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Abstract: Ground-based cloud images can provide information on weather and cloud conditions,
which play an important role in cloud cover monitoring and photovoltaic power generation fore-
casting. However, the cloud motion prediction of ground-based cloud images still lacks advanced
and complete methods, and traditional technologies based on image processing and motion vector
calculation are difficult to predict cloud morphological changes. In this paper, we propose a cloud
motion prediction method based on Cascade Causal Long Short-Term Memory (CCLSTM) and Super-
Resolution Network (SR-Net). Firstly, CCLSTM is used to estimate the shape and speed of cloud
motion. Secondly, the Super-Resolution Network is built based on perceptual losses to reconstruct
the result of CCLSTM and, finally, make it clearer. We tested our method on Atmospheric Radiation
Measurement (ARM) Climate Research Facility TSI (total sky imager) images. The experiments
showed that the method is able to predict the sky cloud changes in the next few steps.

Keywords: cloud motion prediction; spatiotemporal sequence; ground-based cloud images; deep
learning; super-resolution; perceptual losses

1. Introduction

Cloud observations are mainly divided into space-based satellites, air-based radioson-
des and ground-based remote sensing observations. Air-based radiosonde observation has
advantages in detecting the vertical structure of the cloud, but it is difficult to meet the
requirements of actual cloud detection due to its high cost and low detection frequency [1].
Space-based satellite observations cannot provide enough temporal and spatial resolution
for local and short-term cloud analyses in specific areas [2]. The deficiency of air-based ra-
diosonde and space-based satellite remote sensing observation leads to the popularization
of ground-based remote sensing observations, especially cloud image observations, which
can provide strong support for satellite and radiosonde observation. These images are
low-cost and high-resolution, which can provide accurate local sky cloud information [1].

Ground-based cloud images have a wide range of applications in many fields, such as
weather condition monitoring [3], cloud cover monitoring [4], photovoltaic power genera-
tion system [5], remote sensing and atmospheric research, air pollution and prevention [6],
etc. Compared with satellite cloud images, ground-based cloud images have a smaller
observation range and coverage, which can only show sky cloud conditions within a radius
of tens of kilometers of the observation site. However, it includes many cloud details,
which can better reflect the cloud thickness, height, volume and category [7].

Forecast data for the next few moments is often hoped for timely observation research,
so that some targeted operations can be carried out. For example, for photovoltaic power
generation systems, the photovoltaic output slope events caused by the motion of clouds
and the occlusion of the sun require manual intervention by photovoltaic power stations
to compensate. Predicting the occurrence of such events is conducive to improving the
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operation and management efficiency of photovoltaic power stations [8]. Therefore, re-
search on cloud motion and short-term cloud tracking emerged. At present, many research
methods for predicting cloud motion have been proposed. Dissawa et al. [8] proposed a
short-term cloud tracking method based on cross-correlation and the Lukas-Kanade optical
flow algorithm. El Jaouhari et al. [9] proposed a ground-based cloud image omnidirectional
optical flow tracking method. Dissawa et al. [10] proposed cloud motion estimation based
on cross-correlation to predict short-term solar irradiance. In Jamaly’s research [11], quality
control was added to the cross-correlation method and cross-spectral analysis, and the
cloud motion was estimated by analyzing the spatiotemporal correlation of the irradiance
data. The common point of these methods is that they cannot obtain the future cloud state
visually, and the future cloud state is often described by other variables, such as the cloud
motion vector.

Neural network and deep learning are also used in the research of ground-based cloud
images, but in most cases, they are used for cloud recognition and cloud classification [12–16].
In fact, the prediction of cloud motion in a ground-based cloud image can also be directly
obtained from the images generated by the neural network. Since the location of the sky
imager that collected the ground-based cloud images is fixed for a long time, the other
elements of the obtained cloud images remain basically unchanged, except the cloud
motion. Therefore, a deep learning generation model can be established, taking real cloud
images at several historical moments as the input to generate simulated cloud images at
several future moments. In this way, cloud motion prediction is transformed into image
sequence prediction.

In recent years, a variety of algorithms have been proposed for image sequence
prediction. For example, ConvLSTM [17], PredRNN and its enhanced version [18,19],
Cubic LSTM [20], GAN + LSTM [21], DRNet [22], etc. Most of these models have been
tested on the Moving MNIST and KTH datasets and have achieved inspiring results.

