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Abstract: Multi-temporal remote sensing images are the primary sources for change detection.
However, it is difficult to obtain comparable multi-temporal images at the same season and time
of day with the same sensor. Considering texture homogeneity among objects belonging to the
same category, this paper presents a new change detection approach using a texture feature space
outlier index from mono-temporal remote sensing images and vector data. In the proposed approach,
a texture feature contribution index (TFCI) is defined based on information gain to select the optimal
texture features, and a feature space outlier index (FSOI) based on local reachability density is
presented to automatically identify outlier samples and changed objects. Our approach includes
three steps: (1) the sampling method is designed considering spatial distribution and topographic
properties of image objects extracted by segmenting the recent image with existing vector map.
(2) Samples with changed categories are refined by an iteration procedure of texture feature selection
and outlier sample elimination; and (3) the changed image objects are identified and classified
using the refined samples to calculate the FSOI values of the image objects. Three experiments
in the two study areas were conducted to validate its performance. Overall accuracies of 95.94%,
96.36%, and 96.28% were achieved, respectively, while the omission and commission errors for every
category were all very low. Four widely used methods with two-temporal images were selected for
comparison, and the accuracy of the proposed method is higher than theirs. This indicates that our
approach is effective and feasible.

Keywords: change detection; texture feature; sampling; outlier detection; remote sensing image;
vector data

1. Introduction

Change detection of the Earth’s surface features is the process of measuring the
landscape changes of the same geographical area at different times [1–3]. It is extremely
important for monitoring disasters and observing urban expansion as well as ecosystem
and land-use/land-cover changes [4–8]. Due to the advantages of repetitive data acquisi-
tion, its synoptic view, low cost, and fast response capacities, remote sensing has long been
recognized as an effective tool for a variety of change detection applications [9–11].

At present, multi-temporal remote sensing images are the primary sources used for a
variety of change detection applications [1,12,13], and researchers have developed a series
of change detection methods with multi-temporal images, such as direct comparison meth-
ods (e.g., change vector analysis and image differencing) [14–17], post-classification com-
parison (PCC) [18,19], object-based methods (OBMs) [20], hybrid change detection [21,22],
machine learning (e.g., support vector machine (SVM), random forest (RF), and artificial
neural network) [23–25], and deep-learning-based methods (DLMs) [26,27]. Various re-
searchers have exhaustively highlighted the shortfalls and application aspects of these
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change detection techniques [12,13,28]. For example, the difficulty with the direct com-
parison methods is the identification of changed trajectories and the strict requirement
of image data acquired from the same phenological period with the same sensor [29,30].
PCC requires an accurate and complete training data set, and final accuracy is dependent
on the classification accuracy of individual images [31,32]. Machine learning has some
difficulty in choosing training samples, and the computational time for classification and
achieving optimization during the learning phase increases polynomially with the increase
of data dimensionality [33,34]. The main issues with DLMs are that it is sensitive to the
training data quality and the number of training samples per class [35,36]. All of these
above methods require at least two-temporal comparable images [37,38]. However, it is
usually very difficult to acquire comparable multi-temporal images that can meet all of the
above criteria, because there are many factors that impact the spectral features of surface
objects, such as sensors, phenological characteristics, and environmental factors. Therefore,
change detection that uses an additional easily obtainable data source (e.g., vector data and
digital elevation model (DEM)) has become a popular research topic [39–41].

On one hand, vector data includes a priori information such as location, shape, size,
and categories, which allow the user to exploit the geometric information (e.g., location
and shape) of objects, reducing the search space and minimizing false alarms [28,42]. On
the other hand, with the construction of all kinds of geodatabases (e.g., GlobeLand30),
vector data for many application requirements of change detection can be obtained from
the existing geodatabases [4,43]. In recent years, vector data have been widely used as a
major additional source of data to improve the change detection accuracy of remote sensing
images. However, these approaches using vector data are limited in most cases to the
comparison of image-vector objects [28,39]. For example, Li et al. [41] described a buffer-
detection algorithm and an integrated approach with vector data for change detection of
linear and area features, respectively. Sofina and Ehlers et al. [38] proposed a new “detected
part of contour” feature with vector data for building change detection. De Alwis Pitts
and So et al. [44] utilized readily available pre-disaster vector data and two high-resolution
images to enhance change detection for disaster response. Lopez et al. [45] utilized high-
resolution SAR images and a priori knowledge about the imaged scene from vector maps to
perform change detection of ship activity. Guo and Du et al. [39] integrated high-resolution
images and vector data to acquire knowledge of building extraction and change detection,
such as optimal segmentation scales, samples, and the feature subsets. The effectiveness
of these change detection methods is close to or higher than the image-based methods.
However, due to the complexity of surface landscapes in the high-resolution remote sensing
images, challenges still remain in applying vector data and images for change detection.
For example, it is still difficult to automatically identify the changed objects and determine
their types. Accordingly, it is necessary to further investigate the integration of vector data
and remote sensing images for change detection.

Considering texture homogeneity among objects belonging to the same categories, this
paper presents an object-texture-outlier (OTO)-based change detection approach. In the
proposed method, the vector data is used as a substitute for historic remote sensing images.
The image objects are extracted by segmenting image with existing vector data. Changed
objects are identified by comparing texture heterogeneity among image objects which have
the same a priori categories. Compared with unchanged objects, the changed image objects
are described as outlier objects according to texture heterogeneity. Texture features are used
to measure the space outlier of image objects. However, how to automatically select the
optimal texture features for every category, identify changed objects, and determine their
types are still critical issues that need to be addressed. First, a texture feature contribution
index (TFCI) is defined based on information gain to select the optimal texture features
for each category. Second, a feature space outlier index (FSOI) based on local reachability
density is presented to automatically identify outlier samples and changed objects. Samples
with changed categories are refined by an iteration procedure of texture feature selection
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and outlier sample elimination. The types of the changed objects are determined with the
refined samples.

The remainder of this paper is organized such that Section 2 outlines the proposed
change detection method, including the sampling design, sample refinement by the iter-
ation of texture feature selection and outlier sample elimination, and the changed object
detection. The results and discussion are presented in Sections 3 and 4, respectively. Finally,
the main conclusions are drawn in Section 5.

