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Abstract: Existing airborne SAR autofocus methods can be classified as parametric and non-parametric.
Generally, non-parametric methods, such as the widely used phase gradient autofocus (PGA) algo-
rithm, are only suitable for scenes with many dominant point targets, while the parametric ones are
suitable for all types of scenes, in theory, but their efficiency is generally low. In practice, whether
many dominant point targets are present in the scene is usually unknown, so determining what
kind of algorithm should be selected is not straightforward. To solve this issue, this article proposes
an airborne SAR autofocus approach combined with blurry imagery classification to improve the
autofocus efficiency for ensuring autofocus precision. In this approach, we embed the blurry imagery
classification based on a typical VGGNet in a deep learning community into the traditional autofo-
cus framework as a preprocessing step before autofocus processing to analyze whether dominant
point targets are present in the scene. If many dominant point targets are present in the scene, the
non-parametric method is used for autofocus processing. Otherwise, the parametric one is adopted.
Therefore, the advantage of the proposed approach is the automatic batch processing of all kinds of
airborne measured data.

Keywords: synthetic aperture radar (SAR); autofocus; motion compensation (MoCo); motion error;
deep leaning

1. Introduction

Different from the spaceborne synthetic aperture radar (SAR) [1–6], airborne SAR is
frequently affected by atmospheric turbulence, and thus, its flight trajectory may deviate
from a pre-planned straight-line trajectory [7–10]. Therefore, combining motion compen-
sation (MoCo)/autofocus processing for airborne SAR imaging [11–14] is necessary. In
many cases, the motion compensation technique combined with the inertial navigation
system (INS) and/or global position system (GPS) data cannot meet the expected accuracy
requirements because the aircraft may not be able to carry enough high-precision INS/GPS
equipment [15–17]. Consequently, the autofocus technique based on radar raw data needs
to be implemented in airborne SAR imaging.

Generally, SAR autofocus methods can be classified as being parametric [18–20] or
non-parametric [21–25]. The main principle of the parametric method is to model the
motion error as a polynomial model with several parameters and then to estimate the
parameters of the model according to some criteria. The criteria mainly include contrast
optimization (CO) [19], minimum entropy (ME) [20], and sharpness [26], among which the
ME criterion is the most widely used. When the motion error is more complex, a higher-
order polynomial model is required, so the efficiency of the parametric method is usually
low in the case of high accuracy requirements. As the non-parametric method does not need
to model the motion error, its efficiency is relatively high. However, the non-parametric
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ones usually estimate the motion error by extracting the phase or phase gradient directly
from the radar data, so it requires many dominant point targets in the scene. Otherwise, it
leads to an unbearable estimation error. In summary, the latest literature shows that the
current state-of-the-art autofocus methods still have some shortcomings, that is, they can
not guarantee efficiency and accuracy at the same time.

From the perspectives of autofocus accuracy, first, and efficiency, second, when the
scene contains many dominant points, we should choose the non-parametric method to
achieve autofocus processing to improve efficiency. On the contrary, we should choose
the parametric one to ensure accuracy. However, in actual data processing, we usually do
not know whether many dominant point targets are present in the scene in advance so
we cannot determine which autofocus algorithm should be chosen. To solve this problem,
this paper proposes an airborne SAR autofocus approach combined with blurry imagery
classification. Blurry imagery classification based on a typical VGGNet [27] is embedded
into the traditional autofocus framework as a preprocessing step before autofocus process-
ing. By using this preprocessing step, the type of scene can be automatically determined
before autofocus processing. If no dominant point targets are present in the scene, it is
regarded as the first kind of scene and the parametric method is used for autofocus pro-
cessing. Otherwise, it is regarded as the second kind of scene, and the non-parametric one
is adopted.

In some latest reports, deep learning has been applied to the ISAR imaging com-
munity [28–31], but these state-of-the-art methods cannot be used for SAR autofocus
processing because they mainly aim to enhance the imaging performance of ISAR sparse
imaging. As far as we know, there is no public report on how to integrate deep learning
with SAR autofocus processing as well as blurry imagery classification.