However, compared with the Moving MNIST and KTH datasets, cloud motion is more
complex and changeable, whose shape, contour and movement patterns are more difficult
to predict. In addition, ground-based cloud images have a higher resolution than images
such as handwritten numbers, which will cause an unbearable consumption of training
resources. Therefore, it is difficult for a conventional prediction model to complete the cloud
image sequence prediction task separately. In the research of Su et al. [23], a convolutional
network Multi-GRU-RCN was used to predict satellite cloud images. However, their
research only completed the prediction of the next frame of the grayscale image sequence.

Video-related image sequence predictions often have shorter time intervals between
frames [24,25], and the sampling frequency is tens of times per second. The whole sky
imager usually would not set such a high sampling frequency, which would result in
excessive storage requirements. Moreover, the predictions for the subsequent dozens of
moments still stay within the same second, which is too short for other subsequent studies.
The sampling interval of ground-based cloud images is usually set to 30 s [26]. This leads
to a large difference between each frame of the cloud image sequence, which brings greater
difficulties to the prediction.

In this paper, we propose a cloud motion prediction method based on a two-stage
framework shown in Figure 1. We perform a low-resolution cloud motion prediction in the
first stage and retrieve high-frequency components in the second stage. In the first stage,
Cascade Causal Long Short-Term Memory (CCLSTM) is used as the basic prediction model.
It is responsible for the preliminary cloud motion prediction and contour change prediction
at a low resolution. A custom image generation network and pretrained ResNet50 are used
as the super-resolution model in the second stage. They are responsible for reconstructing
the prediction results of low resolution into high resolution and improving the image
quality.
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Figure 1. Schematic diagram of the overall structure of the model. The left side is the prediction model, and the right side is
the super-resolution reconstruction model.

Due to the unpredictability of cloud motion and the pre-downsampling (see Section 2.2),
the result obtained by the CCLSTM can only give a rough contour boundary of the cloud,
which is not conducive to the subsequent feature extraction and prediction work. Therefore,
the super-resolution model is used for fine reconstruction of the prediction results, in which
a loss function is used to supplement the high-frequency components. The details are
provided in Section 3. Compared with the traditional methods based on digital image
processing and cloud motion vector estimation [8–11], the advantages of this method are
summarized as follows:

• Traditional methods mostly use single-channel grayscale images or binary images after
cloud recognition. The prediction results of this method can obtain RGB three-channel
color images, which can be extracted with features such as the red–blue ratio;

• Traditional methods can only predict the direction of cloud motion. This method can
predict the cloud contour changes while predicting the cloud motion trajectory;

• Traditional methods have to perform distortion correction, shading belt filtering and
other preprocessing. In contrast, this method directly obtains the prediction results
without any preprocessing. This is helpful for extracting more features, such as the
reflection intensity of the shading belt to sunlight (the shading belt is not pure black
reflected in the figure) and so on;

• This method can continuously give cloud motion prediction results at multiple mo-
ments, and they all have high reliability.

The paper is organized as follows: Section 2 introduces the necessary preparations
made before the whole model training. Section 3 introduces the construction of the
CCLSTM and its temporary results. Section 4 introduces the super-resolution model
and its effects. Sections 5–7 are the results, discussion and conclusion, respectively.

2. Training Preparation
2.1. Training Image Dataset

The training data was collected by TSI-880 equipment provided by the Atmospheric
Radiation Measurement (ARM) Climate Research Facility. The images were taken at
39.0916◦N, 28.0257◦W: Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal.

From February 17, 2016 to April 29, 2016, a total of 37,540 ground-based cloud images
were selected as a dataset to cover as much as possible the sunny, cloudy, overcast, etc.
images in various time periods from 6 a.m. to 18:00 p.m. at the local time. The number of
images used by each model is shown in Table 1.

Table 1. Number of images of each model dataset. The datasets of SR-Net were selected from the
results of the CCLSTM.

Distribution CCLSTM SR-Net

Training set 18,020 3800
Val. set 680 900

Test and analysis 740 1800
Run for SR-Net 18,200 -
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2.2. Image Preprocessing

Before training, it is necessary to preprocess the original images, as shown in Figure 2.

