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Abstract: It is important for aquaculture monitoring, scientific planning, and management to extract
offshore aquaculture areas from medium-resolution remote sensing images. However, in medium-
resolution images, the spectral characteristics of offshore aquaculture areas are complex, and the
offshore land and seawater seriously interfere with the extraction of offshore aquaculture areas.
On the other hand, in medium-resolution images, due to the relatively low image resolution, the
boundaries between breeding areas are relatively fuzzy and are more likely to ‘adhere’ to each
other. An improved U-Net model, including, in particular, an atrous spatial pyramid pooling (ASPP)
structure and an up-sampling structure, is proposed for offshore aquaculture area extraction in
this paper. The improved ASPP structure and up-sampling structure can better mine semantic
information and location information, overcome the interference of other information in the image,
and reduce ‘adhesion’. Based on the northeast coast of Fujian Province Sentinel-2 Multispectral
Scan Imaging (MSI) image data, the offshore aquaculture area extraction was studied. Based on the
improved U-Net model, the F1 score and Mean Intersection over Union (MIoU) of the classification
results were 83.75% and 73.75%, respectively. The results show that, compared with several common
classification methods, the improved U-Net model has a better performance. This also shows that
the improved U-Net model can significantly overcome the interference of irrelevant information,
identify aquaculture areas, and significantly reduce edge adhesion of aquaculture areas.

Keywords: medium-resolution remote sensing image; offshore aquaculture area; deep learning;
U-Net; classification

1. Introduction

The vigorous development of China’s offshore aquaculture industry [1] has provided
tremendous help to China’s economic development while also providing necessary nutri-
ents for the growing population [2]. In 2019, the total amount of marine aquaculture in
China was 20.65 million tons, accounting for 40.7% of the total aquatic product cultivation,
a year-on-year increase of 1.76% [3]. The commonly used methods of offshore aquaculture
are floating raft aquaculture and cage aquaculture, which are usually located in coastal
waters [4]. However, due to the lack of reasonable management and control, excessive
aquaculture, and other factors, the development of offshore aquaculture has also brought a
series of problems, such as the eutrophication of the aquaculture sea area [5], bringing a
negative impact on the sustainable development of the marine ecosystem [6].

Remote sensing technology can overcome the shortcomings of traditional field surveys
and realize full-time and large-scale monitoring [7]. It is an effective means to achieve
dynamic monitoring of offshore aquaculture and has been widely used. In recent years,
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researchers have proposed many classification methods for aquaculture areas based on
remote sensing images.

Sridhar et al. constructed a saltpan index based on the VIS (Green) and short-
wavelength infrared (SWIR) bands and extracted the confusing saltpans and aquaculture
area from remote sensing images [8]. Lu et al. constructed an aquaculture area index based
on the different spectral characteristics of different types of aquaculture areas on remote
sensing images and combined texture information with the shape characteristics of the
aquaculture area to achieve the classification of aquaculture areas [9]. Tang et al. combined
the spectral information and texture feature information of remote sensing images and used
decision trees as classifiers to extract aquaculture areas from remote sensing images [10].
Chu et al. used the support vector machine (SVM) algorithm to successfully extract the
floating raft aquaculture area from the high-resolution satellite image of Gaofen-1 (GF-1)
based on the spectral information and texture feature information of the remote sensing
image [11]. Most of the above methods are classified by constructing a spectral index
combined with traditional machine learning algorithms. However, the construction of a
spectral index and the feature selection of traditional machine learning algorithms often
require the support of relevant professional knowledge and experience. On the other
hand, the above method has high precision in small-scale offshore aquaculture extraction,
but it is difficult to maintain a good extraction effect in large-scale offshore aquaculture
extraction [12].

The accuracy of the results based on machine learning algorithms is more likely to
encounter bottlenecks. With the great success of deep learning in the field of computer
vision, remote sensing scholars increasingly apply deep learning to the field of semantic
segmentation of remote sensing images [13,14], and aquaculture based on remote sensing
images extraction is also one of them. Compared with traditional extraction methods for
offshore aquaculture areas, deep learning methods are used to extract offshore aquaculture
areas, which avoids the need to perform preprocessing operations such as water and land
separation on remote sensing images first and also improves the extraction efficiency. At
the same time, the deep learning method has a better analysis ability in the face of the
dense distribution and complex spectral information of the offshore aquaculture area [15]
and compared with the traditional algorithm (random forest, support vector machine, etc.),
it can extract more abstract and useful features [16] and has better extraction accuracy.

