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Abstract: Landslides threaten more than before the urbanized areas and are a worldwide growing
problem for the already affected communities and the local authorities committed to landslide
risk management and mitigation. For this reason, it is essential to analyze landslide dynamics
and environmental conditioning factors. Various techniques and instruments exist for landslide
investigation and monitoring. Out of these, Multi-temporal Synthetic Aperture Radar Interferometry
(MT-InSAR) techniques have been widely used in the last decades. Their capabilities are enhanced
by the availability of the active Sentinel-1 mission, whose 6-day revisiting time enables near real-time
monitoring of landslides. Interferometric results, coupled with ground measurements or other
approaches such as numerical modeling, significantly improve the knowledge of the investigated
surface processes. In this work, we processed the C-band SAR images of the available European
Space Agency (ESA) satellite missions, using MT-InSAR methods to identify the surface deformations
related to landslides affecting the Ias, i Municipality (Eastern Romania). The results (i.e., velocity maps)
point out the most active landslides with velocities of up to 20 mm/year measured along the satellite
Line of Sight (LOS). Following, we focused on the most problematic landslide that affects the T, icău
neighborhood and is well-known for its significant implications that it had. To better understand
its behavior and the sensitivity of the displacements to the environmental factors (i.e., rainfall), we
carried out 2D numerical modeling using a finite difference code. The simulated displacement field
is consistent with the InSAR displacements and reveals the most active sectors of the landslide and
insights about its mechanism.

Keywords: slow-moving landslides; MT-InSAR; permanent scatterer interferometry; C-band SAR
data; slope displacements; numerical simulations; finite difference method; T, icău landslide
(Ias, i; Romania)

1. Introduction

The human impact, through topographic and hydrologic modifications, is a triggering
and preparatory factor for landslides. At the same time, as landslides evolve, they will
control human activities, and a feedback loop will occur. Landslides limit and interfere
with the infrastructure development, utility networks or may obstruct the expansion of
urbanized areas. In the worst-case scenario, they destroy and inflict damages to buildings,
infrastructure, and city heritage [1] and generate substantial economic losses [2–7]. Many
sensing techniques, tools, and instruments are developing to detect, monitor, and analyze
landslide processes. The Multi-temporal Interferometric Synthetic Aperture Radar (MT-
InSAR) techniques are one of them, and more and more, they are used to investigate
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landslide hazards. The reliability and consistency of their results make them a great source
of information for supporting decision-making policies for landslide risk and management.

Differential SAR Interferometry (DInSAR) techniques use radio’s microwave proper-
ties to estimate the rate of ground displacement with millimeter accuracy. The measurement
of relative surface displacement between two SAR acquisitions, calculated as the distance
difference between a satellite antenna and ground objects, is recorded as the phase shifting
of the backscattered echo [8–10]. The exploitation of the signal’s phase property over a
specific area results in the generation of an interferogram [8,11]. The interferogram rep-
resents a matrix of numerical values corresponding to phase variations, usable for the
generation of Digital Elevation Models (DEMs) [12–14] or the detection of ground surface
changes [10,15,16]. The working principle of DInSAR to quantify the displacements relies
on the removal of topographic influence out of the original interferogram by using a DEM.
More comprehensively, the backscattered signal is the sum of many contributors whose
effects have to be considered and removed to isolate the displacement fringes. Besides
the displacement component and topography, the interferometric phase is also subjected
to the atmosphere’s influence, the geometric and temporal decorrelations introduced by
possible orbital errors, and the phase noise [11,17–20]. In the last two decades, different
sophisticated algorithms that consider more than three SAR acquisitions to calculate and re-
move such influences were developed. Although they have different strategies to estimate
the displacement component, these multi-temporal interferometry techniques [21] such as
Permanent Scatterer Interferometry (PSI) [22,23] and Small BAseline Subset (SBAS) [24]
can overcome the DInSAR limitations and provide millimeter accuracy measurements over
a long period. Hence, their potential to investigate landslides rapidly increased, not only
for landslides mapping and monitoring their behavior and dynamics but also for detecting
early failure indicators [18,21,25–47].

The use of numerical simulations for landslide investigation aims to appropriately
determine the stability conditions of the slope and its potential failure mechanisms [48].
Identifying the factors that destabilize the slope and lead to the triggering of a possible
event can be used to assess and mitigate the hazard. Accordingly, effective policies and
strategies may be proposed and implemented to stabilize the displaced material [49–51].
Numerical modeling of slopes makes use of mathematical equations to solve the mechanical
response of the unstable mass. Regardless of the employed technique, i.e., Finite Elements
(FE), Discrete Elements (DE), or Finite Difference Method (FDM), these approaches focus
on deformation analysis as well as the safety factor of the slope [48].

Many studies integrate MT-InSAR techniques and numerical modeling due to their high
effectiveness in monitoring and investigating the state of landslides dynamics [46,52–54].
Using both approaches is highly beneficial as they allow us to evaluate and monitor the
landslide activity over large areas and, additionally, to perform fast investigations of
specific cases where fast-paced evolving surface deformations are detected. The outcome of
MT-InSAR techniques consists of deformation velocity maps and displacement time series.
Each measurement quantifies, with millimeter accuracy, the change of the distance between
sensor and target in the satellite Line Of Sight (LOS). Thus, the MT-InSAR outputs provide
information about the surface velocity and the extent of the process. At the same time,
the simulations can evaluate multiple failure scenarios to explain the material’s physical
behavior of the observed displacements. Their capabilities are proven to work not only in
the study of landslides but also in other fields such as dam monitoring [55] and mining
activities [56,57]. Even though these two complementary techniques are employed more
and more in the study of earth surface deformations, they are primarily used in areas
supported by lots of in situ data [53,55,58,59]. In contrast, their use in regions lacking
ground measurements is still challenging and not yet fully exploited.