The rest of this paper is organized as follows. In Section 2, we discuss the existing
problems of current autofocus algorithms and the motivation of our approach. The pro-
posed approach is detailed in Section 3. In Section 4, the processing results of real data are
provided to validate the effectiveness of the proposed approach. The conclusion is drawn
in Section 5.

2. Problem Formulation and Motivation

Autofocus processing is a core step of airborne SAR data processing. We summarize
the applicable conditions from standard autofocus methods, as shown in Table 1. In theory,
non-parametric methods, such as the dominant scatterer algorithm (DSA) and widely used
phase gradient autofocus (PGA) algorithm, can estimate any form of motion error but
they need to lay out corner reflectors in the scene in advance or many dominant point
targets are present in the scene. They may not be suitable for evenly distributed scenes,
such as grasslands and deserts. The CO/ME algorithm in parametric methods adopts
the criterion of optimal image quality, which is suitable for all kinds of scenes in theory.
However, it needs polynomial modeling for the motion error and iterative search, and
thus, its efficiency is usually low. Although the MapDrift (MD) algorithm does not need
iterative processing and its efficiency is usually higher than that of the CO/ME algorithm,
it is difficult to estimate the high-frequency motion error. In summary, we can see that
the parametric and non-parametric methods each have advantages and disadvantages.
Therefore, for different types of scenes, we need to use different autofocus algorithms,
which makes the current airborne SAR data processing not universal and unable to achieve
the batch processing of airborne SAR data.

We present the autofocus results of two sets of airborne SAR data, as shown in
Figures 1 and 2. We can see that the accuracy of the non-parametric method is low in the
case where the intensity distribution of the targets is uniform (e.g., fewer dominant point
targets) (see Figure 1a). For the scenes with more dominant point targets, its accuracy
is higher (see Figure 2a). In contrast, the parametric method has a higher accuracy for
both types of scenes (see Figures 1b and 2b), but its efficiency is far lower than that of the
non-parametric one. Therefore, in general, when many dominant point targets are present
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in the scene, a non-parametric method is recommended in terms of efficiency and accuracy.
When few dominant point targets are present in the scene, using the parametric one to
ensure accuracy at the expense of partial efficiency is recommended. Therefore, in practice,
the automatic classification of blurry imagery before autofocus processing is required to
determine which autofocus algorithm should be adopted. For this purpose, we divide the
blurry imagery into two categories. One does not contain dominant point targets (called
scene type #1 in the following), and the other is with dominant point targets (called scene
type #2 in the following).

Table 1. Comparison of parametric and non-parametric autofocus methods.

Autofocus Methods Applicable Conditions

Non-parametric methods DSA Corner reflectors
PGA Dominant points

Parametric methods MD Low-frequency motion error
CO/ME Non-real-time processing

Figure 1. Autofocus imageries of scene type #1 by the non-parametric method (a) and parametric method (b).

Figure 2. Autofocus imageries of scene type #2 by the non-parametric method (a) and parametric method (b).

3. Autofocus Approach Based on Blurry Imagery Classification

The flowchart of the proposed autofocus approach based on blurry imagery classi-
fication is presented in Figure 3. The first step is to obtain the coarsely focused imagery
through SAR imaging processing. The range migration algorithm (RMA) is used as the
standard imaging algorithm. After that, we introduce the blurry imagery classification into
autofocus processing as a pre-processing, which is different from the traditional autofocus
algorithm. The classification of blurry imagery adopts the popular deep learning approach,
and the learning network adopts the typical VGGNet [27]. Finally, when the blurry imagery
is classified as the scene type #1, the ME algorithm as a parametric method is applied for
autofocus processing. On the contrary, if the blurry imagery is classified as the scene type
#2, the non-parametric one is adopted (the widely used PGA algorithm is adopted in this
article). The proposed approach is detailed in the following.
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Figure 3. Flowchart of the proposed autofocus approach.