Cui et al. used a method based on FCN (Full Convolutional Neural Network) [17]
by adding L2 regularization and dropout strategies to avoid overfitting and extracted the
offshore floating raft culture area in Lianyungang [18]. Fu et al. proposed a hierarchical
cascade structure composed of atrous convolution to obtain contextual information while
using the attention mechanism to optimize the feature matching of different levels of feature
maps to better identify offshore aquaculture areas of various sizes [19]. Sui et al. adjusted
the image display method based on the spectral characteristics of the offshore aquaculture
area and at the same time used GAN (Generative Adversarial Networks) [20] to generate
training data to make up for the lack of training data. The above strategy improved the
extraction accuracy of the offshore cage and floating raft aquaculture area [21].

The U-Net model is a commonly used model in the field of semantic segmentation.
Compared with other models in semantic segmentation, the U-Net model has smaller
parameters and is convenient for training and prediction [22]. It was initially applied to
biomedical tasks and then gradually applied to the classification of remote sensing images.
Yang et al. used the U-Net model to classify ground land cover types and achieved better
results compared with other methods [23]. In addition, the U-Net model requires repeated
down-sampling of images, which will inevitably lose location information, leading to
smooth edges of objects [24]. In view of the above problems, many researchers have im-
proved the U-Net model. Cui et al. improved the decoder part of the U-Net model and
proposed a PSE structure based on an SPP structure for the decoder part. The improved
model can help capture the edge information of aquaculture areas in feature maps of differ-
ent sizes and effectively reduce the problem of “adhesion” between adjacent aquaculture
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areas [25]. Cheng et al. also improved the U-Net model using Hybrid Dilated Convolu-
tion (HDC) [26] to expand the network receptive field, thus as to obtain more semantic
information [27]. The above research mainly focuses on one kind of aquaculture area, such
as floating raft areas. Secondly, the above method mainly aims to further improve the
information extraction ability of U-Net model without considering further utilization of
extracted information.

In recent years, researchers investigating the extraction of offshore aquaculture areas
based on deep learning methods have mostly focused on high-spatial-resolution remote
sensing images [28]. However, the use of high-resolution remote sensing images to extract
large-scale offshore aquaculture areas requires massive amounts of data and computing
resources. At the same time, high-resolution remote sensing images are usually not avail-
able for free [29]. Therefore, the extraction of large-scale offshore aquaculture areas based
on high-spatial-resolution remote sensing images is difficult to achieve. The marginal
information between different aquaculture areas in low-resolution remote sensing images
is indistinguishable, thus it is difficult to accurately extract offshore aquaculture areas based
on low-resolution remote sensing images. Medium-resolution remote sensing images are
undoubtedly a better choice, but the borders of offshore aquaculture areas in medium-
resolution remote sensing images are more blurred than high-resolution remote sensing
images and are more susceptible to the influence of coastal land and seawater, and spectral
information is more complicated, which leads to the difficulty of offshore aquaculture
area extraction. Therefore, we propose an improved U-Net model for medium-resolution
aquaculture area extraction. The motivations behind the development of the model include
two aspects. Firstly, we hoped that the model could better mine the relevant information of
aquaculture areas from medium resolution remote sensing. The improved U-Net model
uses the improved ASPP structure to mine semantic and location information of aqua-
culture areas from feature maps at different scales and uses the flow alignment module
(FAM) [30] to replace the traditional up-sampling method to better match feature maps at
different levels thus as to make full use of the relevant information of aquaculture areas.
Secondly, both the ASPP (atrous spatial pyramid pooling) structure and FAM inevitably
retain some irrelevant information when acquiring relevant information. The improved
U-Net model uses an attention mechanism to filter information. At the same time, the
attention mechanism also makes the model pay more attention to the information related
to the aquaculture area and further overcome the interference of irrelevant information.

The rest of the paper is structured as follows: the Section 2 mainly introduces the
research area of the experiment, the relevant data of the experiment, and the processing
method. The Section 3 introduces the improved U-Net model proposed in detail. Finally,
the Sections 4 and 5 introduce the details of the experiment and provide a discussion and
conclusion.

