)

IBD2000 =∑42
n=0

(
R(1658 + 20n)

RC(1658 + 20n)

)
(7)

where R is the reflectance at a given wavelength, and RC is the spectral continuum defined
as the straight-line segments that connect the reflectance at 730, 1620, and 2580 nm. In ad-
dition to the calculated IBD parameter map, individual spectral bands were also extracted.
We tried to circle the regions of interest (ROI) in the target areas and achieved averaged
spectra; however, for the places where it is difficult to circle the ROI, we chose the most
distinct pixel to extract the spectra. We removed the spectra that were longer than 2497 nm
to exclude the thermal effect [44] and smoothed the spectrum by means of the 3-point
moving average method to reduce the effect of noise. A fixed straight-line method was
used to remove the continuum of each spectrum, 0.73 and 1.62 µm were used for Band I,
and 1.62 and 2.58 µm were used at the Band II, which was also adopted from [43].

Spectra parameters, specifically the band centers of Band I and Band II, were calculated
to distinguish the composition discrepancy between the targets. Fourth-order polynomials
were employed to fit the continuum-removed spectra around the two absorption bands of
Band I and Band II. The corresponding wavelengths of the minimum polynomials were
then determined to be the two band centers.

LRO narrow-angle camera (NAC) data were used for detailed studies of small volcanic
features due to their high spatial resolution (up to ~0.5 m/pixel) and more variable illumi-
nation conditions [45]. The LROC NAC image was produced from raw EDR (experiment
data record) data through routine process sequences using the USGS Integrated Software
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for Imagers and Spectrometers [46]. The data used in this study include M1119193339RE,
M175576283RC, and M1136846619RC.

3. Results

Based on the morphological and compositional characteristics of the typical gas-
related volcanic landforms described previously, we found that there are some similar
volcanic features near the source area of Rima Mairan within the geologic unit where CE-5
is located.

3.1. The Morphology and Composition of DMDs

Three abnormal patches are distributed along the southern end of Rima Mairan
(Figure 2). They are obvious in the CE-2 DOM image (0.45~0.52 µm) and the M3 2.49 µm
band, which show that their overall albedo is significantly lower than the surrounding
material. The MI-derived titanium and iron content map shows that the TiO2 and FeO
contents in these three patches, which are ~5–10.5 wt% and ~18–20 wt%, respectively, are
higher than concentrations of the surrounding substances. The M3 IBD image shows a
yellow-green color; This is different from the orange-red to purple Eratosthenian basalts,
yellow Imbrian basalts, and the blue highland material, indicating a different mineral
composition. The boundary of these features is relatively fuzzy, but based on multiple data,
we have drawn rough boundaries. From north to south, we refer to these boundaries as N-
DMD, M-DMD, and S-DMD (Figure 2a). All three DMDs are located next to Rima Mairan.
N-DMD is cut by Rima Mairan and is divided into two parts: NE-DMD and NW-DMD.
Among the DMDs, NE-DMD is the largest and displays the most distinct characteristics in
multiple remote sensing data.

Figure 3a–d shows the morphological characteristics of N-DMD. The uplifts on the
left and right sides (annotated by arrows in Figure 3c,d) are kipukas, which are ~20 m and
~40 m higher than the lunar surface, respectively. The kipukas on the right are mantled
with dark substances. The kipuka located in the south of the N-DMD, with a diameter of
~5 km, has an interactive relationship with Rima Mairan, which is not only intersected by
but also is partly covered by the rille, revealing the erosion of the kipukas basement by the
rille and the tectonic collapse of the kipuka material. Rima Mairan flows from south to
north and has a depth of ~50 m; lava accumulates on the west bank of the rille to form a
levee with a height of ~30 m. There is almost no accumulation on the east bank, and the
sinuous rille was directly eroded from the original lunar surface. The size of the NW-DMD
is ~2 × 4 km, and the size of the NE-DMD is ~3 × 6 km. It is speculated that its original
size before being split was ~6 × 6 km, which should be classified to the local DMD.