Figure 2. Region of interest (ROI) extraction and downsampling. This is an image taken by TSI-880, including spherical
mirror sky imaging, shading belt and camera bracket, as well as ground scenery. The content in the red rectangle is what we
need (the region left by clipping, 440 × 440). After clipping, it is downsampled.

First, clip the unnecessary information around, and only keep the smallest circum-
scribed rectangle containing the spherical mirror. Secondly, downsample the clipped
images. The size of the image was clipped from 640 × 480 to 440 × 440. Due to the com-
plexity of image sequence regression and the need to take up large computing resources,
we used pre-downsampling to reduce the scale of the model parameters and the number
of calculations to release a certain degree of GPU memory space. This is conducive to set
more reasonable training parameters, such as the batch size. We tried to downsample the
cloud images to 64 × 64, 96 × 96 and 128 × 128 by bicubic linear interpolation and, finally,
chose a moderate scheme of 96 × 96, which can keep more original image information as
much as possible on the premise of reducing the training cost.

2.3. Experimental Equipment

The model was trained with Intel i7 9700 CPU, RTX 2080 super 8G GPU and 32GB
RAM. The running environment was Windows 10, Python 3.7.7, tensorflow 1.14.0 (A
symbolic mathematics system based on data flow programming), CUDA 10.2 (A computing
platform launched by NVIDIA), cudnn 7.6.5 (A GPU acceleration library for deep neural
networks) and keras 2.3.1 (An open-source neural network library).

3. Prediction Model
3.1. Cascade Causal LSTM

The key of the image sequence prediction is the combination of temporal information
and spatial information. LSTM can transmit temporal information but cannot transmit
spatial information. The Convolutional Neural Network (CNN) can transmit spatial
information effectively, but it is difficult to transmit temporal information. The proposal
of ConvLSTM [17] solved the problem of the combined transmission of temporal and
spatial information to a certain extent. However, its short-term dynamic modeling ability is
insufficient to get better prediction results for complex problems. Therefore, it is necessary
to strengthen the model in terms of short-term dynamic modeling and spatial correlation.

The basic structure of CCLSTM is derived from PredRNN++ [19]. We named it by free
translation. The input information of the CCLSTM is a historical cloud image sequence,
and the sequence length can be determined according to the situation (here, it is 10). It will
output a sequence of future cloud images with a preset length (here, also 10). The causal
LSTM is a cascade structure; it is composed of two structures that process temporal and
spatial information in a series and merge them before transmit to the next cell. Its basic
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cell includes a long-term temporal state Ck
t , a spatial state Mk

t and a current hidden state
Hk

t . Xt is the input information. The subscript t is the time stamp, and the superscript k is
the corresponding number of layers in the network. The unit temporal state Ck

t is jointly
controlled by the forget gate ft, input gate it and modulation gate gt. The cell is shown
in Figure 3. A concentric circle represents the splicing of the multi-dimensional array on
the last dimension, σ is the sigmoid function and the × and + in the circle represent the
multiplication and addition of the corresponding elements of the array.
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Figure 3. Causal LSTM cell.

We use a double-layer 3× 3 convolution filter to replace the single-layer 5× 5 convolution
filter in PredRNN++. The one point in the red circle in Figure 3 is our double-layer convo-
lution filter, which contains the convolution layer, batch normalization layer and Rectified
Linear Unit (ReLU) layer, and its structure is shown in Figure 4. The first convolution layer
of the double-layer convolution filter contains nonlinear ReLU activation, and the second
layer does not, because the nonlinear functions “tanh” and “sigmoid” in the LSTM will be
connected later. The benefits of this are:

• Reduce the parameters of the model with the same receptive field;
• Increase the network depth within a unit and enhance the unit’s fitting ability.
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5 operations in a series, which are Conv3 × 3, BN, ReLU, Conv3 × 3 and BN.