2. Methods

The framework of the proposed change detection approach from mono-temporal
remote sensing images and vector data is shown in Figure 1. Our approach involves
three main steps. (1) The sampling design is based on a priori information. Image objects
are first extracted by segmenting the recent images with the existing vector map, which
can significantly reduce the difficulty and improve accuracy of image segmentation. The
extracted image objects are bundled with a priori information (e.g., shape and category)
from vector data and spectral information from the images. Then, the sampling method
is designed considering the spatial distribution and topographic properties of the objects
(DEM data are used to represent the topographic properties), and the initial samples are
obtained, although there may be some samples with changed categories. (2) Samples with
changed categories are refined by an iteration procedure in which texture features are
selected and outlier samples are eliminated. In the iteration procedure, a TFCI is defined
based on information gain to select the optimal texture features, and an FSOI based on
local reachability density is presented to automatically identify outlier samples. After
the iteration, the optimal texture features for each category can be determined, and the
samples with unchanged categories can be obtained. (3) The detection and classification
of the changed objects are conducted. The changed objects are identified with the refined
samples by calculating the FSOI values of image objects. The changed image objects are
resegmented based on the existing multi-resolution segmentation algorithm [46,47], and the
resegmented changed image objects are classified with the refined samples by calculating
the FSOI values of the image objects. In this paper, the sampling design, sample refinement
(including TFCI and FSOI), and changed object detection are all discussed in detail.
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2.1. Sampling Design with a Priori Information from Vector Data and DEM

It is well known that the quality of samples determines the success of the change
detection process, while the quality of samples is affected by the size and location dis-
tribution of sample objects [48]. Besides, the quality of samples is also affected by their
representativeness. When the vector map is available, all objects can be theoretically used
as samples. However, this will decrease the representativeness of samples. Considering the
above reasons, we choose the representative objects as the samples. Therefore, the sampling
design is one of the key steps in implementing automatic sampling for change detection.
Since samples are taken from image objects that have the same a priori categories, the image
objects that have changed in a posteriori category are inevitably sampled. Compared to the
number of unchanged objects, the number of changed objects is usually expected to be
small. The aim of sampling design is to obtain as few as possible changed samples and
enough statistical power to detect texture homogeneity among objects belonging to the
same categories. The appropriate sampling area, density of sampling, and allocation of sam-
pling sites are three important characteristics to be considered when designing a sampling
program. The sampling area selection should be based on requirements for outlier data and
specific study areas. The probability of image objects with homogeneous texture features
being sampled will increase with the enlargement of the sampling range, so the sampling
design requires sampling at a global range in the study area. The density of sampling (i.e.,
the number of samples per unit area) is usually dictated by the practical constraints of
the landscape and topographic properties. Sampling sites must be distributed in a purely
random fashion. Consequently, sampling design is achieved according to sampling areas,
spatial distribution, and the topographic properties of the objects.

A uniform grid that covers the sampling area is used to allocate samples. First,
the sampling area is divided into a uniform grid. The size of the grid can be properly
determined according to the size of the sampling area, the total number of image objects,
and the number of samples taken. Second, the sampling area is divided into t levels
according to topographic properties based on DEM data, and then the number of samples
is calculated in each cell. The number of samples in row r and column c of the grid, SNr×c,
is calculated as follows:

SNr×c =
t

∑
j=1

Ionj
r×c

Ion
STN (1)

where Ion is the number of objects and STN is the number of samples taken in the sampling
area. Ionj

r×c is the number of objects in row r and column c of the terrain level j. The
principle of sampling design is shown in Figure 2. Finally, samples for each cell are
randomly taken from objects included in each cell, and the initial samples containing
outlier samples (i.e., changed sample objects) are obtained.

2.2. Refining Samples by Iteration of Texture Feature Selection and Outlier Sample Elimination

To improve the accuracy of the change detection results, a TFCI is defined by infor-
mation gain to select the optimal texture features for each category, and an FSOI based
on local reachability density is presented to automatically identify outlier samples and
changed objects. However, the optimal texture features need to be identified from samples
with unchanged categories, and samples with unchanged categories need to be extracted
according to the optimal texture features. Therefore, automatically identifying the optimal
texture features is in contradiction with automatically detecting outlier samples. Conse-
quently, in order to implement automatic sampling for change detection, samples with
changed categories must be refined by an iteration procedure of texture feature selection
and outlier sample elimination.
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2.2.1. TFCI Computation Based on Information Gain

Texture is an innate property of all types of surface objects and contains important
information about the structural arrangement of surfaces and their relationship to the
surrounding environment [49,50]. Texture information is widely used to help in seg-
mentation or classification. Among multitudinous texture analysis methods, a gray-level
co-occurrence matrix (GLCM) has been proven to be an effective tool for capturing numeri-
cal features of remote sensing images using spatial relations of similar gray tones [51,52].
The 14 texture features have been defined based on the GLCM [50], as shown in Table 1.

Table 1. The 14 texture features and their serial numbers.

Serial Number Texture Features

f 1 Angular Second Moment (ASM)
f 2 Contrast (CON)
f 3 Inverse Difference Moment (IDM)
f 4 Entropy (ENT)
f 5 Correlation (COR)
f 6 Mean (MEAN)
f 7 Variance (VAR)
f 8 Sum Variance (SVAR)
f 9 Sum Average (SAVE)
f 10 Sum Entropy (SENT)
f 11 Difference Entropy (DENT)
f 12 Difference Variance (DVAR)
f 13 Information Measures of Correlation (IMC)
f 14 Maximal Correlation Coefficient (MCC)

Directly applying all of the texture features from the GLCM to describe the texture
information results in some redundancy because some of the features may not have a clear
contribution to distinguishing different categories of image objects. The redundancy is
related to the uncertainty of texture feature values. Therefore, identifying the optimal
texture features can be accomplished by analyzing the uncertainty of different texture
features. It is well known that information entropy is regarded as an effective tool to
measure the uncertainty [27,53], and thus, information entropy is used to measure the
contribution of a texture feature to distinguish different categories of image objects.

The information gain is a measure of the decrease in the amount of information entropy
that one feature has about all other features [54]. It can be used as an index to measure
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the importance of texture features. Assume that Gain(ci, f j) indicates the information gain
of texture feature f j belonging to category ci, and the expression of Gain(ci, f j) can be
written as:

Gain(ci, f j) = H(ci)−H(ci/ f j)
H(ci) = −{pci log(pci ) + (1− pci ) log(1− pci )}
H(ci/ f j) = −p f j

{
pci f j

log(pci f j
) + (1− pci f j

) log(1− pci f j
)
}

pci = Nci /N; p f j
= Nci f j

/N; pci f j
= Nci /Nci f j

(2)

where H(ci) is information entropy and H(ci/ f j) is conditional information entropy of
category ci. N is the total number of objects and Nci is the number of objects belonging to
category ci. Nci f j

is the number of objects whose values of texture feature f j belong to the
texture feature space of the category ci. However, applying information gain may result
in a biased estimation that the optimal texture features tend to have a larger range of the
feature vector [55]. Hence, the information gain ratio is employed to eliminate this effect.
Assuming that GainRat(ci, f j) represents the information gain ratio of texture feature fj
belonging to the category ci, and GainRat(ci, f j) can be written as:

GainRat(ci, f j) = Gain(ci, f j)/H( f j)

H( f j) = −
{

p f j
log(p f j

) + (1− p f j
) log(1− p f j

)
} (3)

where H( f j) is the information entropy of texture feature f j. Therefore, a texture feature
contribution index (TFCI) based on information gain ratio can be defined as:

TFCI f jci
=

GainRat(ci, f j)× 100%

maxc

{
GainRat(ci, f j)/max f (GainRat(ci, f j))

} (4)

where TFCI f jci
indicates the TFCI of the texture feature f j belonging to the category ci. The

TFCI value is between 0 and 100%, and the higher its value, the greater the contribution
of texture feature f j on category ci. Hence, it is easy to determine which texture features
can be selected as the optimal features to identify changed objects. In order to quantify
the contribution levels of texture features, analytic hierarchy process (AHP) is used to
determine the priorities of texture feature selection. In AHP for texture features, the equal
interval method is applied to divide the TFCI interval into five sub-intervals, and each
sub-interval width is equal to all other sub-interval widths [56,57]. Table 2 shows the five
sub-intervals and their contribution levels.