This study firstly uses the MT-InSAR techniques to identify the critical areas within
Ias, i Municipality showing landslide-related deformations. Further on, we focus on the
T, icău landslide, one of the active landslides that affect the residential neighborhoods. The
challenging part of the investigation is related to the lack of in-situ data required to model
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the behavior of landslide material. To understand its failure mechanism and dynamics, we
set up a two-dimensional Finite Difference section along the slope and run several scenarios
which potentially describe the observed deformations and pattern. Lastly, we analyzed
the simulations and the MT-InSAR results, the velocity maps, the displacement time series,
and the magnitude of displacements to point out the landslide body’s active and most
dangerous parts and support the proposed sliding mechanism and the geomorphological
landslide type.

2. Study Area

The Municipality of Ias, i (91.5 km2) is the most important city of the north-eastern
part of Romania (Figure 1). This area is constantly facing landslide-related deformations
being not only one of the landslide hot-spots of the nation [60], but it is recognized at
the European scale as well [61]. In the northern part of the city, the terrain morphology
is characterized by gentle hillslopes and cuesta landforms with elevations of 200–220 m
asl. In contrast, a hilly morphology defines the southern side with steep escarpments and
higher altitudes of up to 404 m asl.
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The morphology of the Ias, i area developed on a monoclinic geological structure [64–66]
under the migration and incision of Bahlui River and its tributaries towards the south,
which generated asymmetric hills and structural valleys [67–69]. The present-day mor-
phostructure, particularly the lithology, coupled with the small depths of the phreatic
level and springs [70], serves as key-conditioning factors for landslide reactivations. The
lithology consists of claystones and mudstones interbedded with sandy layers deposited
during the Middle Miocene [65,71,72]. In the southernmost part of the area, where the
elevations are higher than 320 m asl, a caprock of calcarenites, oolitic calcarenites, and
quartz arenites interbedded by sands and claystones outcrops [65,71–73]. Overlaying these
deposits is a 40 m thick layer of sand. The above described geological formations are
covered on ridges and gentle hillslopes by quaternary deposits consisting of fluvial gravels
and clays with varying thicknesses from 2 to 5 m, and loess that measures up to 25 m in
some cases [70,74,75].

The dry climate is specific for the area and has mean annual rainfall values of
560 mm/year [76]. Rainy periods were recorded (Figure 2) in 1920–1950 and 1960–2000, a
situation which might indicate a 30-40 years humid cycle separated by shorter dry peri-
ods [77]. These rainy periods caused the increase of the groundwater table, favoring the
occurrence of landslides [77–79].

The slopes are shaped by landslides [80–82] which might reactivate after rainfall
events, particularly during the spring season [62,77]. Many cases of landslide reactivations
were reported by various authors [62,78,79,83,84] or by local authorities and mass media, as
they repeatedly damaged the residential buildings, road network, and utility infrastructure.
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Figure 2. Mean annual rainfall measured at the Iaşi meteorological station (1921-1955 data from [85], and 1961–2018
data from ECA&D [86,87]). The red line indicates the polynomial loess smooth trend with a 0.5 span. At the bottom are
represented the landslide events in the Municipality of Iaşi as reported by [77,79]. (high-resolution image available at
https://doi.org/10.6084/m9.figshare.14915148.v1).

The slope investigated in detail (Figure 3) was affected by a relevant landslide reacti-
vation in the spring of 1942. More than 350 houses were destroyed by the event, along with
the road network. The event created the main scarp of 6–7 m in height and about 800 m in
length [78]. Downslope, the material reached the Cacaina River floodplain and generated
typical morphology with mounds and micro depressions of 1–2 m of height difference,
out of which spring waters emerged more than one month after the event. The triggering
factor was the prolonged rainfall, which started in the previous autumn, coupled with
the snowmelt.

https://doi.org/10.6084/m9.figshare.14915148.v1
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After the event, several remedial works, such as drainage systems and passive me-
chanic infrastructures, were carried out to drain the area and stabilize the sliding material.
However, the passive stabilization infrastructure and drainage systems designed to pre-
vent further displacements do not work anymore, probably due to degradation, and slope
deformations are currently active.
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and toe of landslide, according to [78]. Dashed red lines are the approximate boundaries of the 1942 event, according to
the same source. The photos are in Figure 4. (b) Aerial photography of T, icău neighborhood. The solid red line represents
the scarp affected by multiple reactivation events in the past. The red dashed line describes the location of the sector
investigated in this study. The blue line represents the trace of the geological cross-section over the landslide. (c) The
lithological section for the T, icău landslide. The question marks are placed because of the uncertainty between the displaced
material and the bedrock. (high-resolution image available at https://doi.org/10.6084/m9.figshare.14915220.v1).
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At the moment, the area is characterized by hummocky-like landforms and is affected
by very slow-moving slides. Pieces of evidence of surface displacements were identified
during in-situ surveys and manifest as wall cracks, wall bulging, cracks in the buildings’
outer walls, damages to passive stabilization infrastructures, tilted trees, leaned electric
poles, road cracks, and bumps (Figure 4).