3.1. Imaging Processing

First, before the classification of blurry imagery, one needs to use the standard imaging
algorithm to obtain the coarsely focused imagery, namely, blurry imagery. The standard
frequency-domain imaging algorithms mainly include the range-Doppler algorithm and
chirp scaling algorithm [32], which are more efficient than the wavenumber-domain al-
gorithms, but they are only suitable for the broadside mode or small squint angle case.
The RMA and polar formation algorithm (PFA) belong to the wavenumber-number algo-
rithm [33,34]. They are suitable for the case of large squint angles. Due to the assumption
of wavefront curvature, PFA is generally only suitable for small-scene imaging. Therefore,
RMA is adopted as the standard imaging algorithm in this article.

It should be pointed out that in the case of large motion error and/or large squint
angle, RMA can introduce a serious defocusing in the range direction [33,34]. The influ-
ence of range defocusing on blurry image classification is not considered in this article.
Therefore, the method proposed in this article is based on the assumption of broadside
mode. Futhermore, if the motion error is too large, azimuth defocusing will be too serious,
which may lead to wrong classification of blurry imagery. Therefore, this article also needs
to use INS/GPS data with certain accuracy to roughly compensate the radar raw data.

3.2. Blurry Imagery Classification

After applying the standard imaging algorithm (i.e., RMA) to radar raw data, we
obtain the blurry imagery. The imaging scene types are divided into two categories, as
shown in Figure 4. The purpose of this section is to classify arbitrary blurry imagery
accurately to determine to which scene type it belongs. Currently, the deep learning
network has been widely used in image classification, so we use this type of approach
to classify blurry imagery. Due to the robustness of VGGNet in image classification,
VGGNet [27] is used as the learning network. It should be noted that the SAR imagery
without autofocus processing usually has different degrees of defocusing and that the
defocusing degree is unknown. Therefore, to increase the robustness of the imagery
classification learning network, imageries with different defocusing degrees are added to
the training data, as shown in Figure 4.

In addition, the imageries used for network training are usually small. For example,
the pixels of the imageries for training are 512 × 512, but the actual blurry imagery may
have much more pixels (e.g., 8192 × 8192). One solution is to reduce the pixels of the
large imagery to the same size as the training imagery by downsampling processing and,
then, to input the downsampled imagery into the network for classification. However,
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because the actual large imageries are very complex, if the downsampled imagery is directly
input into the classification network, it may not achieve the classification effect (shown in
Section 4). To solve this problem, we divide the large imagery into several small imageries
(no overlapping between the imageries) with the same size as the training imageries. After
all of the small imageries are input into the classification network, each small imagery
corresponds to a classification result. Some small imageries may be classified as scene
type #1, while the remaining small imageries are classified as scene type #2. To ensure the
robustness of the algorithm, a suitable threshold should be set carefully. If the proportion
of all small imageries classified into the scene type #1 exceeds this threshold, this large
imagery is regarded as scene type #1. Otherwise, it is considered scene type #2. The
discussion of the threshold is presented in Section 4.

Figure 4. SAR imageries of two kinds of scenes with different defocusing degrees. The first row corresponds to scene type
#1, and the second row corresponds to scene type #2. The defocusing degree increases from left to right.

3.3. Autofocus Processing

Through the classification of blurry imagery, if it is classified as scene type #1, the
parametric method should be applied for autofocus processing. This article uses the image
quality optimization algorithm based on the ME criterion. Of course, we can also use other
criteria, such as CO or sharpness. The estimation of motion error parameters based on ME
criterion can be solved by

_

A = arg min
A
{E(G(k, n))}, (1)

where E(·) donetes the entropy value of the focused imagery G(k, n). (k, n) represents the
index of the range and azimuth sampling points. A is the parameter set of the motion error
to be optimized. The expression of the entropy value is given by

E = ln S− 1
S ∑

k
∑
n
|G(k, n)|2 · ln |G(k, n)|2, (2)

where S = ∑
k

∑
n
|G(k, n)|2.