2. Study Area

The study areas selected in this paper were Sansha Bay and Luoyuan Bay in the north-
eastern sea area of Fujian Province, and their geographic scope is between 26◦10′~26◦48′N
and 119◦34′~120◦09′E. The sea area has superior natural resources and rich marine fish-
ery resources, which provides very favorable conditions for the development of offshore
aquaculture. There are mainly two types of aquaculture areas in the experimental area: the
floating raft aquaculture area and the cage aquaculture area. The floating raft aquaculture
area is shown as a dark rectangular strip on the image, which is mainly used for cultivating
kelp, seaweed, and mussels; the cage aquaculture area is gray-white on the image, and it is
mainly used for fish and shrimp [27], as shown in Figure 1.

The data used in this study were Sentinel-2 Multispectral Scan Imaging (MSI) image
data; the shooting date was 13 February 2018; the spatial resolution was 10 m, and it
contained four bands (red band, green band, blue band, and near-infrared band); the pixel
size was 7095× 7030, covering the sea area where Sansha Bay and Luoyuan Bay are located.
First, we performed atmospheric correction and other preprocessing operations on remote
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sensing images, and then marked the processed images, which were divided into three
categories: background, raft aquaculture area, and cage aquaculture area, with 0 for the
background information and 1 for the cage aquaculture zone; 2 represents the floating
raft aquaculture zone. In order to avoid memory overflow, this experiment was based on
the sliding window method to segment the remote sensing image. The image block with
a pixel size of 512 × 512 was selected as the segmentation window, and the sliding step
was 256.
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3. Methods

In this section, we first introduce the overall structure of the improved U-Net model.
The improved U-Net model is mainly composed of three parts. Specifically, the traditional
convolutional neural network was first used as the feature extraction network, and the
corresponding feature map was obtained according to the input remote sensing image. The
encoder part obtained feature maps of different scales, and these feature maps contained
semantic information and location information of the offshore aquaculture area. After that,
the feature map was input into the decoder by the connection layer, and according to the
feature maps of different levels, it was gradually restored to the input image size. Next,
we will describe the details of the improved U-Net model, including the improved ASPP
structure and up-sampling structure.

3.1. The Proposed Improved U-Net Model

In this work, the U-Net model was selected as the backbone of the network. The
U-Net model [22] consisted of an encoder part and a decoder part, and the encoder and
decoder were connected through an intermediate layer. The encoder part can extract image
features, and the decoder part was used to gradually restore the feature map obtained by
the encoder to the original image size. Therefore, the feature extraction capability of the
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encoder part and the image restoration capability of the decoder part directly affect the
performance of the entire network.

The improved U-Net model proposed in this paper used Efficientnet [31] as the feature
extraction network in the encoder part. Efficientnet has better accuracy and a faster speed
than traditional networks such as ResNet [32], DenseNet [33], and Xception [34]. An im-
proved ASPP structure was used between the encoder and the decoder. The decoder part
restored the feature map size through the proposed up-sampling structure, which was com-
posed of a flow alignment module and an ECA (Efficient Channel Attention) module [35].
Additionally, the encoder and decoder parts of the same level were connected through
skip connection, which contained an attention module composed of strip pooling [36]. The
overall structure of the improved U-Net model is shown in Figure 2.
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3.2. The Improved ASPP Structure

Context information helps to distinguish the target object from the background infor-
mation [37]. Therefore, the ability to capture multi-scale information is of great significance
in solving the problem of offshore aquaculture areas easily being disturbed by background
information in medium-resolution remote sensing images.

In order to obtain contextual information, we chose the ASPP structure as the main
body for research. ASPP (atrous spatial pyramid pooling) structure [38] realizes pyramid-
shaped void pooling on the spatial scale. The traditional ASPP structure is usually com-
posed of a 1 × 1 convolution, three 3 × 3 atrous convolutions with different sampling rates,
and a spatial pooling. In this structure, feature maps of different scales can be obtained by
setting different sampling rates.

In order to obtain contextual information more effectively and make it more suitable
for extraction tasks in offshore aquaculture areas, the traditional ASPP structure was
improved. The improved ASPP structure proposed in this paper, as shown in Figure 3a,
mainly uses strip pooling instead of traditional spatial pooling. As the sampling window
of the traditional spatial pool is square, when the target object is a long strip, such as
an offshore aquaculture area, the square window will inevitably contain interference
information from other unrelated areas, while for the strip pool, long strip sampling
windows, sampling reduces the acquisition of irrelevant information, and reduces the
interference of the above problems to a certain extent [36]. The improved ASPP structure is
shown in Figure 3b.
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3.3. The Up-Sampling Structure

The encoder–decoder structure network generally transfers the feature map obtained
by the encoder part to the decoder part through a skip connection to gradually restore the
original image size. The decoder partly restores the image size, usually using interpolation
methods, but the interpolation method does not combine the information of low-level
features and high-level features very well, and it is very prone to misalignment of semantic
information. Li et al. proposed a flow alignment module (FAM). By referring to the optical
flow idea in the field of video semantic segmentation, different levels of features were used
to construct the offset field, and then the image size was gradually restored through the
offset field [37].