Table 2. Five hierarchy numbers and their contribution levels of texture feature contribution in-
dex (TFCI).

Hierarchy Number TFCI Value Contribution Level

I [0, 20] Very low contribution
II (20, 40] Low contribution
III (40, 60] Moderate contribution
IV (60, 80] High contribution
V (80, 100] Very high contribution

The optimal texture features can be selected according to the TFCI value. Generally,
the texture features with very low and low contribution levels must be eliminated, texture
features with moderate contribution levels can be selected appropriately, and texture
features with high and very high contribution levels must be selected.
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The texture feature space vector (TFSV) for types of surface objects can be established
according to the results of the optimal texture feature selection. Assume that TFSV(cj)
indicates the TFSV of the category cj. The expression of TFSV(cj) can be written as:

TFSV(cj) = [wj
1 f1, wj

2 f2, · · · , wj
14 f14]

T
(5)

where wj
i (i = 1, 2, · · · , 14) is TFCI value of texture feature fi in the category cj. In Equation (5),

if TFCI values of texture feature fi are below 60%, texture feature fi should not be chosen,
and the wj

i value is set as zero.

2.2.2. FSOI Computation Based on Local Reachability Density

In remote sensing images, there are many factors that impact the spectral features of
surface objects, including sensors, phenological characteristics, and environmental factors,
as well as changes in the types of surface objects caused by man or sudden natural disasters.
However, change detection aims to identify changed objects caused by man or such
natural disasters. The texture features of changed objects have clear outlier characteristics,
both in samples and change detection. Some scholars describe the concept of an outlier
from different aspects [58–60]. Intuitively, an outlier is an observation that deviates so
much from other observations that it arouses suspicion that it is generated by a different
mechanism [61,62]. In this paper, the outlier data can be defined as data sets of low-density
areas in the texture feature space (e.g., changed image objects). Consequently, the outlier
detection idea is employed to detect outlier samples and changed objects.

Some researchers have proposed the method of calculating density outlier according
to the spatial distribution characteristics of outlier data [63,64]. However, for outlier image
objects that need to be detected, there may be a large number of outlier objects with the
same or similar texture features. In order to detect outlier data more accurately, a feature
space outlier index (FSOI) is defined to detect outlier samples and changed objects based
on the local reachable density and global characteristics of image objects. In addition, this
paper designs an iteration procedure (described in Figure 1) to refine unchanged samples.
The FSOI can be calculated through three steps as follows.

The first step is to calculate the reachability distance of an object in texture feature
space. Let Rdisk

(
obj, obi

)
denote the reachability k_distance of object obi with respect to

object obj, and it is defined as:

Rdisk(obj, obi) = max(k_dis(obi), d(obj, obi)) (6)

where k is a natural number, and denotes the least number of objects that should be
included in the neighborhood of an object. The k_distance denotes the maximum value of
Euclidean distance from an object to its neighborhood objects. Let Nk(obj) be the number
of objects in the k_distance neighborhood of object obj, k ≤ Nk(obj). d

(
obj, obi

)
is the

Euclidean distance from object obi to obj, and k_dis(obi) denotes the k_distance of object obi.
The reachability k_distance denotes the maximum value of the k_distance and Euclidean
distance from an object to its neighborhood objects. The principle of the reachability
10_distance in three-dimensional texture feature space is shown in Figure 3, where the
reachability 10_distance denotes the reachable distance of an object when k value is 10.
From Figure 3, the 10_distance of object ob1 is d′1, and the Euclidean distance from object
ob1 to obj is d1. Because d1 is greater than d′1, the reachability 10_distance of object ob1 with
respect to object obj is d1. By the same reason, the reachability 10_distance of object ob2
with respect to object obj is d′2.
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Figure 3. Reachability distance of objects in three-dimensional feature space.

The second step is to calculate local reachability density (LRD) of an object according
to the reachability distance. Let LRD

(
obj
)

be the local reachability density of object obj.
LRD

(
obj
)

is defined as:

LRD(obj) =
Nk(obj)

∑
i∈Nk(obj)

Rdisk(obj, obi)
(7)

LRD
(
obj
)

is the inverse of the average reachability distance. Note that LRD
(
obj
)

can
be ∞ if all the reachability distances in the summation are 0.

The last step is to calculate FSOI based on LRD. Let FSOI
(
obj
)

be the FSOI of object obj;
FSOI

(
obj
)

is defined as:

FSOI(obj) = 1−
LRD(obj)× 100%
max
i∈D
{LRD(obi)}

(8)

where D is the set of objects used for outlier detection. The FSOI value is between 0 and
100%, and the higher its value, the greater the probability that an object deviates from the
typical normal objects. Outlier samples and changed objects can be identified according to
the size of the FSOI value.

2.2.3. Refining Samples and Selecting the Optimal Texture Features for Each Category

Based on the results of sampling design, changed sample objects can be described
as outlier samples in each category. Outlier samples can be identified and eliminated
by the iteration of texture feature selection and outlier sample elimination. The iteration
procedure can be described as follows:

1. Calculate the TFCI values using the a priori categories of the initial samples based on
Equation (4), and establish the first TFSV by texture feature selection.

2. Calculate the FSOI values of the initial samples in the TFSV established in step (1)
based on Equation (8). Compared with unchanged samples, outlier samples (i.e., the
changed samples in the initial sample sets) have higher FSOI values. Thus, outlier
samples can be identified by setting an appropriate FSOI threshold. In general, a
higher FSOI threshold may misjudge outlier samples as unchanged samples. On the
contrary, a lower FSOI threshold may misjudge unchanged samples as outlier samples.
In outlier sample detection, it is crucial that all outlier samples must be able to be
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identified. Accordingly, it is reasonable that each outlier sample can be identified
by setting a relatively lower FSOI threshold. Then, eliminate outlier samples by
comparing the size of FSOI values with the FSOI threshold, and update sample sets.

3. Calculate TFCI values using the updated samples in step (2) based on Equation (4),
and establish the second TFSV by texture feature selection.

4. Calculate the FSOI values of samples in the TFSV established in step (3) based on
Equation (8). Detect and eliminate outlier samples, and update sample sets.

5. Repeat steps (3) and (4) until the results of texture feature selection are the same for
each category in the last two iterations.

After the iteration, the optimal texture features of each category can be determined,
and the samples with unchanged categories can be obtained. Refined samples can be
applied to detect changed objects and classify resegmented changed image objects.

2.3. Changed Object Detection Based on the FSOI

In the proposed texture outlier detection method, changed image objects are consid-
ered as outlier data according to texture homogeneity of the refined sample image objects
with the same a priori categories. Accordingly, changed objects can be identified with the
refined samples by calculating the FSOI values of image objects. Figure 4 presents the
process of changed object detection using a texture feature space outlier index. The steps
are described in detail as follows.
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1. First, according to the a priori category cj of an image object to be detected, the data
set used for outlier detection with the samples Samj and the object obi is established,
and the TFSVj is determined by the optimal texture features. Let S be the data set
used for outlier detection. S can be written as:

S = #
{

obi, Sam1
j , Sam2

j , · · · , Samt
j

}
(9)

where #{ } denotes the set of objects used for outlier detection, and t is the number of
samples with the same categories cj.