If it is determined as scene type #2, the widely used PGA algorithm is used in this
article. In the standard PGA algorithm, the phase gradient is estimated by the maximum
likelihood (ML) estimator, which is given by [35]

∆̂̇ϕ(tn) = arg

{
N

∑
k=1

G(k, n + 1) · G∗(k, n)

}
. (3)
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where N denotes the number of seleted range cells.
It should be pointed out that the above blurry imagery classification and autofocus

processing are only applicable to spotlight mode and cannot be directly applied to stripmap
and other imaging modes. To make the proposed approach suitable for all modes, one can
easily introduce the azimuth sub-aperture technique widely used in traditional autofocus
processing. For each sub-aperture, we use the processing flowchart shown in Figure 3.
After obtaining the motion errors of all sub-apertures, one can integrate all of the azimuth
sub-aperture motion errors to obtain the motion error of full-aperture data and finally carry
out MoCo and iterative processing.

4. Processing Results of Real Data

Here, we use the processing results of real data to verify the blurry image classification
and autofocus processing.

4.1. Classification Verification

Since the imagery before autofocus processing is usually blurry or defocused, we
usually classify blurry imageries. Before blurry imagery classification, we need to use a lot
of training data to train VGGNet. First, one needs to build the training dataset. Usually,
the defocusing degree of blurry imageries is unknown in advance, so we need to generate
a large number of blurry images with different defocusing degrees. There are about 7000
imageries for both types of scenes. To achieve this, we use several well-focused SAR
imageries to generate imageries with different defocusing degrees by introducing different
phase errors in the unfocused domain. It should be noted that the introduced phase error
should be a form of higher-order polynomials. However, to simplify the process of blurry
imagery generation and considering that the quadratic phase error is the main component,
we only introduce a pure quadratic phase error. Figure 4 shows partial datasets of two
kinds of scenes with different defocusing degrees. Eighty-five percent of the generated
datasets is randomly selected as the training set and fifteen percent is selected as the
validation set. The two types of scenes are extracted independently. The imageries in
the training and validation dataset are acquired from an X-band radar system working in
sliding spotlight mode. The carrier frequency is 8.9 GHz and the resolution is 0.12 m.

It is worth mentioning that, during the production of the training data, we judge
the scene type through our experience. For example, no obvious dominant point targets
are present in the imageries of the first row in Figure 4, so it is determined to be of scene
type #1, while dominant point targets can be seen in the imageries of the second row, so
those are regarded to be of scene type #2. For the training of the learning network, the
cross-entropy criterion is selected as the loss function and the activation function is the
“Relu”. The hyperparameters of the network are that the batch size is 32, the learning
rate is 0.0001, the epoch is 10, and the solving algorithm is Adam. Based on VGGNet16,
Figure 5 shows the loss function and accuracy varying with the training epoch. The results
indicate that the accuracy of the training set can reach 99.5% after 10 epoch training. Finally,
we input the validation set into the network for accuracy test, and its accuracy reached
99.7%. We know that different network layers will have different learning results, so we
next compare VGGNet13 and VGGNet16.
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Figure 5. Loss function (a) and accuracy (b) of the training and validation data varying with the epoch.

4.2. Autofocus Verification

Additionally, ten different large imageries are used to verify the effectiveness of the
proposed approach. VGGNet13 and VGGNet16 are quantatively compared and analyzed.
These ten imageries and the imageries in training dateset are acquired from different radar
systems. As shown in Tables 2 and 3, imageries 5©, 6©, 7©, and 9© are obtained by a Ka-band
radar operating in sliding spotlight mode. The carrier frequency is 35 GHz, the resolution is
0.2 m, and the imagery size is 3584 × 512. Imageries 1©, 2©, 3©, 4©, and 8© are obtained by a
Ku-band radar operating in spotlight mode. The carrier frequency is 16 GHz, the resolution
is 0.1m, and the imagery size is 18,432 × 2048. Imagery 10© is obtained by a Ku-band radar
operating in stripmap mode. The carrier frequency is 16 GHz, the resolution is 0.6 m, and
imagery size of 9557 × 1024.