This method first processes the feature maps of different scales and compresses the
number of channels of the feature maps to the same. Then, it generates the corresponding
offset field according to the feature maps of different scales and uses the generated offset
field to restore the image size of the high-level feature to the image size of the low-level
feature. Restoring the image size of the feature map through the offset field can make
better use of the semantic information of different levels, reduce the problem of semantic
misalignment, and further reduce the generation of redundant information. However, this
method not only obtains more semantic information but also inevitably obtains more irrel-
evant information and other interference information, which will affect the classification
accuracy of the model.

The Squeeze-and-Excitation (SE) block in squeeze-and-excitation networks (SENet)
automatically obtains the importance of each channel by learning the dependencies be-
tween different channels, and then pays more attention to the features related to the current
task according to the learning results, and suppresses the features that are not related to the
current task [39]. Based on this characteristic of the attention mechanism, we considered
combining the attention mechanism with the flow alignment module.

However, the Squeeze-and-Excitation (SE) block obtains the importance of each chan-
nel by learning the dependencies between all channels. Wang et al. found through research
that learning the dependencies between all channels was inefficient and unnecessary. Thus
they proposed a more efficient attention module (ECA, Efficient Channel Attention) mod-
ule [35]. The performance of this module is better than the Squeeze-and-Excitation (SE)
block, and at the same time, it hardly increases the complexity of the model. Therefore,
we finally chose the ECA module combined with the flow alignment module to form an
up-sampling structure.

Specifically, we first used the offset field in the flow alignment module for up-sampling
to recover the image size of the high-level feature map. After the up-sampling, we used
the residual structure constructed by the ECA module to focus on the information related
to the current task and suppress irrelevant information. At the same time, the residual
structure can also effectively alleviate the problem of gradient disappearance.

The complete up-sampling structure is shown in Figure 4. First, the low-level fea-
ture map and the high-level feature map adjusted the number of channels through a
1 × 1 convolution, respectively. Then, we restored the high-level feature map to the size of
the low-level feature map, used different levels of feature maps to generate an offset field,
and then restored the high-level feature map to the size of the low-level feature map accord-
ing to the offset field sampling as the output feature map. The output feature map was then
input to the residual structure formed by the ECA module, and, finally, the final output
feature map was obtained. This structure made better use of the semantic information
between different levels while effectively reducing the generation of irrelevant information.
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4. Results and Discussion
4.1. Experiment Setting

The experiment was trained on a server equipped with NVIDIA GeForce RTX 2080Ti
11GB GPU. The experimental model was implemented using the PyTorch framework [40].
The experiment used the Adam optimizer; the initial learning rate was 0.0001; the cosine
annealing learning rate strategy was used; the batch size was set to 4; the iteration period
was 50 times; the loss function used the cross-entropy function; and the classifier used the
softmax function.

In order to avoid overfitting, horizontal, vertical flip, and random noise were used for
data enhancement. After data enhancement, there were 1564 images in the training set and
480 images in the validation set, and the image sizes were 512 × 512. After the training, a
4100 × 4000 remote sensing image was used to verify the effectiveness of the improved
U-Net model.

4.2. Accuracy Assessment and Comparison

In order to verify the effectiveness of the improved U-Net model, in addition to experi-
menting with our model, we also added the original U-Net model, DeepLabV3+ model [41],
and the traditional machine learning algorithm SVM [42] to extract the floating raft and
cage culture area from sentinel-2 MSI image data in the study. To avoid the difference
in feature extraction capabilities due to different feature extraction networks, both the
original U-Net model and the DeepLabV3+ model in this experiment used EfficientNet as
the feature extraction network of the model.