3. Materials and Methods
3.1. SAR Data and MT-InSAR Methods

The landslide deformations that affect the Municipality of Ias, i were investigated for
more than 25 years, from 1992 to 2018, using C-band SAR data acquired by different sensors
(Table 1). We processed the available ERS-1, ERS-2, ENVISAT, and Sentinel-1 SAR images
provided by the European Space Agency (ESA). Both satellites acquisition geometries,
ascending and descending, were used for our analysis to cross-validate our outputs and
increase the spatial extent of information retrieval. Additionally, we used a 5 × 5 m high-
resolution LiDAR DSM, provided by Prut-Bârlad Water Administration, to remove the
topographic phase and geocode the results.

Table 1. Specific parameters of SAR image datasets that were used in this study.

Sensor

Parameters

Orbit
Direction Track No. Time

Interval

Repeat
Cycle
(days)

No. of
Images

Product
Type

Local
Incidence

Angle
Polarization Azimuth

res. (m)
Range res.

(m) Technique

ERS-1 Descending 193 1992–1996 35 11 SAR ~22◦ VV 6 24

SBAS
ERS-2 193 1995–2000 35 31 SAR ~22◦ VV 6 24
ENVI
SAT

Ascending 429 2002–2009 35 19 ASAR IM ~23.5◦ VV 6 24
Descending 193 2003–2010 35 20 ASAR IM ~22◦ VV 6 24

Sentinel-1
A/B

Ascending 58 2014–2017 12, 6 1 123 Wide Swath ~39◦ VV 5 20
PSDescending 109 2014–2017 12, 6 1 127 Wide Swath ~37◦ VV 5 20

1 12 days repeat cycle until October 2016 when the second satellite was launched, and 6 days afterward.

The data stacks were processed using the Interferometry Stacking tool of Sarscape
v5.4. This tool includes Permanent Scatterers Interferometry (PSI) [17,22,23] and Small
BAseline Subset (SBAS) [24,88] processing techniques. The use of one method or the other
depends on the number of SAR images available and the ground conditions [21,89–91].
These advanced techniques employ different strategies to provide high accuracy results
and have their pros and cons. Their development overcomes the limitations of DInSAR,
such as the temporal and spatial decorrelations, the phase unwrapping errors, and the
artifacts due to the atmospheric component [18,20,21].

PSI is the first stacking interferometry algorithm developed to overcome some of
DInSAR shortcomings [17,22,23]. It considers the entire dataset of SAR acquisitions to
create interferograms between a so-called master image and all the other slaves with no
restrictions in terms of temporal and spatial baselines (Figure 5a). After the connection
graph generation, described in the previous sentence, the PS workflow implemented in
Sarscape consists of the following steps: (i) interferometric process, which executes the fol-
lowing sequence automatically: coregistration, interferogram generation, flattening using
the high-resolution DSM, and PSs selection by considering the Amplitude Dispersion Index
(ADI); (ii) first inversion during which the topographic residuals and the displacement
velocity are estimated by using a linear velocity model and removed from the complex
interferograms; (iii) the second inversion uses the linear model products calculated previ-
ously to estimate the atmospheric components by using a low-pass filter (1000 m) and a
high-pass filter (365 days), and fit the final displacement velocity model; (iv) geocoding of
the final PS products.
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The permanent scatterers (PS) are targets on the ground that are not affected by tempo-
ral decorrelation and maintain their signal phase-coherent throughout the analyzed period.
Because of this, in Sarscape, the approach is limited to a certain number of sufficiently
high coherent targets and requires a large number of images. This characteristic might be a
constraint of technique for non-urban areas and areas dominated by vegetation. However,
it is reliable in urbanized areas as the buildings maintain a coherent backscattering signal
in time. In our case, we considered only the PS measurements with coherence greater than
0.75 and discarded those lower than this threshold. Thus, this approach is suitable for our
study case, especially with Sentinel-1A/B datasets characterized by a short repeating cycle
between acquisitions.

The SBAS implementation in Sarscape exploits the phase difference of spatially dis-
tributed scatterers to measure the ground deformation. Compared to the PSI approach,
this technique is feasible to be used with a smaller stack of images as it pairs all the SAR
images defined by user-specified temporal and spatial baselines (Figure 5b) to reduce the
decorrelations and phase noise. The multilooking of data and the small subsets connection
increase the spatial information achievable by analyzing a smaller stack of SAR images.
However, as an effect of multilooking, this approach is not suitable to detect local deforma-
tion. In our case, we applied the SBAS technique to ERS 1/2 and ENVISAT datasets as the
number of available images was limited.

The workflow for the SBAS module in Sarscape is: (i) connection graph generation,
explained earlier; (ii) interferometric step, which generates a stack of interferograms, filters
them using the Goldstein adaptive filter, and then the phase is unwrapped using the Delau-
nay Minimum Cost Flow method; (iii) refinement and re-flattening, which estimates and
removes the topographic and constant phases as well as the possible phase ramps from the
unwrapped stack; (iv) first inversion, the first estimate of the displacement rate and residual
heights are calculated and used to re-flatten the interferograms. A second unwrapping is
also performed; (v) the second inversion removes the atmospheric phase component to
clean and calculate the final displacement velocity and time series; (vi) geocoding of the
final products.