The areal extent of the M-DMD and the S-DMD is relatively small. The size of the
M-LPD is ~1.5 × 2 km, and the size of the S-DMD is ~1.6 × 2.3 km. They are both cut
by the rille, and their western boundaries share borders with Rima Mairan. No obvious
volcanic vents were recognized. The S-DMD is relatively close to the vents of Rima Mairan,
and there are some irregular depressions located around its range, which we will describe
in detail in Section 3.2. The DEM data show that the three DMDs display no obvious
topographic relief variation compared to the surrounding lunar surface (Figure 3b,d,f,h),
indicating that the thickness of the dark mantling layer is relatively thin.
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Figure 2. The geologic background of the researched area, with white circles denoting dark mantle
deposits (DMDs). (a) CE-2 DOM data: DMDs are abnormally dark. (b) M3 Reflectance at 2.49 µm.
(c) MI-derived FeO content distribution. (d) MI-derived TiO2 content distribution map. DMDs show
higher iron and titanium contents. (e) M3 IBD false-color image. Red for 1 µm IBD, green for 2 µm
IBD, and blue for reflectance at 1.58 µm. The regions rich in mafic minerals are yellow/green to
orange/red, while the highlands are blue. The DMDs display a yellow-green, which is different from
the surrounding materials.
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Figure 3. The morphological characteristics of three DMDs. (a,b) CE-2 DOM image and DEM data
of N-DMD. (c) The profile extracted along the white dashed line in (a). The left-side two red points
refer to the west bank of the rille, while the remnant refers to the east bank. Two uplifts on the two
sides of the rille are annotated by arrows. (d) The three-dimensional topographic map of N-DMD
based on (a,b). (e,f) The morphological characteristics of M-DMD shown in the CE-2 DOM image
and the shaded relief DEM data. (g,h) The morphological characteristics of S-DMD shown in the
CE-2 DOM image and the shaded relief DEM data.

Based on the M3 data and the IBD images, the averaged spectra were extracted from
different ROIs, including Imbrian basalts (Im in purple), Eratosthenian basalts (P40 in
cyan and P58 in pink), highland/kipukas (in blue), and DMDs (in red) (Figure 4). Among
them, the smaller M-DMD and S-DMD may have been greatly affected by mixing from
adjacent materials, so only an individual pixel (red crosses) was selected to extract the
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spectrum. Both the highland and mare materials exhibit the absorption characteristics of
mafic minerals. Among them, the highland materials have the highest absolute reflectance;
their 1 µm band centers (BC1s) are located at ~930 nm, and their 2 µm band centers
(BC2s) are located ~2000 nm, suggesting the existence of low-calcium pyroxene. The
BC1s of Imbrian basalt (Im) are around 1000 nm and the BC2s are shorter than 2200 nm.
The BC1s of the Eratosthenian basalts (P40 and P58) appear longer than 1000 nm, and
their spectra show a slightly weaker 2 µm absorption, with the absorption centers at
2250–2300 nm, indicating a higher abundance of high-calcium pyroxene than the Im basalts.
In comparison, the DMDs show the lowest absolute reflectance. Their spectra have wider
and more asymmetrical 1 µm absorption than the nearby basalts, especially in terms of the
continuum-removed spectra. Moreover, the BC1s of the DMDs are around 1050 nm, while
the BC2s are relatively shorter than those of the Eratosthenian basalts.
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Figure 4. Spectra of DMDs and surrounding materials. (a) The location of the extracted spectra.
(c,b) are the original spectra and the continuum-removed spectra, respectively. The laboratory
spectra of orange (Apollo 17 sample 74220) and green volcanic glasses (Apollo 15 sample 15401) are
also displayed [18,47]. (d) Band center positions at 1 µm and 2 µm extracted from the continuum-
removed Figure 4b. The band positions of low- and high-Ti basalts were extracted from [42] and are
marked using black squares. The band positions of the DMDs marked by black dots were extracted
from [16,43]. The DMDs in this study is located halfway between two populations of orange glasses
(orange area) and mare basalts (pink area).
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3.2. Irregular Mare Depressions
3.2.1. A Depression near South Vents of Rima Mairan

There is a nearly triangular irregular depression with a size of ~0.8 × 1.5 km located
~20 km to the east of the Rima Sharp vent (Figure 5). The profile extracted from the CE-2
DEM data shows that there are no high-raised rims, and its depth is ~20 m. The absence of
uplifted rims and ejecta eliminates impact origin as a possibility. As it is close to the vent, it
is more likely to be a crater of volcanic origin.
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Figure 5. The gas-related volcanic features near the vent of Rima Mairan. (a) The full view of
the location, with black triangle marking the irregular mare patches (IMPs), the white dashed box
marking the location of (b), and the dotted box is (c) and (d) from left to right, respectively; (b) is an
irregular volcanic depression/pit. (c,d) Some IMPs annotated by yellow arrows.