Their actual type is shown in the second row in Tables 2 and 3, which can be easily
determined by the PGA autofocus results of the ten large imageries. If defocusing occurs
in the imagery, it is determined to be of scene type #1. Otherwise, it is of scene type #2.
As mentioned previously, because the ten imageries are much larger than the imageries
for training, one can resize the large imageries to small imageries directly through the
downsampling processing, and the classification results are shown in the third row in
Tables 2 and 3. One can see that imageries 1©, 4©, and 6© are incorrectly classified. Further
analysis found that scene type #2 is easily incorrectly classified after downsampling, while
the imageries for scene type #1 are all classified correctly. The reason for this is because the
downsampling processing may make the dominant point targets in scene type #2 weaker.

Alternatively, we first divide the large imageries into small imageries with a size of
512 × 512. Then, for each large imagery, their small imageries are all put into the network
for classification and the output results are statistically analyzed, which are shown in the
fourth and fifth rows in Tables 2 and 3. Using imagery 1© as an example and based on
VGGNet16, among the 144 small imageries, 95 belong to scene type #1 and 49 belong to
scene type #2. As mentioned previously, with a given threshold, we can determine to
which category the large imagery belongs. As shown in Table 3, if one sets the threshold
as 98% (e.g., 98% of the imageries are judged to be of scene type #1), imageries 8© and 10©
are classified incorrectly (the sixth row in Table 3). If the threshold is 96%, imagery 10© is
classified incorrectly (the seventh row in Table 3). If the threshold is set as 94%, all ten large
imageries are classified correctly (the eighth row in Table 3). Consequently, the threshold
should be set carefully. By comparing VGGNet13 with VGGNet16, one can see that when
the threshold is set as 94%, imagery 10© is wrongly classified by VGGNet13 as shown in
Table 2. Therefore, VGGNet16 can achieve a higher accuracy.
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Table 2. Classification results of ten large imageries based on VGGNet13. The wrong classification are marked in red.

SAR Imagery 1© 2© 3© 4© 5© 6© 7© 8© 9© 10©

Actual Type #2 #1 #1 #2 #1 #2 #2 #1 #2 #1
Downsampling

processing #1 #1 #1 #1 #1 #1 #2 #1 #2 #1

Ratio of type #1 91/144 144/144 143/144 110/144 7/7 3/7 1/7 139/144 0/7 33/36
Ratio of type #2 53/144 0/144 1/144 34/144 0/7 4/7 6/7 5/144 7/7 3/36

Type by our method (98%) #2 #1 #1 #2 #1 #2 #2 #2 #2 #2
Type by our method (96%) #2 #1 #1 #2 #1 #2 #2 #1 #2 #2
Type by our method (94%) #2 #1 #1 #2 #1 #2 #2 #1 #2 #2

Table 3. Classification results of ten large imageries based on VGGNet16. The wrong classification are marked in red.

SAR Imagery 1© 2© 3© 4© 5© 6© 7© 8© 9© 10©

Actual Type #2 #1 #1 #2 #1 #2 #2 #1 #2 #1
Downsampling

processing #1 #1 #1 #1 #1 #1 #2 #1 #2 #1

Ratio of type #1 95/144 143/144 143/144 109/144 7/7 3/7 2/7 139/144 2/7 34/36
Ratio of type #2 49/144 1/144 1/144 35/144 0/7 4/7 5/7 5/144 5/7 2/36

Type by our method (98%) #2 #1 #1 #2 #1 #2 #2 #2 #2 #2
Type by our method (96%) #2 #1 #1 #2 #1 #2 #2 #1 #2 #2
Type by our method (94%) #2 #1 #1 #2 #1 #2 #2 #1 #2 #1

After the ten imageries are classified, one knows which type of method should be
used for autofocus processing. If it is determined to be of scene type #1, the ME algorithm
is applied for autofocus processing. If it is of scene type #2, the PGA algorithm is used. If
the threshold is set as 94% and VGGNet16 is adopted, all the large imageries are classified
correctly. In this condition, we next compare the autofocus results of the traditional methods
and the proposed approach for the ten large imageries. Figure 6 presents the imageries
before and after autofocus processing of imageries 5© and 6©. Figure 7 presents partially
enlarged imageries of those in Figure 6. From Table 3, the two imageries are classified as
scene type #1 and scene type #2 using our approach, respectively. Therefore, if the PGA
algorithm is applied to both imageries, the autofocus quality of imagery 5© is low. In
contrast, the two imageries can be focused well using our approach.