Since the LOS displacements are 1D, we used the method of [29] to project the velocity
along the slope for the Sentinel-1 PS. To resolve the components of the velocity, we also
used [29] approach to compute the E-W and vertical displacements, using the information
from both orbits also for Sentinel-1 PS (points in 10-m vicinity were selected).

https://doi.org/10.6084/m9.figshare.14915259.v1
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3.2. Statistical Post-Processing of PS Measurements

To objectively evaluate the areas that show a consistent deformation trend, we used the
non-parametric Mann-Kendall test [92] to identify the PS points that show a displacement
time series trend (which might be different from a linear trend, respectively monotonic) and
the slope of the linear trend which assesses the magnitude of the deformation for automatic
filtering purposes. We employed the Man-Kendall test (MK) in Rstat through the mk.test
function of the trend package [93]. Each point’s resulting p-value is used to select those that
have a significant trend (p-value smaller than 0.0000005). Further filtering is done using the
linear regression slope, which should be higher/smaller than 0.15/−0.15 (depending on
the satellite’s orbit) to eliminate the points that show a weaker trend. For the selection of
the clusters characterized by high deformation rates, the kernel density (density function)
of the PS points was estimated using velocity as a covariate (rhohat function) in the spatstat
R package [94,95]. This approach can point out areas that show deformation rates over
larger spatial extents and remove single or a few deformation points. That might be related
to land-use change (in our study, this situation is related to new buildings constructed
during the monitoring period) or particular topographic cases (new buildings constructed
over disturbed material fillings that do not reflect the hillslope’s state).

To investigate the relationships between displacement and rainfall, we used the
breakpoint and trend calculation R package greenbrown [96,97]. In our case, the breakpoints
and trends were computed based on the quantile regression to the median, using the
Trend function from the greenbrown R package. For the detection of the breakpoints, the
approach uses iteratively the ordinary-least squares moving sum (MOSUM) test (if the
test indicates a significant structural change at p ≤ 0.05), the number and location of
the breakpoints are estimated by minimizing the Bayesian Information Criterion (BIC),
and by reducing the residual sum of squares of this regression respectively [96–99]. The
displacement rate trends are correlated with the precipitation of ECA&D data [86,87] for
the Iaşi meteorological station to potentially identify the behavior of representative targets
over the T, icău landslide after rainfall events.

3.3. Ground-Based Data, Model Setup, and Numerical Modeling

The investigated area faces many shortcomings in terms of geotechnical data and in-
situ measurements. Currently, the landslide is not well assessed as there are no instruments
installed over the site or monitoring surveys carried on. The available information consists
of several exploratory borings drilled in 2006 and published in the Ph.D. thesis of [100].
Their description provides information about the lithological limits, the water table level
measured during the drilling, the unit weight of materials, plasticity indices, and intrinsic
strength parameters.

The slope stability analysis was done using the 2D Finite Difference code along the
section crossing the landslide (Figure 2a). We subdivided the model into seven units of
geo-materials (Figure 2c): a succession of five layers in the upper part of the slope, the
landslide debris unit in the middle and lower sectors, and the geological bedrock. To these
units of geo-materials, we assigned the properties available in the literature.

The model consists of elements, nodes, and zones, to which specific physical and
mechanical parameters are attributed and used to compute the internal stresses and strains
within the slope. To perform the simulation of the behavior of the slope, the initial state
of the model is subjected to various parametric changes related to its geometrical and
mechanical characteristics, cyclic stresses, and potential anthropic activities or the increase
in rainfall intensity which might lead to landslides triggering. The typically achieved
solution concludes when the internal stresses reach the state of equilibrium, and no more
strains develop, or when the collapse occurs.
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Due to the many parameters required to perform numerical simulations, we completed
our database by making some assumptions and empirical correlations (Table 2). The mass-
density of soil was easily derived through the formula:

ρ = γ / g (1)

where ρ is mass density, γ is unit weight, and g is gravity.

Table 2. The geotechnical properties that are assigned to the materials in the numerical modeling.

Layer Unit Weight
[kN/m3] Friction Angle (φ)

Effective
Cohesion
c’ [kPa]

Oedometric
Module [kPa]

Tension
t [kPa]

Young’s
Modulus (E)

[kPa]

Poisson’s
Ratio (ν)

1. Clay 17.4 24º 25 9243 20 7886.53 0.3
2. Silty clay 19.2 25º 20 6590 10 5622.87 0.3

3. Clay 18.7 24º 25 16,434 15 14,504.85 0.4
4. Silt 20 27º 10 12,520 5 10,682.60 0.3

5. Clay 19.5 24º 30 9522 20 8404.23 0.4

6. Landslide debris 19.7

18º
20º
22º
25º

2
5

10
15

9000 *

0
1
2
3

15,000.0 0.4

7. Bedrock 20.5 38º 100 14,000 100 60,000.0 0.28

* Mean value based on data from boreholes. Values in bold were assumed or empirically calculated.

Further on, we assumed the tensile strength of material high enough for the upper
layers and the bedrock to create a relatively stable medium, as suggested by the PSI
results. For the landslide unit, which we mostly stressed in our simulations, we took
the tension as one-fifth of the cohesion. Based on the literature review and the authors’
knowledge, we empirically assigned the Poisson’s ratio (see Table 2). Young’s modulus was
calculated as a relationship of oedometric modulus, available in the borings description,
and Poisson’s ratio:

E = M / ((1 − 2ν)2 / (1 − ν)) (2)

where E isYoung’s modulus, M is oedometric modulus, and ν is Poisson’s ratio.
We employed the Finite Difference code in the FLAC (Fast Lagrangian Analysis of

Continua) environment to carry out our modeling. We followed the general workflow
starting with the grid generation, choice of the constitutive model and assignment of
material properties, setting the boundary and initial conditions, sequential modeling,
interpretation of results, and, if necessary, model refinement. We performed a static analysis
using the simple elastoplastic Mohr-Coulomb model, which assumes that the maximum
shear stress controls failure and that this failure shear stress depends on the normal stress.
Hence, failure occurs when the applied shear stresses equal the available resistances:

τ ≤ c′ + σ′ tan φ′ (3)

where τ is shear stress, c′ is effective cohesion, σ′ is the normal effective stress, and φ′ is the
effective friction angle.