3.2.2. Irregular Mare Patches

Previously, four volcanic vents have been identified in the southern end of Rima
Mairan, named SV1-SV4 from south to north [5]. We found that there are some unusually
bright irregular mare patches (IMPs) there compared on to the surrounding lunar surface
in this area, which makes them look “fresh” and young. The IMPs are tens of meters in size,
and their maximum size is no more than 100 m. The newly recognized IMPs in this study
are located near SV3 and are distributed in clusters along the east bank of Rima Mairan
(Figure 5a). Almost all of them are located at the edge of SV3 and extend southward to the
S-DMD range; most of them are located at the edge of the rille or the rims of impact craters.
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4. Discussion
4.1. Volcanic Glasses within DMD

In this study, four spectra were extracted from three DMDs. Among them, the absolute
reflectance of N-DMD and M-DMD was significantly lower than that of surrounding
materials, which was consistent with the dark properties of the DMDs. While the reflectance
of the smaller S-DMD is relatively high, this could be because it has been contaminated
by surrounding materials. The DMD spectra present a wide and asymmetric shape of
around 1 µm with band centers longer than 1 µm (Figure 4b,c). Previously limited by
the wavelength range of the spectral data, some believe that the asymmetrical spectral
absorption feature seen at around 1 µm is caused by olivine [48,49]. Recent studies based
on spectra data covering the 2 µm band suggest that this absorption feature is more likely
to be due to the mixing of iron-containing volcanic glass and pyroxene [43,50].

In order to further confirm the glass composition, we calculated and plotted the
1 µm and 2 µm absorption centers of the DMD spectra (Figure 4d). In addition to the
spectra chosen in this study, we also displayed the DMDs studied in [16,43], in which the
continuum removal method is the same. The spectra of the green and orange volcanic
glass collected by Apollo 15 and Apollo 17 were also shown in Figure 4c,d [18,47]. Due to
the slight difference in the composition between the green and orange glass, the spectra
display a slight difference: the orange glass has a 1 µm band minimum shifted to a longer
wavelength relative to the green glass, both of which shifted to longer wavelengths relative
to the pyroxenes, and the strength of the 1 µm band is notably stronger relative to the
2 µm band strength for the green glass [43]. The newly discovered DMDs in this study
fall between the mare basalts and the orange glass, indicating that it may be a mixture of
orange volcanic glass and mare basalts. As the N-DMD is the largest, the relative content
of the glass components appears to be the highest, while the smaller M-DMD and S-DMD
tend to be the more affected by the mixing of surrounding mare basalt materials. Apart
from the spectral features, the titanium content derived from the MI data also provides
a good constraint on the orange glasses within the DMDs. Previous studies on pristine
lunar glasses have revealed the large discrepancy in the TiO2 content between green
and orange glasses [51]. The DMDs newly discovered in this study are relatively rich in
TiO2(~5–10.5 wt%) compared to surrounding mare basalts, supporting a possible bearing
of high-Ti orange glass. The presence of volcanic glass indicates that the small DMD in this
study was formed in explosive eruption conditions that were Vulcanian or Strombolian-
style eruptions rather than Hawaiian-style eruptions, which would have produced larger
DMDs. The formation process seen here is that gas accumulated on the top of the dikes,
and when the pressure in the top cavity was large enough to break through the lunar
surface, volatile foam and liquid magma droplets were rapidly ejected outwards and were
quickly quenched to form volcanic glass [10,12,16,21].

4.2. Gas-Related Volcanic Process

The individual volcanic pit/depressions, IMPs, and multiple DMDs distributed near
the source area of Rima Mairan are all gas-related volcanic features, indicating the source of
gas-rich magma in this area. After experiencing the earlier gas release, the volcanic activity
in this area turned from explosive to effusive eruptions and gradually formed extensive
basalt and Rima Mairan. The intersection history of Rima Mairan indicates that the gas-rich
magma eruption occurred before the rille formed, which was earlier than 1.39 Ga [5]. Given
that no obvious volcanic vent was observed, we speculate that the vent may have been
eroded and damaged. Moreover, parts of these DMDs are covered on the Eratosthenian
basalt, and the AMA of the closest mare basalts is ~1.5–2.4 Ga [3]. Thus, the age limit of
the DMDs may be ~1.4–2.4 Ga, indicating that they were formed during the Eratosthenian
period. Most localized DMDs are from the late Imbrian age (~3.2–3.7 Ga) [52–54], which
corresponds to the peak of the volcanic lunar period [55]. However, the DMDs in this study
were possibly formed in the Eratosthenian period, which is similar to the one special DMD
near the Taruntius crater [56]. Previously, laboratory analyses revealed the volatile elements
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trapped in volcanic glasses at several sampling locations. Later, an investigation based on
remote sensing data also confirmed the widespread distribution of indigenous water in
the low-latitude regions of the Moon [9]. As the newly discovered DMDs are similar in
appearance and composition to many typical lunar DMDs, we speculate that there may
also be some volatile elements within the DMDs studied in this paper. Though the DMDs
are small, their existence indicates that late volcanism produced some explosive volcanic
deposits in the Northeastern Oceanus Procellarum, which characterizes the presence of
enough volatile elements in the magmatic eruptions.