2. Second, the reachability distance between image objects in S is calculated in the TFSVj
based on Equation (6).

3. Third, the local reachability density of the image objects in S is calculated by Equation (7).
4. Then, the FSOI value of the image object obi can be achieved based on Equation (8).

Compared with unchanged image objects, changed image objects have higher FSOI
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values. Thus, changed image objects can be identified by setting an appropriate
FSOI threshold.

5. Finally, a determination is made whether the object obi has changed or not by com-
paring the FSOI value of the object obi with FSOI threshold. If the FSOI value of
the object obi is greater than FSOI threshold, the object obi should be identified as
changed objects. On the contrary, if the FSOI value of the object obi is smaller than
FSOI threshold, the object obi. should be identified as unchanged objects.

It should be noted that it is necessary and different from outlier sample detection to
evaluate results according to overall accuracies for change detection. Both higher and lower
FSOI thresholds can reduce the overall accuracy of change detection results. Accordingly,
it is very important to set an appropriate FSOI threshold for change detection. In addition,
due to partly changing or changing to multiple different objects, the changed image
objects must be resegmented to extract change information. Multi-resolution segmentation
technology [46,47] is employed to resegment the changed image objects. After resegmenting
the changed image objects, the resegmented changed image objects can be classified with
the refined samples based on the proposed outlier detection method.

3. Experiments and Results

Since temporal and spatial resolutions, remote sensing sensors, and environmental
characteristics have a significant impact on spectral characteristics of surface objects, two
study areas are selected to validate the effectiveness and the adaptability of the proposed
change detection method, including three experiments using vector data and remote
sensing images acquired from different sensors at different times. In addition, the change
detection methods based on two-temporal images are also selected to compare with the
proposed method.

3.1. Study Areas and Data
3.1.1. Study Area A

Study area A is located in Miluo City, Hunan province, China (28◦29′ N, 113◦01′ E).
Miluo City is hilly, and the highest and lowest elevations are 71 m and 36 m, respectively
(Figure 5(a4)). The experiment data in the study area A include QuickBird images, aerial im-
ages, vector data, and DEM. The vector data and DEM were both acquired by digital survey-
ing and mapping in March 2009. The vector data contain 2354 objects and 6 types of surface
objects: forest, water bodies, buildings, cultivated land, roads, and bare land (Figure 5(a1)).
QuickBird images were acquired on 18 September 2017 (Figure 5(a2)) and 20 April 2009
(Figure 5(a5)), respectively. The size of the QuickBird images is 2920 × 2920 pixels with
red, green, and blue bands selected for the experiment, and the spatial resolution of the
images is 0.61 m. The size of the aerial images acquired on 8 February 2016 with DOM
sensor is 2227 × 2227 pixels with red, green, and blue bands selected for the experiment,
and its spatial resolution is 0.8 m (Figure 5(a3)). Two experiments were conducted in the
study area A. The QuickBird images on 18 September 2017 and the vector data in March
2009 were used in experiment one, and the aerial images on 8 February 2016 and the
vector data in March 2009 were used in experiment two. In addition, the two-temporal
QuickBird images on 18 September 2017 and 20 April 2009 were used in the experiment
of the change detection methods based on two-temporal images for comparison with the
proposed method.

3.1.2. Study Area B

To evaluate the effectiveness of the proposed method in the other study area, an-
other study area B was also selected for experiment three. The study area B is located
in Pingchang county, Sichuan province, China (31◦30′ N, 106◦24′ E). It is a very moun-
tainous region, and its highest and lowest elevations are 712 m and 652 m, respectively
(Figure 5(b3)). QuickBird images and vector data were also used in this experiment. The
vector data and DEM were both acquired by digital surveying and mapping in April
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2014. The vector data contain 1954 objects and 6 types of surface objects (i.e., forest, water
bodies, buildings, cultivated land, roads, and bare land (Figure 5(b1)). The QuickBird
images were acquired on 14 August 2016 (Figure 5(b2)). The size of the QuickBird images
is 2334 × 2334 pixels with red, green, and blue bands selected for the experiment, and the
spatial resolution of the images is 0.61 m.
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Figure 5. Data in two study areas. (a1–a5) are the data in the study area A, and (b1–b3) are the data in
the study area B. (a1) The vector data in March 2009; (a2) the QuickBird images on 18 September 2017;
(a3) the aerial images on 08 February 2016; (a4) digital elevation model (DEM) in the study area A;
(a5) the QuickBird images on 20 April 2009; (b1) the vector data in April 2014; (b2) the QuickBird
images on 14 August 2016; and (b3) digital elevation model (DEM) in the study area B.

3.2. Results

In the experiments, image objects are first extracted by segmenting images with the
vector map. Second, texture features of image objects are calculated according to GLCM.
To obtain GLCM of image objects, gray value of each pixel should be calculated by the
equal-weighted average of red, green, and blue bands. Third, sampling design is conducted.
Then, changed samples are refined by the iteration procedure of texture feature selection
and outlier sample detection. Finally, change detection and validation are carried out. In
this section, change detection results are thoroughly analyzed, including sampling design,
texture feature selection and outlier sample detection, change detection, and validation.

3.2.1. Results of Sampling Design

Sampling design needs to be conducted in the study area A and B. The results of
sampling design in the study area A are used for the experiments one and two, and the
results of sampling design in the study area B are used for the experiment three. According
to the proposed sampling design approach, a priori information in the vector map (e.g.,
spatial distribution of the surface objects and topographic properties in the study area)
is employed to allocate samples. First, the sampling area is divided into a uniform grid
whose interval is 100 m × 100 m based on horizontal distance. The results of the uniform
grids in the study area A and B are shown in Figure 6(a1,b1), respectively. Second, the
sampling area is divided into different sampling levels by using the 10 m contour interval
as the standard according to topographic properties based on the DEM. The study area A
and B is divided into four and six sampling levels, respectively. The results are shown in
Figure 6(a2,b2). Then, the number of sampling for six types of surface objects is calculated
in each cell according to Equation (1). Finally, sample objects in each cell are distributed in
a purely random fashion. The results of the sampling design in the two study areas are
shown in Figure 7.
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Figure 6. The results of the uniform grid and the terrain levels in the two study areas: (a1) the
uniform grid in the study area A; (a2) the terrain levels in the study area A; (b1) the uniform grid in
the study area B; and (b2) the terrain levels in the study area B.
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Figure 7. The result of sampling design: (a1,b) are the sample objects for six types of surface objects
from the vector map in the study area A and B, respectively; (a2,a3) are the sample image objects
from the QuickBird images in 2017 and the aerial images in 2016 in the study area A, respectively.

Figure 7(a1,b) are the sample objects for six types of surface objects from the vector
map in the study area A and B, respectively. Figure 7(a2,a3) are the sample image objects
from the QuickBird images in 2017 and the aerial images in 2016 in the study area A,
respectively. It is noted that the sample image objects in the study area B are not shown in
Figure 7. Because the sample objects are taken based on a priori information in the vector
map, the image objects that have changed in a posteriori category are inevitably sampled.
For example, as shown in Figure 7(a2,a3), some changed objects are contained in the sample
image objects, and the same results of the sampling design contain a different number of
changed samples. However, the number of changed sample objects is smaller than the
number of unchanged sample objects. Therefore, the results of sampling design can meet
requirements for outlier data.