Given the variability of the available indices and parameters observed in the log
description of the wells, we performed various simulations with different values to reduce
their uncertainty. As our most interest is related to the landslide unit, we considered a range
of variables for the intrinsic parameters (Table 2) to identify corresponding changes in the
dynamics and mechanics of the landslide. Specifically, we simulated the landslide mass
behavior for different combinations of friction angle, cohesion, and tension. Moreover,
we considered a possible worst-case scenario similar to the one that occurred during
the 1942 reactivation. In this case, we raised the level of the water table close to the
topographic surface.
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4. Results
4.1. MT-InSAR Outputs

The results of Sentinel-1 SAR data analyzed with the PSI approach consist of mean
velocity maps of single ground targets and time series of displacements. The velocities
obtained over the entire study area range from −24.3 to +16.9 mm/year in the ascending
orbit (Figure 6a) and from −24.2 to +12.9 mm/year in the descending one (Figure 6c).
Positive values point out that the distance between target and sensor decreases over time,
while the negative values suggest an increase of target-to-sensor distance as the target
moves away from the satellite. The identified PSs in the descending orbit are 131,670, of
which around 92.7% are stable points. In the ascending orbit were identified 125,022 PSs,
of which 93.1% are stable. We consider as stable points those with a velocity between
−2 and +2 mm/year in our analysis. This threshold was chosen based on the precision
of MT-InSAR techniques [18,23,101] and on the specific observation on the PS results of
Copou (stable plateaux) and T, icău area (instable hillslope) in [102].

The velocity of deformations recorded over the affected slopes ranges from ±7 mm/y
to ±24 mm/y, measured along the satellite’s LOS, depending on the orbit’s geometry
and the slope angle. North-eastern and eastern facing unstable slopes display positive
changes in the descending orbit and negative values in the ascending orbit. Contrarily,
south-western and western facing slopes show positive deformations in the ascending
orbit or negative values in the descending one.

In the affected area of T, icău landslide, the mean velocities of the PSs have similar
behavior with the above-described pattern, with high mean velocity values from ±7 mm/y
up to ±24 mm/y (Figure 6b,d). The identified points are located mainly in the upper
and the middle parts of the slope, as the lower part of the hillslope is covered by dense
vegetation. Specifically, stable points are found at the top of the hill and above the landslide
crown, while the unstable points are over the basal part of the landslide scarp and the
depleted area.

The projected velocities along the slope show (Figure 7) similar patterns with the 1D
velocities. The up and E-W components also confirm the conclusions obtained from the
ascendent and descendent 1D velocities. Interestingly, these components are not as noisy
as 1D data, the landslided hillslope being distinguishable from the adjacent stable hilltop.
In the same time, coverage is lost because some points from the ascendent and descendent
orbits are not in close proximity.

In the case of ENVISAT and ERS-1/2 SAR data, analyzed with the SBAS technique, the
results are relatively poor compared to Sentinel 1 outputs, especially for the ERS-1/2 dataset
where the low coherence of the signal significantly reduced the spatial information. The
mean velocity map of the ENVISAT ascending dataset (Figure 6e,f) shows values ranging
from −4 to −9 mm/year over the investigated event, and it confirms the continuous slow-
moving state of the landslide. Due to the much better results of the Sentinel 1 datasets, we
will focus our analysis on these results.

The Sentinel 1 SAR data processing allows the detection of landslides’ affected ar-
eas, updating and improving the available database, and monitoring the critical areas
(Figure 6a,c). Most of the detected deformations overlay the landslide-affected areas within
the landslide hazard zonation of Ias, i Municipality delineated by the Ias, i Municipality
Administration (green polygons in Figure 8) and which cover 61.45% of the city surface.
Seven out of the nine hazard zones delineated by the Ias, i Municipality Administration are
affected by slope displacements.
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Figure 8. The official landslide hazard zonation, the landslide velocity hot-spots identified in the present study, and the
mapped landslides by [62,79] in Iasi Municipality. (high-resolution image available at https://doi.org/10.6084/m9.figshare.
14916003.v2).

The availability of both orbits, ascending and descending, improves our results’
reliability through cross-validation of the measurements obtained by the first geometry
with the results of the second one and by the possibility to compute the components of
the LOS displacement. Knowing that the T, icău landslide is sliding from southwest to
northeast, we measure negative velocities in the ascending geometry while the descending
records are positive (Figure 6).

The statistical post-processing of the SAR velocity pinpoints the present-day clusters of
displacements related to active or dormant landslides mapped by [62,79] (Figure 8–orange
and magenta polygons). We considered the empirical thresholds of [63,103] for landslide
velocity to classify the rate of movement of the detected scatterers as follows: >16 mm/year
are the velocities of very slow landslides that require maintenance, while in contrast,
velocity <16 mm/year is characteristic of extremely slow landslides. Hence, two clusters
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of moving points with a velocity higher than 16 mm/year arguably classify as very slow-
moving landslides located on hazard zones 9 and 2 of Figure 8.