Previous studies on IMPs suggest that they may have different formation mechanisms.
This study found that some IMPs are located on S-DMD, while some IMPs are outside the
area of S-DMD. This suggests that the formation of IMPs due to DMDs [28] may not be
reasonable. From the spatial distribution, IMPs are close to the volcanic vents SV3 and
SV4, and they are more likely to have formed as a result of very vesicular lava eruptions
emplacing them under the cooling surfaces of the lava lakes near the vents during the
very last stage of local volcanism [29–31]. This phenomenon indicates that there might
have been a lot of gas-rich volcanic events in the Rima Marian source area during the
waning stage.

Qian et al. [5] suggest that the materials near the CE-5 landing site were mainly
transported from Rima Sharp, while the possibility that Rima Mairan has contributed to
the material near the landing site how not been absolutely ruled out. The DMDs and IMPs
are all located near the source area of Rima Mairan, and a small amount of related material
may have been transported along Rima Mairan to the vicinity of the CE-5 landing site. This
supposition will require the identification and composition analyses of the volcanic glass in
the CE-5 samples. Further analysis of volcanic glass will provide the most direct evidence
for the composition of the magma reservoir.

4.3. The Volcanic History in the Source Area

Near the Rima Mairan source area, there are both explosive and effusive volcanic
activities. Combined with recent research on the volcanic morphologies of the area (in-
cluding Rima Mairan and its associated vents), we drew a detailed geological map of
the area (Figure 6). Following the classification of different stages of lunar volcanic activ-
ity [10,12,21], we summarized the history of the volcanic activity in this area as follows:

(1) At the very beginning of the volcanic period in the south region of Rima Mairan,
the dike had only just reached the shallow lunar crust. Volatile elements gathered at the
top of the dike, and the top gas released over time and formed a volcanic pit/depression;

(2) Some dikes quickly penetrated the lunar surface, with gases enriching their tops,
creating transient explosive Vulcanian/Strombolian-style volcanic eruptions, forming thin-
layered scattered dark mantle deposits;

(3) The volcanic activity gradually increased, and the dike base continued rising
toward the lunar surface, resulting in high-flux Hawaiian-style eruptions. Many volatile-
poor, low-viscosity, and high-flux lava flows continued to erupt, which first filled the nearby
lowlands, and then flowed northward along the terrain. The long-duration erosion created
Rima Mairan. During the continuous extension of Rima Mairan to the north, erosion
destroyed the vents associated with the DMDs and split the N-DMD into two halves;

(4) In the waning stage, the magma flux gradually decreased to a low level, and
the gases gathered at the top of the dikes and dissolved to form magma foam. The
extruded vesicular magma accumulated under a cooling crust around the vent, and subse-
quent external forces, such the impact, events caused the collapse and formed of irregular
mare patches.
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5. Conclusions

The analysis based on CE-2 DOM and DEM data, LROC NAC images, the SELENE MI-
derived titanium and iron content distribution map, and M3 hyper-spectral data, suggests
that dark mantle deposits, volcanic depressions, and irregular mare patches that are all
related to gas eruptions exist at the southeastern end of the basaltic unit where the CE-5
landing area is located.

All of the DMDs were cut by the Rima Mairan, and they clearly formed before the rille.
In addition, part of DMDs became mantled on the late-stage basalt. Therefore, we limit the
age of the DMDs to ~1.5–2.4 Ga, indicating that volcanic explosive eruptions occurred in
the Eratosthenian period. The spectral analysis of the DMDs shows that their 1 µm band
absorption is wide and asymmetric, and the 1 µm and 2 µm absorption centers are closer
to each other compared to the spectra of the basalts. Together with the relatively high TiO2
content within the DMDs, we infer that this refers to the signal of volcanic glass, especially
orange glass.

Many IMPs are distributed along the east bank of Rima Mairan between its vent
and S-DMD, implying the gas-rich magma extrusion in the waning stage of the volcanic
activities within Oceanus Procellarum.

We drew a geological map of this area and summarized the volcanic activity process.
There were both explosive and effusive volcanic activities in this area.
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