The equations of the Causal LSTM can be presented as follows:

gt = tanh ∗ doubleconv[Xt, Hk
t−1, Ck

t−1] (1)

it = σ ∗ doubleconv[Xt, Hk
t−1, Ck

t−1] (2)

ft = σ ∗ doubleconv[Xt, Hk
t−1, Ck

t−1] (3)

Ck
t = ft × Ck

t−1 + it × gt (4)

g′t = tanh ∗ doubleconv[Xt, Mk−1
t , Ck

t ] (5)
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i′t = σ ∗ doubleconv[Xt, Mk−1
t , Ck

t ] (6)

f ′t = σ ∗ doubleconv[Xt, Mk−1
t , Ck

t ] (7)

Mk
t = f ′t × tanh(doubleconv[Mk−1

t ]) + i′t × g′t (8)

ot = tanh(doubleconv[Xt, Ck
t , Mk

t , Hk
t−1]) (9)

Hk
t = ot × tanh(doubleconv[Ck

t , Mk
t ]) (10)

In the above equations, ×means the multiplication of the corresponding elements in
the multidimensional array, and ∗ in A ∗ B means that function A acts on array B.

While deepening the network, the gradient communication channels also need to be
strengthened. In order to provide a gradient path for the abstract expression of vertical
spatial information, we used a spaced LSTM vertical layer and inserted a gradient highway
unit (GHU) layer between each layer of causal LSTM cells. At the same time, in order to
make the horizontal temporal sequence unit Lk

t receive the gradient of the previous unit
Lk−1

t−1 in the previous layer timelier, we added a jumper between the input and output of
the lower layer GHU. In this way, the useful part of the gradient information can be passed
into Lk

t through only one GHU instead of two. The combination of jumpers is array splicing
and convolution. CCLSTM is an interval structure with a total of 5 layers, and the number
of convolution channels in each layer is set to 64, 64, 32, 32 and 32, as shown in Figure 5.
The dotted line indicates that it is connected to the next-order unit not shown.
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The GHU is shown in Figure 6. One point in the circle represents the convolution and
batch normalization. Double-layer convolution filters are not used in the GHU, because
increasing the unit depth is contrary to the original intention of the gradient highway. σ
is the sigmoid function, and the × and + in the circle represent the multiplication and
addition of the elements at the corresponding positions in the array, respectively.

Figure 6. GHU structure.

The equations of the GHU can be presented as follows:

St = σ ∗ (conv[Zt−1] + conv[Ht]) (11)

Pt = tanh ∗ (conv[Zt−1] + conv[Ht]) (12)

Zt = Pt × St + Zt−1 × (1− St) (13)

Equations of the CCLSTM can be presented as follows:

Zk
t = GHU(Hk−1

t , Zk
t−1) (14)

when k is equal to 1:

H1
t , C1

t , M1
t = CausalLSTM1(Xt, H1

t−1, C1
t−1, ML

t−1) (15)

when k is not equal to 1:

Hk
t , Ck

t , Mk
t = CausalLSTMk(conv[Zt−1, Zt], Hk

t−1, Ck
t−1, Mk−1

t ) (16)

In the above equations, while a variable does not exist, it is regarded as 0, such as X11.
L is the total number of vertical layers. In Equation (15), L is taken as 5.

3.2. Prediction Results of CCLSTM

Figure 7 shows the prediction results of the CCLSTM under various conditions, such
as sunny, partly cloudy, cloudy and overcast. The length of the input sequence and output
sequence are both set to 10. It means that, after inputting historical cloud images with a
total length of 5 min, 10 predicted cloud images with an interval of 30 s in the next 5 min
will be obtained. The batch size and learning rate are set to 8 and 0.002, respectively.
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Figure 7. CCLSTM prediction results under downsampling. The total length of the sequence is 20
(input 10 and output 10), and only the 5th–15th are shown here. Let the current time be t. The left side
of the first row of each sample is the historical cloud images from t-4 to t. The right side is the real
cloud images from t + 1 to t + 5, and the corresponding position of the second row is the prediction
results of the model from t + 1 to t + 5.

Figure 8 shows the changes in the validation set evaluation of CCLSTM and the
original PredRNN++ during the training process. The calculation method of the Mean
Squared Error (MSE) is shown in Equation (17), where n is the total number of pictures in
the verification set, m is the number of pixels in each image and ϕ represents the value of
pixels normalized to “0 to 1”.

MSE =
1
n∑

n

m

∑
i=1

(ϕi − ϕ̂i)
2 (17)

Figure 8. The MSE drop of the validation set during the training process of the PredRNN++ and our CCLSTM.
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Except for the structural adjustment described in Section 3.1, the two models are
consistent in other hyperparameters and dataset distributions. It can be seen that both the
two schemes reach the optimal point at about 50,000 training iterations. Compared with
the original version, CCLSTM has a certain improvement in the decline speed in the early
stage and the optimal results in the later stage. In fact, when the training iterations reach
20,000, the MSE value of CCLSTM on the validation set is already lower than the global
minimum value of the original scheme.