Specifically, these clusters of displacement that we consider hot-spots of landslide
activity are the red polygons in Figure 8 over the T, icău Neighborhood, in the North-Eastern
side of Copou Hill and the NE hillslope of Galata Neighborhood. As highlighted in Figure 8,
some other localized scatterers with similar velocities of the same class are associated with
the construction of recent residential buildings over existing landslides. Such areas include
the Munteni Neighborhood on the Western Copou Hillslope between Viticultori and Dealul
Zorilor streets–hot-spot c; Păcurari Neighborhood on the S Copou Hill between S, ipot,el and
Cazărmilor streets–hot-spot d; Bucium Neighborhood on the E Socola hillslope between
Mihail Galino and Margareta Baciu streets–hot-spot e; W Păun hillslope between Ciprian
Porumbescu and Păun streets–hot-spot f. Other cases are associated with site-specific
activities occurring over the hillslopes (e.g., Păcurari Neighborhood on S Copou hillslope,
an area with intense activity due to the new houses built between Iancu Flondor, Nicolae
Oblu and Bucovina streets–hot-spot g; Cas, in street–hot-spot h; Ciric Sports Base built on an
excavation site upslope the landslide scarp–hot-spot i).

The other areas that show ground deformations are classified as extremely slow-
moving landslides. As the lower boundary of this class, we considered the 2 mm/year
threshold representative for the investigated area. In our analysis, areas with velocities
lower than 2 mm/year, classified as relatively stable, are located on the plateaus of the hills
(Figure 8–stable areas j and l) and floodplains (Figure 8–stable areas k, m, and n).

The use of the Multi-temporal InSAR techniques enables the possibility to discriminate
between the landslide-induced deformations over large areas from the isolated cases unre-
lated to the process. The former case is associated with the mapped landslide (Figure 8–the
yellow polygons), while the latter relates to single or clusters of buildings located on
slopes unaffected by landslides (red and blue squares not included in the yellow polygons
in Figure 8). Other deformation hot-spots, usually on floodplains, are associated with
residential or non-residential planning projects (blue polygons in Figure 8). We used the
Mann-Kendall test to compute the trend for all the PS points in both ascending and descend-
ing orbit to discriminate between these hot-spots. Only the PS points with MK test p-value
smaller than 0.0000005 (a trend is present) and a slope of the linear trend higher/smaller
(depending on the orbit geometry) than 0.15/−0.15 were selected (trend present with a
slope that indicates consistent deformation). Thus, were sorted out 1288 points in the
ascending orbit and 951 points in the descending orbit (red and blue squares in Figure 8).
The remaining points are classified as extremely slow-moving landslides delineated by the
yellow boundary or isolated instabilities seen as single features in Figure 8.

The Bucium East Hazard Zone (hazard zone 6) is one of the city’s growing neighbor-
hoods currently characterized by the expansion of the residential buildings. It has one very
slow-moving landslide hot-spot and three extremely slow-moving landslides located over
the previously mapped landslides. The Bucium West Hazard Zone (hazard zone 5) has one
very slow-moving landslide hot-spot and four extremely slow-moving landslide hot-spots,
similar to Bucium East Hazard Zone. The Galata Hazard Zone (hazard zone 2) has three
hot-spots of very slow-moving landslides and six hot-spots of extremely slow-moving
landslides. Most of them are on the NW hillslope of Galata Hill, where many residential
buildings exist. The Copou West-Păcurari Hazard Zone (hazard zone 1) has four hot-spots
of very slow-moving landslides and eleven hot-spots of extremely slow-moving landslides,
known as recent landslides, and inhabited by the neighborhood’s community. The Copou
East Hazard Zone (hazard zone 9) has the largest hot-spot identified within a slow-moving
landslide and four hot-spots of extremely slow-moving landslide hot-spots. The Aviat, iei-
Airport-Moara de Vânt Hazard Zone (hazard zone 7) has one slow-moving deformation
hot-spot and three hot-spots of extremely slow-moving landslides, the Central-Tătăras, i
Hazard Zone (hazard zone 8) has only one hot-spot associated with extremely slow-moving
landslides, and the other two hazard zones, namely the Cetăt,uia and Manta Ros, ie Hazard
Zones (hazard zones 3 and 4) do not present landslide-related deformation hot-spots.
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Based on the PS time series displacements, we can argue the sensitivity of slope
dynamics to rainfall. The evolution pattern of the PS measurements over T, icău landslide
is defined by trends associated with accelerating or decelerating periods (Figure 9). The
displacements recorded during the investigated period confirm that T, icău landslide is
active with rates of displacements that exhibit different trends separated by generalized
breakpoints for the considered PS points.
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Scheme 0. while for the descending orbit, PSs bigger than 0.2. The trend is derived with the methodology presented in
Section 3.2, and the trend lines have 10% transparency. The trend breakpoints are plotted as points rug plots with 10%
transparency. (high-resolution image available at https://doi.org/10.6084/m9.figshare.14920113.v1).