Finally, we quantitatively evaluate the autofocus results based on the entropy crite-
rion for the ten large imageries. The formula of entropy function is shown in (2). The
quantitative results are shown in Table 4. It is obvious that, for the ten large imageries, the
autofocus quality of our approach is no worse than that of the PGA algorithm. It is worth
mentioning that, if the ME algorithm is adopted for the ten large imageries, the autofocus
quality for all imageries is all high but the efficiency is very low. Therefore, through the
preprocessing of blurry imagery classification, we can choose the appropriate autofocus
algorithm according to different scene types, avoiding the problem of poor precision in
non-parametric autofocus for scene type #1 or avoiding the problem of low efficiency in
parametric autofocus methods for scene type #2. The proposed approach combined with
blurry imagery classification can achieve better autofocus accuracy and efficiency.

Table 4. Quality quantitative evaluation of the ten large imageries based on the entropy criterion. The threshold is 94% and
VGGNet16 is adopted.

Entropy Value

SAR imagery 1© 2© 3© 4© 5© 6© 7© 8© 9© 10©

No autofocus 12.85 13.44 13.46 13.06 13.04 12.35 12.04 13.46 12.28 12.90
PGA autofocus 12.70 13.46 13.46 12.97 13.06 12.27 11.98 13.46 12.05 12.91
ME autofocus 12.72 13.33 13.35 12.97 13.01 12.29 11.99 13.40 12.14 12.86

Proposed autofocus 12.70 13.33 13.35 12.97 13.01 12.27 11.98 13.40 12.05 12.86
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Figure 6. Autofocus imageries of imageries 5© and 6©. No autofocus (a,d), PGA autofocus (b,e), the proposed approach
(c,f).

Figure 7. Enlarged autofocus imageries of imageries 5© and 6©. No autofocus (a,d), PGA autofocus (b,e), the proposed
approach (c,f).

Finally, we dicuss the time-consumption. Compare to the non-parametric and paramet-
ric algorithms, the proposed method adds a preprocessing step (i.e., imagery classification),
and most of its time-consumption is the training process of the network. Therefore, as long
as the network training is completed, the test takes a short time. Using imagery 5© as an ex-
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ample, a time-consumption comparison is performed. After testing, the time-consumption
of the PGA and ME are 126.9 s and 494.5 s, respectively, while the imagery classification
based on VGGNet16 takes only 2.96 s. The experimental environment is as follows: image
classification network is based on tensorflow-gpu2.3 version and the used GPU is NVIDIA
TITAN RTX. For the ME and PGA methods, MATLAB R2018a based on CPU is adopted
and the CPU is Intel Xeon Gold 6234.

5. Conclusions

In this article, a SAR autofocus approach based on blurry imagery classification is
proposed. This method embeds blurry image classification as a preprocessing step in tradi-
tional autofocus processing. Through this preprocessing, the scene type before autofocus
processing can be determined to automatically determine whether to use parametric or
non-parametric methods. By using this approach, the capability of the batch processing
of airborne SAR data can be improved. The blurry imagery classification is based on a
typical VGGNet in a deep learning community. The imagery classification performance
based on VGGNet13 and VGGNet16 are compared and indicates that a deep layer could
slightly improve the classification accuracy. The effectiveness of the method is verified by
the processing results of the real airborne SAR dataset.

Some points needing attention are that this article needs the support of INS/GPS data
with certain accuracy to ensure that the azimuth defocusing is not too serious. Besides,
the influence of range defocusing on imagery classification is not considered and thus the
assumption of broadside mode is adopted in this article, so the imagery classification of
largely squint mode needs further study. Deep learning is only introduced into blurry
image classification and the traditional autofocus method is still used for radar motion
parameter estimation. The radar parameter estimation for SAR autofocus based on deep
learning may be an important development direction in the future.
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