3.3. Ablation Study

We conducted many training attempts for different structures of the model, and the
model with the best overall effect is described in Section 3.1. The remaining models are:

1. The original PredRNN++;
2. The original PredRNN++ with a double number of filters in the convolution layers;
3. CCLSTM with no ReLU activation function between the double-layer convolution

filter compared with the final version;
4. CCLSTM, which does not contain a double-layer convolution filter and jumpers

compared with the final version;
5. A 7-layer structure with 4 layers of Causal LSTM cells interleaved with 3 layers

of GHUs;
6. The original PredRNN++ with the vertical depth increased by one layer.

Taking the Peak Signal-to-Noise Ratio (PSNR [27]) and Structural Similarity (SSIM [28])
commonly used in image comparison and evaluation metrics, the test results of these
models in the test set of 480 various weather conditions are shown in Table 2.

Table 2. The first six rows in the PSNR (dB) and SSIM columns in the table correspond to the above six models, respectively,
and the seventh row is the final scheme. “D” means double-layer convolution filter. “J” means jumpers. The bold numbers
in the table indicates the maximum value of the column.

Sequence t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10

PSNR

Original PredRNN++ 27.035 25.131 24.181 23.491 23.069 22.628 22.451 22.233 22.038 21.854
Original double filters 27.322 25.212 24.185 23.531 23.12 22.933 22.754 22.463 22.248 22.058
CCLSTM no ReLU in D 27.236 25.84 24.645 23.994 23.444 22.956 22.625 22.309 21.982 21.775
CCLSTM no D&J 26.473 25.183 23.854 23.301 22.825 22.549 22.424 22.462 22.157 22.148
Interleaved 7-layers 26.685 24.978 23.59 22.715 22.063 22.637 22.46 22.489 22.396 22.425
PredRNN++ add a layer 27.158 25.809 24.462 23.692 22.844 22.544 22.328 21.905 21.588 21.423
Final CCLSTM 27.377 25.614 24.664 24.102 23.381 23.18 22.81 22.357 22.023 21.671

SSIM

Original PredRNN++ 0.84 0.795 0.763 0.74 0.725 0.714 0.708 0.701 0.696 0.694
Original double filters 0.847 0.797 0.76 0.738 0.722 0.71 0.702 0.697 0.696 0.694
CCLSTM no ReLU in D 0.848 0.804 0.77 0.746 0.731 0.717 0.707 0.701 0.697 0.695
CCLSTM no D&J 0.819 0.777 0.744 0.726 0.71 0.698 0.694 0.692 0.69 0.691
Interleaved 7-layers 0.821 0.775 0.742 0.718 0.706 0.703 0.701 0.702 0.704 0.705
PredRNN++ add a layer 0.843 0.801 0.765 0.74 0.722 0.708 0.701 0.695 0.689 0.686
Final CCLSTM 0.852 0.809 0.775 0.751 0.738 0.729 0.722 0.712 0.708 0.703

It can be seen that, for PSNR, our final scheme (5 layers) obtained the best results at
sequences 1, 3, 4, 6 and 7. The sequences 2 and 5 were slightly weaker than the double-layer
convolution fliter without ReLU, but the gap was not large. This did not rule out accidental
phenomena caused by factors such as model initialization. The prediction results of images
8, 9 and 10 were weaker than the 7-layer interval scheme. This shows that vertically
deepening the network layer and setting the GHU layer in time could help to better carry
out gradient propagation. Of course, it would also increase the consumption of the training
resources accordingly. For SSIM, our scheme had the best performance in the first 9 images,
only slightly weaker than the 7-layer interval structure in the last image. It fully proved
the effectiveness of our gradient enhancement scheme.
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4. Super-Resolution Reconstruction of Predicted Images

In order to reduce the resource requirements for training and the number of model
parameters, the original images were downsampled to 96 × 96 pixels. However, the
prediction results utilizing small size images cannot meet the subsequent research needs.
Therefore, we established a super-resolution reconstruction model to restore the predicted
images to a certain extent.