3.2.2. Texture Feature Selection and Outlier Sample Detection

After obtaining the results of sampling design in the two study areas, the sample
image objects need to be refined to eliminate outlier samples and select the optimal features
for six types of surface objects in the three experiments. To achieve omission errors of
zero in the outlier sample detection, the FSOI threshold and the k value are set as 70% and
1/5 of total number of outlier detection data, respectively, and only the texture features
with high and very high contribution levels are selected in the iterations. The sizes of the
optimal FSOI threshold and the k value for outlier detection will both be discussed in detail
in the discussion section. After the iterations are completed, the results of texture feature
selection for six types of surface objects in the three experiments are shown in Table 3, and
the results of outlier sample detection in the three experiments are shown in Figure 8.
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Table 3. The results of texture feature selection for six types of surface objects in the three experiments.

Types

Experiment One Experiment Two Experiment Three

Texture Features Texture Features Texture Features

TFCI (%) TFCI (%) TFCI (%)

Forest
f 6 f 9 f 8 f 4 f 1 f 6 f 8 f 9 f 1 f 3 f 4 f 3 f 2 f 12

100 100 89 85 81 100 100 100 75 75 71 100 86 79

Water bodies
f 3 f 11 f 1 f 11 f 3 f 11 f 12 f 2 f 11

100 82 72 82 100 85 100 82 76

Buildings
f 1 f 4 f 4 f 1 f 13 f 11 f 14

86 81 91 86 100 64 64

Cultivated land
f 6 f 9 f 8 f 7 f 2 f 10 f 3 f 11 f 6 f 8 f 9 f 6 f 9 f 8 f 1

100 100 97 93 80 80 100 88 71 71 71 100 100 89 67

Roads
f 8 f 6 f 9 f 6 f 8 f 9 f 6 f 8 f 9

100 98 98 100 100 100 100 100 100

Bare land
f 6 f 9 f 8 f 8 f 6 f 9 f 6 f 8 f 9

100 100 98 100 97 97 100 100 100
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Figure 8. The results of outlier sample detection. (a1,a2) are the results of samples and outlier
samples in experiment one, respectively; (b1,b2) are the results of samples and outlier samples in
experiment two, respectively; (c1,c2) are the results of samples and outlier samples in experiment
three, respectively.

From Table 3, it can be seen that the results of texture feature selection for roads and
bare land are both the same or very similar in the three experiments, e.g., f 6, f 8, and f 9
for roads and bare land. Texture features of buildings and water bodies both have similar
contribution levels in the same study areas. For example, f 1 and f 4 have high contribution
levels on buildings in study area A. However, the results of texture feature selection for
cultivated land and forest are both different in the three experiments, and this is mainly
due to the different textures of forest and cultivated land caused by different phenological
characteristics during different seasons. It follows that selecting the type of texture features
is mainly related to textures of the surface objects themselves, but is not strongly related to
time, remote sensors, and geographical regions of acquired images. Due to the different
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textures of the surface objects in different seasons and geographical regions, it is important
to select the optimal features for different types of surface objects according to images.

An accuracy assessment is carried out to confirm the effect of outlier samples detec-
tion, including commission errors, omission errors, and overall accuracies. In this study,
commission errors are defined as the proportion of unchanged objects being judged to
be outlier objects in all objects, omission errors are defined as the proportion of changed
objects being judged to be normal objects in all objects, and overall accuracies are defined
as the proportion of sample objects being correctly identified in all objects. The results of
accuracy assessment for six types of surface objects in the three experiments are shown
in Table 4. It can be seen that omission errors of samples for all types are all 0 in the three
experiments, and overall accuracies are all very high. This shows that the results of outlier
sample detection can meet the requirements of sample objects used for change detection,
and the outlier samples detection approach is effective for samples taken.

Table 4. The accuracies of outlier sample detection for six types of surface objects in the three experiments.

Type
Experiment One Experiment Two Experiment Three

Omission
Errors (%)

Commission
Errors (%)

Overall
Accuracy (%)

Omission
Errors (%)

Commission
Errors (%)

Overall
Accuracy (%)

Omission
Errors (%)

Commission
Errors (%)

Overall
Accuracy (%)

Forest 0 0 100 0 4 96 0 0 100
Buildings 0 0 100 0 0 100 0 5 95

Roads 0 16 84 0 12 88 0 14 86
Water bodies 0 8 92 0 7 93 0 0 100

Bare land 0 19 81 0 18 82 0 8 92
Cultivated

land 0 6 94 0 0 100 0 2 98

3.2.3. Change Detection and Validation

In the two study areas, three experiments were conducted to detect whether or not
the objects have changed, respectively. First, image objects with a priori information are
extracted from three images using a vector map, respectively. Second, the optimal texture
features are selected to establish the TFSV according to a priori categories of image objects,
and the data set used for outlier detection is constructed with image objects needed to
be detection and sample image objects which have the same a priori categories. Then,
the FSOI value of the image object needed to be detection is calculated by Equation (8).
In order to obtain higher overall accuracies, FSOI threshold is set as 80% in the change
detection experiment. After that, changed objects can be obtained according to the size of
the FSOI values. Figure 9(a1,b1,c1) are the change detection results in the three experiments,
respectively. In Figure 9(a1,b1,c1), the white areas denote changed areas. It can be seen
that there are both clear changes in the two study areas, and there are greater changes in
experiment one than in experiment two and three.

Due to partly changing or changing to multiple different objects, the changed image
objects must be resegmented to extract change information. Multi-resolution segmentation
technology is employed to resegment the changed image objects, and Figure 9(a2,b2,c2)
show the results of resegmentation for the changed image objects in the three experiments,
respectively. Then, the changed categories can be extracted according to the proposed
outlier detection algorithm, i.e., the object can be identified as this type of surface object
if the FSOI values of an object in sample objects of one type of surface object are less
than the FSOI threshold. The results are shown in Figure 9(a3,b3,c3), respectively. The
change extents and trajectories of each type can be calculated according to the results of
the changed categories, and the results are shown in Tables 5–7, respectively.
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Figure 9. The results of change detection based on the proposed method. (a1–a3) are the results of
changed object detection, resegmentation, and classification of changed image objects in experiment
one, respectively; (b1–b3) are the results of changed object detection, resegmentation, and classification
of changed image objects in experiment two, respectively; (c1–c3) are the results of changed object
detection, resegmentation, and classification of changed image objects in experiment three, respectively.

Table 5. Change matrix of six types of surface objects from 2009 to 2017 in experiment one in the study area A.

Types in
2017 (m2)

Types in 2009 (m2)
Total

Changes in 2017

Forest Cultivated Land Bare Land Water Bodies Roads Buildings (m2) %

Forest 837,083 167,831 34,919 7976 4639 9202 1,061,650 −414,256 −28.07
Cultivated land 76,106 447,706 53,150 3814 4459 37,204 622,439 −384,266 −38.17

Bare land 188,669 122,642 59,071 380 1280 24,151 396,193 188,508 90.77
Water bodies 12,922 6312 17,953 131,840 1951 22,787 193,765 30,294 18.53

Roads 115,424 91,192 9587 6259 60,057 57,646 340,165 247,975 268.98
Buildings 245,702 171,022 33,005 13,202 19,804 75,727 558,462 331,745 146.33

Total 1,475,906 1,006,705 207,685 163,471 92,190 226,717 3,172,674

Table 6. Change matrix of six types of surface objects from 2009 to 2016 in experiment two in the study area A.