The analysis of precipitation series indicates for the years 2014, 2016, and 2017 rainy
springs and summers (both daily and as 30 days cumulative rainfall), while 2015 is drier
during all seasons. In this context, the displacement trend decelerates from 2014 to 2015
and accelerates again during 2016. The location of the trend breakpoints (the rug plots
from Figure 9) is consistent across all the PS for the spring 2015 and autumn 2016 trend
changes. While there is no groundwater monitoring in the study area, and considering that
groundwater response to rainfall is susceptible to a time delay [104], our interpretation of
rainfall’s influence on displacement through groundwater recharge is the most probable.
The complexity of the topography (roads, embankments, built surfaces) in the study area
could explain the multiple breakpoints of the displacement trend during 2015 and 2016.
That explains why some of the surface scatterers have a different sliding response in time.

https://doi.org/10.6084/m9.figshare.14920113.v1
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The displacement behavior related to the distribution of the daily and the cumulative
rainfall amount shows that prolonged rainfalls of medium intensity and two to three weeks
long are much more significant for displacements initiation and acceleration compared
to heavy rainfalls. Even though the short period of heavy rainfalls, of about one to two
days, produces a more significant total amount of precipitation, it mainly occurs during
drought periods, and due to the high intensity, the runoff of the water is more significant
than the infiltration. In this context, PS displacements can be monitored together with
the rainfall time series to search for increasing displacement trends that might indicate a
possible reactivation event. The reactivation of 1942 is one such example that took place
during the spring season. In that case, the landslide reactivation occurred due to the high
accumulated amounts of precipitation. The rainy period started in the previous year’s
autumn and continued in the spring of the year after coupled with the snow melting. These
factors led to the soil’s complete saturation due to the water level increase and finally to
the landslide triggering.

4.2. Numerical Simulations

We carried out a parametric study to verify the possible changes of landslide dynamics
due to variations in the material properties and optimize our model. In this way, we reduce
the uncertainty of the input data and minimize our assumptions to set up a more realistic
model. In the simulations, we stressed the landslide unit (Layer 6—Landslide debris)
because the displacements expected to occur are within this layer as they have been
detected on the surface through MT-InSAR techniques and field evidence as well. We
also took into account the water level measured during the execution of the boreholes
even though it is susceptive to temporal depth variations. Thus, we performed several
trial-and-error simulations to assess the response of the landslided material to the variation
of parameter values. Although the properties are only slightly changed, the landslide
behavior varies significantly.

In terms of displacement magnitude (Figure 10), the model behaves consistently with
the increment of material properties values. Specifically, by increasing the values of friction
angle (φ) and the effective cohesion (c′) of material, the total displacements recorded by
the model are decreasing. The simulation considered representative for the investigated
landslide (φ = 20◦, c′ = 5 kPa, t = 1 kPa) records displacements of a maximum of 2.5 cm and
points out the middle sector of the slope as the most prone to deformations, compared to
the upper and lower ones. These results significantly increase our understanding of the
landslide in-depth behavior and sliding mechanism and can be used as prior information
for future stabilization and development works.

Analyzing the displacement magnitude field, the middle sector of the slope results
as the most active part of the landslide regardless of the scenario. The displacement
magnitude history of some points distributed along the landslide body (Figure 11) supports
the described behavior also. Moreover, the behavior of in-depth history points indicates
higher displacements as we get closer to the surface.

To determine the landslide typology and mechanism, we used the maximum shear
strain increment, which is a good indicator of the failure mechanism [105]. The identified
shearing zones are associated with the sliding surface, the main and secondary scarps
along the landslide body (Figure 12). The secondary scarps increase in magnitude after
they are subjected to the water level increase. In fact, in conditions of high-water level,
similar to the 1942 reactivation, both magnitude of displacements and maximum shear
strain increment significantly increased compared to the scenario where the water table
was considered the one measured in the boreholes (Figure 13). In this“worst” scenario,
the total displacements are much higher than 4.5 cm, reaching a maximum of 9 cm in the
middle sector. Based on the maximum shear strain increment, the sliding surface and the
secondary scarps aggravate, and the main scarp is susceptible to reactivation.
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Although it is not possible to directly compare the velocities measured through
interferometry techniques and the displacements obtained in the numerical simulations,
we observe that the results of both methods point out the median part of the landslide as
the most active sector.

The advantage of numerical modeling consists of the continuous displacements field
that we obtain, while in the case of PS measurements, we get discontinuous data but are
highly accurate. On the other hand, performing numerical modeling requires as many in-
situ measurements as possible. The lack of such data limits the time-dependent modeling to
observe the evolution of displacements, comparable to the temporal displacement series of
MT-InSAR results. Because of this, we performed our simulations using the Mohr-Coulomb
elastoplastic model. The results give us information about the displacements’ behavior,
their magnitude, and the sliding mechanism.

5. Discussion
5.1. MT-InSAR Outputs and Numerical Simulations

The investigated T, icău landslide behaves as a very slow-moving translational slide
from SW to NE direction. The typology of the landslide is concluded based on the simu-
lations we carried out. The maximum shear strain increment reveals the failure surface
and the presence of several minor scarps that accentuate as the water level increases. The
mean annual velocities, depicted through the processing of SAR data, measure from 10 to
20 mm/year over the landslide body. Even though the measurements are in the Line of
Sight of the satellite, it is a good indicator of the deformations that occur in the area, espe-
cially the ascending orbit case. Due to the satellite’s flight path and the sliding direction of
the landslide, the measured displacement values are close to the actual displacements that
occur over the landslide.

Simulations of slope displacements reveal the landslide mechanism and allow the
investigation of multiple scenarios to assess the process’s dynamics properly. The pattern
of displacements is consistent with the simulations we performed, intending to reduce the
uncertainties related to the data we used.

The results of both used techniques are in agreement and reveal that the middle sector
of the slope is the most active part of the landslide. The analysis of the displacement
time series indicates that acceleration periods take place during long-term rainfalls. The
simulations also enhance this aspect, as they clearly show an increase of total displacements
of the landslide and a much more prominent sliding surface.