Although CCLSTM can predict the subsequent displacement and contour of the
cloud to a certain extent, it cannot give a result with a clear cloud boundary (as shown in
Section 3.2). Since the ground-based cloud image is a two-dimensional image displayed
from the ground perspective and does not contain three-dimensional information, it is
impossible to obtain all the data about cloud changes from the image. Therefore, the blur
contained in the output images is actually expected. In addition, the prediction model used
L2 loss to get a better PSNR, which would cause the result to become smooth and increase
the fuzziness of the output images. Therefore, an enhanced model is needed to further pro-
cess the prediction results, supplement the detailed information lost due to downsampling,
clarify the cloud boundary and facilitate subsequent researches, such as feature extraction
for direct normal irradiance prediction and photovoltaic power regression [29].

In recent years, some progress has been made in the methods of making various
kinds of fuzzy images clearer. For example, a generative adversarial network is used
to approximate the super-resolution result of the image [30]. Balakrishnan et al. [31]
mentioned that, through convolution and deconvolution operations, the fuzzy situation
caused by camera shaking can be recovered from the perspective of probability. In the
research of Ye et al. [32], a CNN-based architecture is reported to detect unsharp masking
(USM). Lai et al. [33] proposed a fast and accurate super-resolution based on a deep
Laplacian pyramid network, etc.

Considering the limited computing resources, the super-resolution model in our
research does not have to be too complicated. A model that can complete the established
task is sufficient.

4.1. Super-Resolution Network

For image clarification processing, an image generation model is first required. The
generation model has a total of 10 layers of convolution, of which the first and second
layers use dilated convolution [34]. This is made to expand the receptive field in the
convolution layer closest to the low-dimensional features of the original images. The size
of the convolution kernel is 3 × 3, and the number of convolution filters is 64. The 3rd–8th
layers are conventional convolution, in which the size of the convolution kernel is 3 × 3,
and the number of filters is 64. The ninth layer utilizes sub-pixel convolution [35] to expand
the 96 × 96 feature map to 192 × 192, in which the number of convolution filters is 128, and
it will become 32 channels after convolution. The last layer is also a sub-pixel convolution,
in which the number of filters is 12. After convolution, it will become 3 channels, and the
image size will become 384 × 384. Since image generation is a regression problem, no
activation is set in the last layer. In addition, all the previous layers use LeakyReLU as a
nonlinear activation function. Compared with ReLU, it can solve the problem of CNN node
death in the transformation process. The slope of LeakyReLU on the negative semi-axis is
set to 0.03. The structure of the super-resolution generation model is shown in Figure 9.
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the residual shortcut. The last dark color layer has no activation.

4.2. Perceptual Losses

We tried to use the super-resolution generation network and pixel-level MSE for
resolution restoration, but the results were unsatisfactory, because it would make the
generated images over-smooth. It was proved that using the MSE or Mean Absolute
Error (MAE) as the loss function cannot fundamentally solve the problem of the lack of
high-frequency components of the image. Perceptual loss [36] has been proven to have
a good effect on this issue. Perceptual loss utilizes the feature extraction ability of the
pretrained model to adjust the training direction and retain more detailed features, which
realizes error back propagation by calculating the difference of the feature map between
the generated image and the real image. The deep convolutional network VGG [37] is
commonly used as the pretrained model while training image transfer networks deal with
perceptual loss [36,38–41]. However, from the training results of the ImageNet dataset, the
feature extraction ability of ResNet is stronger than VGG. Considering the complexity of
the model and the number of parameters, we chose ResNet50, which is smaller among the
various ResNets, as shown in Figure 10.

Figure 10. Schematic diagram of perceptual losses. The stacked multi-layer network in the red dashed box is the ResNet50
pretrained on ImageNet. We selected BN1, Add-3, Add-7, Add-13 and Add-16 as the perception layers.
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The inputs in Figure 10 are the outputs of CCLSTM, which have low resolution.
After the Super-resolution Network, they are passed along with the Ground Truths to the
pretrained ResNet50. Then, some feature map errors are added into the model loss to help
train the Super-resolution Network.