Types in
2016 (m2)

Types in 2009 (m2)
Total

Changes in 2016

Forest Cultivated Land Bare Land Water Bodies Roads Buildings (m2) %

Forest 1,258,007 51,013 56,558 0 0 50,198 1,415,776 −60,130 −4.07
Cultivated land 0 821,399 0 11,975 0 10,727 844,101 −162,604 −16.15

Bare land 200,206 45,897 50,292 0 0 20,845 317,240 109,555 52.75
Water bodies 0 21,937 0 135,724 0 0 157,661 −5810 −3.55

Roads 0 20,061 0 15,772 61,415 38,657 135,905 43,715 47.41
Buildings 17,693 46,398 100,835 0 30,775 106,290 301,991 75,274 33.20

Total 1,475,906 1,006,705 207,685 163,471 92,190 226,717 3,172,674
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Table 7. Change matrix of six types of surface objects from 2014 to 2016 in experiment three in the study area B.

Types in
2016 (m2)

Types in 2014 (m2)
Total

Changes in 2016

Forest Cultivated Land Bare Land Water Bodies Roads Buildings (m2) %

Forest 522,527 94,714 0 1223 2693 4998 626,154 73,058 13.21
Cultivated land 14,206 839,465 0 61,932 1963 3366 920,932 −74,078 −7.44

Bare land 4943 4881 78,195 1289 947 1319 91,575 6015 7.03
Water bodies 674 2015 0 164,088 0 733 167,510 −71,787 −29.99

Roads 3851 48,694 3409 10,766 106,950 5810 179,479 64,012 55.44
Buildings 6896 5241 3956 0 2914 22,380 41,386 2780 7.20

Total 553,095 995,010 85,560 239,297 115,467 38,606 2,027,036

From Table 5, it can be seen that six types of surface objects have shifted greatly over
the period from 2009 to 2017 in the study area A. In this period, forest and cultivated land
decreased by 28.07% and 38.17%, respectively. In contrast, roads, buildings, bare land, and
water bodies increased by 268.98%, 146.33%, 90.77%, and 18.53%, respectively. In addition,
we can explore the reason for internal conversions between different types from Table 5,
e.g., the increase of bare land is mainly caused by the decrease of forest and cultivated land.
From Table 6, it can also be seen that roads, buildings, and bare land all increased, and
forest, water bodies, and cultivated land all decreased over the period from 2009 to 2016
in the study area A. From Table 7, it can be seen that six types of surface objects have also
shifted over the period from 2014 to 2016 in the study area B. For example, water bodies
and cultivated land decreased by 29.99% and 7.44%, respectively. In contrast, roads, forest,
buildings, and bare land increased by 55.44%, 13.21%, 7.20%, and 7.03%, respectively.

Accuracy assessment is an important part of change detection. The most common
accuracy assessment elements include overall accuracy, omission errors, commission errors,
and the kappa coefficient. The error matrix is the most common method for accuracy
assessment of the change detection results. In order to properly generate an error matrix,
468 objects from the change detection results are randomly selected in the three experi-
ments, respectively. The actual types of objects are compared with the results of change
detection, and the accuracies of the change detection results are evaluated by omission
errors, commission errors, and overall accuracy. The results of accuracy evaluation are
shown in Table 8. As shown in Table 8, change detection results have high accuracy. The
overall accuracies in the three experiments are 95.94%, 96.36%, and 96.28%, respectively.
Omission and commission errors of six types are all very low in the three experiments.
Although the accuracies of bare land are relatively lower compared with other types of
surface objects, their accuracies are still very high. This shows that the proposed change
detection method is valid and can satisfy the accuracy requirement of change detection.
The proposed change detection method can be well suited to a variety of study areas and
images acquired from different sensors, which can be feasible for the automated change
detection and updating land cover data at a large or global scale.

Table 8. The accuracies of change detection result based on the proposed method in the three experiments.

Type
Experiment One Experiment Two Experiment Three

Omission
Errors (%)

Commission
Errors (%)

Omission
Errors (%)

Commission
Errors (%)

Omission
Errors (%)

Commission
Errors (%)

Forest 3.85 6.25 2.56 5.00 2.13 1.28
Cultivated land 3.53 3.53 2.35 3.49 2.36 2.30

Bare land 3.95 7.59 3.95 8.75 3.92 5.19
Water bodies 3.89 1.33 2.67 0.00 1.30 1.56

Roads 4.11 2.78 6.85 2.86 4.32 2.69
Buildings 5.06 2.59 3.80 1.29 2.62 2.53

Overall accuracy 95.94% 96.36% 96.28%
Kappa coefficient 0.951 0.956 0.953
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3.3. Comparison of the Proposed OTO-Based Method with Other Change Detection Methods

To validate the effectiveness of the proposed method, four other widely used methods
based on two-temporal images, e.g., the object-based methods (OBMs) [20], the deep-
learning-based methods (DLMs) [26], random forest (RF) [65], and support vector machine
(SVM) [24], were selected for comparison. The two-temporal QuickBird images in the study
areas A (Figure 5(a2,a5)) are used for experiments. These four change detection methods are
all based on the classified images. First, two-temporal images are separately classified into
two thematic maps, and then changed results are obtained by implementing comparison of
classified images. In the object-based change detection method, remote sensing images are
first segmented using the multi-resolution segmentation method from eCognition (v8.7)
software, and then the image objects are classified based on the hierarchical classification
method. DLM, RF, and SVM all use ENVI (5.3) software to classify two-temporal images
and extract change information. The training samples of the four change detection methods
required for the supervised classifiers are selected by visual interpretation of images. The
change detection results are shown in Figure 10. By visual judgment, there are significant
different results of change detection among the four methods. The ground truth data are
compared with results of four change detection methods, and the accuracies of change
detection results are achieved and are shown in Table 9.
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Figure 10. The results of change detection of four methods based on two-temporal images. (a) The
object-based methods (OBMs), (b) the deep-learning-based method (DLMs), (c) the random forest
(RF), and (d) the support vector machine (SVM). Note: the white areas denote unchanged areas in
Figure 10.

Table 9. Accuracy of change detection results for four methods.

Object-Based
Methods (OBMs)

Deep-Learning-Based
Method (DLMs)

Random
Forest (RF)

Support Vector
Machine (SVM)

Proposed
Method

Overall accuracy (%) 79.23 90.16 78.50 80.50 95.94
Omission errors (%) 9.68 4.12 8.04 9.47 1.87

Commission errors (%) 11.09 5.72 13.46 10.03 2.19

As shown in Table 9, the overall accuracies of OBMs, DLMs, RF, and SVM are 79.23%,
90.16%, 78.5%, and 80.5%, respectively. The overall accuracy of the proposed change
detection method is higher than that of the four methods. The omission and commission
errors of the four methods are all higher than those of the proposed change detection
method. Compared with the proposed method, the shortfalls of the four methods mainly
include: (1) it is difficult to choose training samples due to the lack of a priori informa-
tion; (2) the results of change detection are sensitive to the training data quality and the
number of training samples; and (3) unchanged areas need to also be classified. In con-
clusion, the proposed change detection method is outstanding. The main reasons include:
(a) using existing vector data to segment images can reduce the search space and minimize
false segmentation of objects from images, (b) the change detection error caused by the
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transmission of classification error is reduced to a great extent, and (c) samples for change
detection are taken automatically.