The numerical modeling results regarding the displacement pattern of the landslide
argue the landslide typology as a shallow translational body. This outcome is contrasting to
what previous studies suggest, a deep rotational landslide [100]. The borehole information
on which these previous conclusions are based (i.e., granulometry, unit weight) is deficient
and unconvincing. They are evaluated only from an uncomplete geotechnical point of
view without considering the stratigraphic and geomorphologic data (bedrock, surficial
deposits, and landslide sliding surface).

A better investigation of the subsurface is necessary to improve the model from
a geophysical and geotechnical point of view and in-situ measurements by installing
necessary instrumentations. These will allow the use of an advanced model that considers
the materials’ viscosity characteristics and thus proceed to a time-dependent creep analysis.

5.2. Benefits and Limitations of the Analysis

To carry out our investigation, we exploited both the employed techniques at best
by integrating their results to overcome the flaws of one method with the strengths of the
other. Regarding the MT-InSAR analysis, the main problem encountered during the image
processing is related to dense vegetation and loss of coherence for the analyzed period.
When coupled with the lack of images, this leads to substantial loss of spatial information,
as in the ERS and ENVISAT data stacks. The basal sector of the T, icău landslide is covered
by forest, and we can notice that it was not possible to detect deformations over that area,
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not even with Sentinel-1. However, we overcame this problem using numerical simulations,
which indicate that the slope’s basal sector is also moving even though it is not as active as
the middle part.

Due to the lack of reliable in-situ data for our numerical modeling, we had to make
some assumptions worth mentioning to complete our material properties database. We
considered the landslide debris as a singular, homogenous entity. In reality, the remolded
material most likely has lithological and implicitly geotechnical variations, both in-depth
and laterally. To reduce the uncertainty of made assumptions, we performed trial-and-
error simulations of various combinations of the intrinsic properties, showing that these
assumptions are relevant and justified.

The groundwater level we employed in our modeling is the measured one dur-
ing drilling, which might be at its lowest depths, considering that the boreholes were
executed during the summer. We should keep in mind that it has seasonal fluctua-
tions, manifesting as accelerations and decelerations of deformations, as suggested by
the MT-InSAR measurements.

At the same time, in our analysis, we did not consider the anthropic implications such
as the existence of the residential buildings that exert an additional load over the unstable
body nor the already existing stabilization infrastructure, such as drainage system, retaining
walls, and gabions at the base of the main scarp. About this aspect, it is necessary to get a
detailed investigation about the type of building foundations, the year of construction, to
evaluate the state of degradation, the height of buildings, the construction material.

However, the numerical modeling results are supported by MT-InSAR results and
field information, indicating that the displacements obtained are consistent and validate
our model. Further geophysical prospects will improve the geological model and will
help to generate an improved numerical model that could better explain the spatial and
temporal variations of the displacements patterns.

Nonetheless, our results prove that the use of MT-InSAR techniques and SAR data
coupled with numerical simulations has the potential to deliver critical information about
landslide processes in areas where the lack of in-situ data is the major shortcoming, not
only in the well-investigated ones. The MT-InSAR provides data about the spatial extent
and the displacements behavior in time, while the simulations give a better understanding
of the landslide type and its mechanism and in-depth behavior. Their outcome is beneficial
not only for the landslide monitoring and landslide hazard assessment but also as prior
information for future planning and policy implementation.

6. Conclusions

The application of Multi-temporal SAR Interferometry techniques (MT-InSAR) and
numerical modeling of slope failures in urban areas is a must in the current context of
urban territorial expansion to successfully identify and monitor possible slope deformations
that might threaten the infrastructure and people. For the case of Ias, i Municipality, the
benefits of coupling MT-InSAR results (i.e., surface velocity maps) and slope numerical
simulations allowed us: (1) to identify the potentially dangerous areas affected by slope
instabilities; (2) to properly delimitate the extent of the active sector tampering the T, icău
neighborhood’s integrity; (3) to monitor the landslide activity and its behavior related to
the rainfall amount and water level changes; (4) to argue the landslide typology based on
its velocity and failure mechanism.

The integration of InSAR and simulation results coupled with field surveys highly
facilitates the characterization and improves our understanding of the landslide dynamics
and evolution. Thus, we can say that T, icău landslide behaves as a very slow-moving
landslide with a translational mechanism sliding from SW towards NE. The displacement
pattern points out the middle sector of the slope as the most prone to deformations that
are accelerating after extended periods of rainfall. The mean annual velocities over the
landslide body vary from 10 mm/year to over 20 mm/year in the middle sector of the slope
underlined by the material simulations. These outputs should be deemed as prospective
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and used as prior information to support the implementation of stabilization policies,
as the local authorities recently approved funding for such strategies. Nonetheless, our
results enhance the idea of integrating the results of MT-InSAR techniques and numerical
modeling as it has the potential to be used in areas lacking ground measurements. Their
capabilities to acquire and generate information about slope instabilities are valuable to
assess the landslide hazard.

Future works include continuing the landslide monitoring using MT-InSAR techniques
and, especially, improving the numerical model. To this end, we will consider the buildings
and infrastructure that load the sliding material. There are plans to carry out shallow
seismic surveys and electrical resistivity tomography (ERT) to increase the quality of in-situ
data. The access to better data and knowledge will allow, in the long run, to model the
entire slope and use an advanced viscous model to assess the time-dependent behavior of
the landslide.
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