For the selection of the perceptual loss feature layer, we used the superimposed layer
after the last layer of residual blocks at each scale of the feature map. This was to make the
features of each scale as high-dimensional as possible. Since L2 loss is more susceptible to
differences in the sample distribution, we used the 1-norm as the error distance evaluation
standard for each perceptual layer. Suppose that the layer name of the selected feature map
block is i, ϕ represents the elements in the feature map block whose Channels, Height and
Width are C, H and W respectively. Then, the perceptual losses can be expressed as:

PLossi(ŷ, y) =
1

C× H ×W ∑
blocki

∣∣∣ϕpred
c,h,w − ϕtrue

c,h,w

∣∣∣ (18)

The total loss can be expressed as:

Loss(ŷ, y) = ∑
img

∥∥∥ytrue − ypred

∥∥∥2

2
+ ∑

i
ri × PLossi(ŷ, y) (19)

where ri is the weight of each perceptual layer.
We set the learning rate to manually drop to make the model training converge. The

rate of decrease is half of the previous one every 10 epochs.
The error of the output sequence of the prediction model increases gradually from

t + 1 to t + 10. For super-resolution reconstruction, there is no correspondence between
the input low-resolution image and its ground truth, and the error increases with time.
Furthermore, the super-resolution reconstruction model has no inferential ability (or very
weak), and artificially adding some inferential concepts would disturb the fitting direction
of the model. Therefore, we take all the outputs of the optimal prediction model obtained
from the validation set as the training set of the super-resolution reconstruction model. The
prediction outputs obtained in this way have correct cloud contours and blurring caused
by the pixel-level L2 loss, which meets the requirements.

4.3. Ablation Study of Loss Function

The training data is the 3800 prediction model results containing various cloud con-
ditions and their corresponding real cloud images selected from the super-resolution
reconstruction model training set mentioned in Section 4.2. The input size is 96 × 96, and
the output is 384 × 384. The ground truths are also rescaled to 384 × 384.

We have made several attempts on the super-resolution model. The tests are as follows:

1. Use the pixel-level MSE as the loss, no dilated convolution and no perceptual loss;
2. Use the L2 perceptual loss, no dilated convolution and all r are taken as 0.05;
3. Use the L1 perceptual loss; no dilated convolution and the values of r2, r3, r4 and r5

are 0.08, 0.04, 0.02 and 0.01. r1 = 0;
4. Use the L1 perceptual loss; no dilated convolution and the values of r1, r2, r3, r4 and

r5 are 0.04, 0.02, 0.01, 0.01 and 0.05;
5. Use the L1 perceptual loss; no dilated convolution and the values of r1, r2, r3, r4 and

r5 are 0.002, 0.005, 0.01, 0.02 and 0.04;
6. Use the pixel-level MAE as the loss, with dilated convolution and no perceptual loss;
7. Use the L1 perceptual loss, with dilated convolution and the values of r1, r2, r3, r4

and r5 are 0.04, 0.02, 0.01, 0.01 and 0.005.

The results of these tests are shown in order in Figure 11.



Remote Sens. 2021, 13, 3876 13 of 17

Figure 11. The results of the above several attempts and their partial enlargement: (a) test 1; (b) test 2; (c) test 3; (d) test 4;
(e) test 5; (f) test 6; (g) test 7.

It can be seen from the comparison of Figure 11:

• Comparing (a) with (f), for the carefully selected dataset, the difference between the
MSE loss and the MAE loss is not big, and the addition of the dilated convolution
makes the result slightly improved;

• Compare (a)/(f) with other results with added perceptual losses; a pure pixel-level
loss will cause the result to be too smooth;

• Comparing (d) with (g), using dilated convolution to increase the receptive field helps
to improve the image quality in some subtleties;

• Compared with (d) and (e), the increasing and decreasing of the perceptual layers’
weights will bring different degrees of the grid effect. The greater the weight used by
the deeper layers in the perceptual model (ResNet50 here), the more serious the grid
effect. The severity of the grid effect in the figure is (e) > (b) > (c) > (d) > (g), which is
consistent with the selection of r in each plan.

The final choice of r is: r1 = 0.04, r2 = 0.02, r3 = 0.01, r4 = 0.01 and r5 = 0.005. It was
based on a comprehensive assessment of perception and experience. It should be noted
that, for other different datasets or input and output images of different sizes, the above
selection of r may not be optimal.