4. Discussion
4.1. Influence of Sample Proportions and Sizes on the Texture Feature Selection of Surface Objects

In the proposed change detection method, it is very important to select the optimal
texture features for types of surface objects. However, the optimal texture features need
to be identified by calculating TFCI values using samples. Therefore, to test the influence
of sample proportions and sizes on the TFCI value, different sampling schemes will be
executed in this section.

Two types of surface objects from the QuickBird images in the study area B (Figure 5(b2)),
i.e., cultivated land and forest, are selected for the experiment. Two sets of experiments
for each type of surface objects are designed to test the influence of samples on the TFCI
value. The first set of experiments with different sample proportions are carried out to
observe the difference of the TFCI value, and the results of TFCI values for cultivated land
and forest are shown in Figure 11(a1,b1), respectively. As shown in Figure 11(a1), the size
of cultivated land objects included in samples varies from 60 to 160, and the size of the
other types of surface objects is fixed as 160. For example, in Figure 11(a1), 60/160 denotes
60 cultivated land objects and 160 other types of surface objects which are included in the
samples. As shown in Figure 11(b1), the size of forest objects included in samples varies
from 20 to 100, and the size of the other types of surface objects is fixed as 100. For example,
in Figure 11(b1), 20/100 denotes 20 forest objects and 100 other types of surface objects
which are included in the samples. The second set of experiments with the same sample
proportions and different total sample sizes are carried out to observe the difference of
the TFCI value, and the results of TFCI values for cultivated land and forest are shown
in Figure 11(a2,b2), respectively. As shown in Figure 11(a2), the sample proportions of
cultivated land objects are fixed as 50%, and the total sample sizes vary from 80 to 320.
As shown in Figure 11(b2), the total sample sizes vary from 40 to 200 when the sample
proportions of forest objects are fixed as 50%.
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Figure 11. The results of TFCI values of cultivated land and forest with the different sample propor-
tions and sizes. (a1,a2) are the results of TFCI values of cultivated land with the different sample
proportions and sizes, respectively. (b1,b2) are the results of TFCI values of forest with the different
sample proportions and sizes, respectively. Note: 60/160 denotes 60 cultivated land objects and
160 other types of surface objects which are included in the samples.

From Figure 11(a1), it can be seen that the contribution levels of texture features on
cultivated land are all very similar when the number of cultivated land objects varies from
60 to 160. For example, the TFCI values of f 5 and f 13 are both lower than 40%, and it shows
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that f 5 and f 13 are both in low contribution levels. The TFCI values f 6, f 8 and f 9 are all
higher than 60%, and they are all in high contribution levels. The same conclusions can
also be drawn in Figure 11(b1), e.g., f 1, f 2, f 3, f 4, f 7, f 10, f 11 and f 12 all have high or very
high contribution levels on forest. From Figure 11(a2), it can also be seen that f 6, f 8 and f 9
all have very high contribution levels on cultivated land when the total sample sizes vary
from 80 to 320. As shown in Figure 11(b2), f 1, f 2, f 3, f 4, f 10, f 11 and f 12 all have very high
contribution levels on forest when the total sample sizes vary from 40 to 200. The overall
result indicates that contribution levels of texture features on types of surface objects will
not be affected by sample proportions and sizes.

4.2. Influence of Image Data Source on the Texture Feature Selection of Surface Objects

To test the influence of different image data sources on the texture feature selection
of surface objects, two study areas including four images are selected for the experiment.
The first study area is located in Changsha city, Hunan province, China, including two
aerial images with DOM sensor acquired in March 2009 and September 2013, respectively.
The spatial resolution of the aerial images is 0.61 m with red, green, and blue bands. Two
aerial images are not shown in the figures. The second study area includes two QuickBird
images acquired in March 2009 and September 2017, respectively. Two QuickBird images
are shown in Figure 5(a2,a5). Six types of surface objects are both included in the two
study areas. To compare the results of experiments from different image data sources,
300 samples are selected for experiment in each study area, including 50 samples for each
type of surface object. The results of TFCI values of six types of surface objects from four
images are shown in Figure 12. Figure 12a,b are the results of TFCI values of six types
of surface objects from the aerial images in March 2009 and September 2013, respectively.
Figure 12c,d are the results of TFCI values of six types of surface objects from the QuickBird
images in March 2009 and September 2017, respectively.
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Figure 12. The results of TFCI values of six types of surface objects with the different image data
source. (a,b) are the results from the aerial images in March 2009 and September 2013, respectively.
(c,d) are the results from the QuickBird images in March 2009 and September 2017, respectively.

From Figure 12, it can be seen that the contribution levels of some texture features
on bare land and roads are very similar in the four images. For example, f 6, f 8 and f 9 all
have very high contribution levels on bare land and roads. Texture features of buildings
and water bodies both have similar contribution levels in the same study areas, and their
contribution levels are different in the different study areas. For example, f 6, f 8, f 9, f 13 and
f 14 all have high contribution levels on buildings in the first study area. f1 and f4 have
high contribution levels on buildings in the second study area. However, the contribution
levels of texture features on cultivated land and forest are very different in the four images.
Thus, it can be seen that the different contribution levels of texture features on types of
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surface objects are mainly caused by different textures of the surface objects themselves.
For example, textures of building roofs are different in different study areas due to different
architectural styles, and forest and cultivated land have different textures during different
phenological periods.

Therefore, it is very important to select the optimal features for different types of
surface objects according to images acquired from different study areas and phenological
periods because of the different textures of the surface objects in different seasons and
geographical regions.

4.3. Role of Neighborhood Parameter k and FSOI Threshold in Outlier Detection

Calculating the FSOI values of image objects, the only parameter that needs to be set
is the neighborhood parameter k. The FSOI value of an image object is affected by the size
of k value, owing to the following: the greater the number of image objects included in
the neighborhood, the smaller the probability that they belong to the same category. In
addition, setting an appropriate FSOI threshold can also remarkably increase the accuracy
of outlier detection. Therefore, it is very important to select an appropriate k value and
FSOI threshold for outlier detection.

To evaluate the effect of different k values and FSOI threshold on outlier detection,
four sets of outlier detection data from the QuickBird images acquired on 18 September
2017 in the study area A (Figure 5(a2)), i.e., cultivated land (145 cultivated land objects and
65 outlier objects), forest (120 forest objects and 30 outlier objects), buildings (85 buildings
objects and 35 outlier objects), and water bodies (135 water bodies objects and 45 outlier
objects) are selected for experiment. It should be noted that these outlier detection data
were randomly selected by visual interpretation, which does not affect the implementation
of the proposed automatic change detection.