4.4. Super-Resolution Results

Figure 12 is a schematic diagram of the results of the super-resolution model. In order
to facilitate the arrangement, images of the different sizes were linearly scaled.

It can be seen from the figure that the original prediction results can restore detailed
information to a certain extent after being enhanced by the super-resolution model. At the
same time, compared to before the super-resolution, the clouds in the subsequent images
are more solid, the edges are clearer and the surrounding scenes such as the shading belt
can also be better restored. This is beneficial to other follow-up studies, such as cloud cover
monitoring and calculation of the influence of cloud location on solar scattering radiation,
etc. It also proves that the final output of the model cannot be affected by the surrounding
scenery (no matter what the scenery is); it has a certain degree of robustness.
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Figure 12. The results of the reconstruction model. (a) The real cloud image at time t; (b) the real
cloud image at time t + 1; (c) the ground truth of the prediction model’s input after downsampling at
time t + 1; (d) the prediction results at time t + 1 before super-resolution; (e) the prediction results at
time t + 1 after super-resolution.

5. Results

The final results are obtained after super-resolution reconstruction of all the prediction
results in Section 3. The time step in the sequence is 30 s. Figure 13 shows the predictable
situations and one kind of unpredictable situation of cloud motion.
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As shown in Figure 13, t is the current moment, and the green dashed circle indicates
that the prediction results are basically correct in response to the real cloud motion. On the
contrary, the red dashed circle shows that the cloud motion was not successfully predicted.
The PSNR and SSIM of every image in the sequence are shown in Table 3.

Table 3. PSNR (dB) and SSIM of the results in the test set.

Sequence t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9 t + 10

PSNR (dB) 27.436 25.687 24.84 23.985 23.442 22.928 22.848 22.316 22.034 21.763
SSIM 0.837 0.807 0.785 0.744 0.74 0.732 0.724 0.707 0.702 0.7

6. Discussion

In Figure 13, the cloud moving through the shading belt is difficult to be well-predicted
(as shown at t + 5 and thereafter). This is because the shading belt has caused great
interference to the actual expression of cloud motion, which is equivalent to a forced
gradient disappearance. Cloud formation and extinction occurs frequently during cloud
movement, which is particularly serious for small, thin clouds. Therefore, the model cannot
determine the state of the clouds when they pass through the shading belt. Experiments
show that the model tends to determine the cloud has disappeared.

In addition, under certain circumstances, the input cloud images with similar states
may have different fitting targets, resulting in uncertainty of the prediction results. This
situation is one of the difficulties in cloud motion prediction and will have a negative
impact on the prediction accuracy.

Besides, the wind speed levels can also affect the prediction accuracy. The higher the
wind speed, the smaller the number of predicted sequence images that can guarantee a
certain accuracy.

In short, in the case of a low wind speed, our model can give relatively correct motion
trajectories and contour changes for most clouds that are not affected by factors such as the
shading belt.

7. Conclusions

In this paper, we proposed a cloud motion prediction model based on deep learn-
ing. To solve the problem of excessive consumption of training resources, we proposed
a solution by down-sampling prediction and super-resolution reconstruction. We op-
timized the model structure of the prediction part and added the loss functions of the
reconstruction part.

Compared with the methods of calculating cloud motion vector on binary image, we
realized the color cloud image extrapolation without ground scenes removal and distortion
correction, obtained continuous sequence images and got relatively accurate results.

Although we improved the over-smoothing problem caused by the pixel-level MSE
loss during super-resolution reconstruction, aiming to obtain more high-frequency informa-
tion, there is still a gap between the final reconstructed result and the real image. Further
research is needed to compensate for the lack of image high-frequency components. We
also tried to use Generative Adversarial Networks (GAN) to compensate for the high-
frequency components of the prediction results, but the current results achieved are not
satisfactory. Meanwhile, the GAN methods also bring up some disputes, such as whether
the high-frequency information generated by GAN is credible and whether it is beneficial
to other subsequent research on predicted cloud images, etc.

In brief, it is still a very difficult task to accurately predict the motion of sky clouds
relying on ground-based cloud images. To achieve more accurate predictions, more com-
prehensive information is needed, such as a high-altitude real-time wind field, upper air
temperature variation data and 3D fine modeling of sky clouds. In future research, we will
try to introduce new atmospheric physical quantities and add new model structures to get
better results.
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