To effectively achieve outlier detection, it is necessary and important to construct a
texture feature space vector for the outlier detection data by selecting the optimal texture
features. The results of texture features selection for four sets of outlier detection data are
shown in Table 3 (experiment one). Then, the FSOI values of each object are calculated,
and the frequency distribution histograms of the FSOI values for outlier detection data
with different k values are shown in Figure 13. As shown in Figure 13, it is clear that
the number of objects at a low FSOI interval increases gradually with the increase of the
k value, and the number at the high FSOI interval decreases gradually. When the k value
changes during a certain range, e.g., 35–65 in Figure 13a, the number of objects at high FSOI
interval tends to be stable. When the k value is too large (e.g., close to the total number of
outlier detection data), the objects to be detected are almost all at a low outlier degree level,
e.g., Figure 13c. Therefore, a k value that is set too large or too small decreases the accuracy
of the outlier detection results, and it is very important to select an appropriate k value for
outlier detection. From Figure 13, we can conclude that it is reasonable to set k value as
1/5–1/3 of the number of total outlier detection objects.

To quantitatively evaluate the effect of outlier detection, commission errors, omission
errors, and overall accuracies of four sets of outlier data are calculated by different k values
and FSOI threshold, the results of which are shown in Figure 14. As shown in Figure 14, the
higher the FSOI threshold, the higher the omission errors and the lower the commission
errors, On the contrary, the lower the FSOI threshold, the lower the omission errors, and
the higher the commission errors. Omission errors and commission errors can both reach 0,
and overall accuracies can all reach 100% when the FSOI threshold is set as 80% and an
appropriate k value is selected (e.g., 50–90 in Figure 14(a1–a3), 35–65 in Figure 14(b1–b3),
20–50 in Figure 14(c1–c3), and 35–65 in Figure 14(d1–d3)). When the FSOI threshold is set as
70%, no matter what the value of k is, omission errors can all reach 0; however, that would
lead to a high commission error and low overall accuracies. It is reasonable that omission
errors can reach 0 at the cost of high commission errors in outlier sample detection, but it is
necessary to evaluate the experimental results according to overall accuracies in change
detection. Therefore, the results of outlier detection are valid and reliable when the k value
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is set as 1/5–1/3 of the number of total outlier detection objects and the FSOI threshold is
set as 80%.
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Figure 14. Accuracy analysis of outlier detection by using different k values and FSOI thresh-
old: (a1–a3) are commission errors, omission errors, and overall accuracy of cultivated land, re-
spectively; (b1–b3) are commission errors, omission errors, and overall accuracy of forest, respec-
tively; (c1–c3) are commission errors, omission errors, and overall accuracy of buildings, respectively;
(d1–d3) are commission errors, omission errors, and overall accuracy of water bodies, respectively.
Note: Transverse axis denotes k values, and T denotes FSOI threshold. CE: commission errors, OE:
omission errors, and OA: overall accuracy.

4.4. Role of Texture Feature Selection in Outlier Detection

In the existing literature, only a few texture features are considered based on experi-
ence to describe the texture information of image objects, which lacks accurate quantitative
evaluation. For example, Anniballe et al. [66] selected five texture features (contrast, corre-
lation, energy, homogeneity, and entropy) to investigate the textural properties of buildings.
However, Sofina and Ehlers et al. [38] utilized three other texture features (angular second
moment, contrast, and inverse difference moment) to detect buildings damaged by an



Remote Sens. 2021, 13, 3857 22 of 25

earthquake. To evaluate the performance of the optimal texture features on outlier de-
tection, two experiments with and without texture feature selection are conducted. The
QuickBird images acquired on 18 September 2017 in the study area A (Figure 5(a2)) are
used for two experiments. To compare the results of two experiments, 600 objects are
selected in each experiment, including 300 outlier objects (changed objects). The frequency
distribution histograms of outlier detection with and without texture feature selection are
shown in Figure 15a,b, respectively.
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Figure 15. Frequency distribution of outlier detection. (a) The results of outlier detection with the op-
timal texture feature selection, and (b) the results of outlier detection without texture feature selection.

From Figure 15a, it can be seen that the FSOI values of unchanged objects are smaller
than 80%, while those of outlier objects (changed objects) are mostly larger than 80%.
This indicates that the FSOI values of objects with the optimal texture feature selection
can be used to distinguish changed and unchanged objects. However, the distributions
of changed and unchanged objects both overlap considerably in Figure 15b. Thus, it
is difficult to distinguish changed and unchanged objects based on the FSOI values of
objects without optimal texture feature selection. When the FSOI threshold is set as 80%,
the results of the quantitative accuracy analysis of the outlier detection with and without
texture feature selection are shown in Table 10. Compared with the optimal texture features,
the overall accuracy of outlier detection without texture feature selection, which reduced
significantly, is only 57.78%. The omission and commission errors, which both significantly
increased, reach 35.00% and 7.22%, respectively. Therefore, the best accuracy results of
outlier detection depend on the results of the optimal texture features.

Table 10. Accuracy of outlier detection with and without texture feature selection.

Omission Errors (%) Commission Errors (%) Overall Accuracy (%)

with texture feature selection 4.52 0.72 94.76
without texture feature selection 35.00 7.22 57.78

5. Conclusions

In this paper, we have proposed a change detection method using a texture feature
space outlier index from mono-temporal remote sensing images and existing vector data.
In the proposed method, the vector data are taken as a substitute for historic remote sensing
images, and changed objects in the recent images are considered as outlier data according to
texture homogeneity among objects belonging to the same category. The sampling design
considering spatial distribution and topographic properties of image objects is devised
to incorporate as few changed samples as possible while still having enough statistical
power to detect changed objects. A TFCI is defined by information gain to select the
optimal texture features for each category. An FSOI based on local reachability density
is presented to automatically detect outlier samples and changed objects. Samples with
changed categories are refined by the iteration procedure of texture feature selection and
outlier sample elimination. Overall, the proposed method has the following advantages:
(a) the proposed method can reduce the search space and minimize false segmentation of
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image objects by using existing vector data to segment images, (b) the change detection
error caused by the transmission of classification error can be reduced to a great extent,
and (c) samples for change detection can be automatically extracted.

The performance of the proposed method was tested by three experiments in the two
study areas. In outlier samples detection, omission errors of zero can be achieved when
the FSOI threshold is set as 70%. In change detection, overall accuracies of 95.94%, 96.36%,
and 96.28% were achieved in the three experiments, respectively, while the omission errors
and commission errors of every category were all very low. To validate the effectiveness
of the proposed method, four other widely used methods (i.e., OBMs, DLMs, RF, and
SVM) based on two-temporal images were used for comparison. The experiment results
showed that the accuracy of the proposed method is higher than that of the four change
detection methods.

The proposed method can be well suited to a variety of images and different study
areas, can accurately detect a given geographical object, and can be applied for ecological
environmental monitoring, spatial data updating, and post-disaster emergencies, etc.
Despite the advantages in our method, much work remains to improve the effectiveness of
change detection from mono-temporal images. For example, the FSOI threshold plays an
important role in detecting changed objects by the proposed outlier detection technique,
but it is set though many experiments in this paper. Therefore, future work will investigate
how to set the FSOI threshold with a more reasonable approach. In addition, our proposed
method may not be efficient and accurate for change detection of high-rise buildings in city
areas, because it is often inaccurate in identifying high-rise building roofs from an image
by using a vector map.
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