To extract offshore aquaculture areas using traditional machine learning algorithms
SVM, first, we used the water index to extract the seawater in the image, and then used
the machine learning algorithm SVM to extract floating rafts and cage aquaculture areas
from the seawater. We used the more commonly used Normalized Difference Water Index
(NDWI) [43]. In the experiment, we used precision, recall, F1 score, overall accuracy (OA),
kappa coefficient, and Mean Intersection over Union (MIoU) to evaluate the extraction
ability of different models for offshore floating raft and cage aquaculture areas. F1 score is
the harmonic average of precision and recall rate, which can better evaluate the performance
of the model. Mean Intersection over Union (MIoU) is a common evaluation index in
semantic segmentation. The calculation formulae of the above evaluation index are shown
in Formulas (1)–(6):

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)
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F1 = 2× precision× recall
precision + recall

(3)

kappa =
p0 − pe

1− pe
(4)

OA =
TP + TN

TP + TN + FP + FN
(5)

MIoU =
1

k + 1

k

∑
i=0

TP
TP + FN + FP

(6)

where TP (true positive), TN (true negative), FP (false positive), FN (false negative), p0,
pe are all calculated according to the confusion matrix, and K represents the number
of categories.

4.3. Comparison Experiment

First, we analyzed the classification results of each model on the test set from a
qualitative perspective, as shown in Figure 5. From the classification results, it can be seen
that the classification results based on the traditional machine learning algorithm SVM
were significantly worse than the classification results based on several other deep learning
methods. A lot of background information was mistakenly divided into floating raft
aquaculture and cage aquaculture areas. Compared with the traditional machine learning
algorithm SVM, the classification results of the original U-Net model and DeepLabV3+
model significantly reduced the misclassification of floating raft aquaculture area and
cage aquaculture area, but there were still some obvious problems of missing points in
the cage aquaculture area. The improved U-Net model proposed in this paper can better
obtain context information and multi-scale information, and the classification results were
significantly better than the machine learning algorithm SVM, the original U-Net model,
and the DeepLabV3+ model. The floating raft aquaculture and cage aquaculture areas
were almost recognized.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 20 
 

 

𝐹1 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (3)

𝑘𝑎𝑝𝑝𝑎 = 𝑝 − 𝑝1 − 𝑝  (4)

𝑂𝐴 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (5)

𝑀𝐼𝑜𝑈 = 1𝑘 + 1 𝑇𝑃𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 (6)

where TP (true positive), TN (true negative), FP (false positive), FN (false negative), 𝑝 , 𝑝  
are all calculated according to the confusion matrix, and K represents the number of cate-
gories. 

4.3. Comparison Experiment 
First, we analyzed the classification results of each model on the test set from a qual-

itative perspective, as shown in Figure 5. From the classification results, it can be seen that 
the classification results based on the traditional machine learning algorithm SVM were 
significantly worse than the classification results based on several other deep learning 
methods. A lot of background information was mistakenly divided into floating raft aq-
uaculture and cage aquaculture areas. Compared with the traditional machine learning 
algorithm SVM, the classification results of the original U-Net model and DeepLabV3+ 
model significantly reduced the misclassification of floating raft aquaculture area and 
cage aquaculture area, but there were still some obvious problems of missing points in the 
cage aquaculture area. The improved U-Net model proposed in this paper can better ob-
tain context information and multi-scale information, and the classification results were 
significantly better than the machine learning algorithm SVM, the original U-Net model, 
and the DeepLabV3+ model. The floating raft aquaculture and cage aquaculture areas 
were almost recognized. 

   

(a) Test image. (b) Ground truth. 

Figure 5. Cont.



Remote Sens. 2021, 13, 3854 10 of 19Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 21 
 

 

   

(c) U-Net. (d) DeepLabV3+. 

   

(e) SVM. (f) Improved U-Net (ours). 

Figure 5. The extraction results of the floating raft aquaculture area and the cage aquaculture area on the test image (as 
the left part of the test area is all land and there is no aquaculture area, this area has been removed): (a) test image; (b) 
ground truth; (c) original U-Net; (d) DeepLabV3+; (e) SVM; (f) improved U-Net. The orange area in the figure represents 
the cage aquaculture area; the green area represents the floating raft aquaculture area; and the blue area represents the 
background. 

In order to better evaluate the classification accuracy of each model in the offshore 
floating raft and cage aquaculture area in the study area, two typical study areas were 
selected from the classification results to further analyze the model performance. Figure 
6 shows the classification results of each model in the typical study area. Figure 6e shows 
the classification results based on the traditional machine learning algorithm SVM. The 
machine learning algorithm SVM can be used for floating raft aquaculture and cage aqua-
culture areas, but many background areas were mistakenly divided into floating raft aq-
uaculture and cage aquaculture areas. Combined with Figure 6a, it can be seen that the 
misclassified area was often the area with spectral characteristics similar to the floating 
raft and cage aquaculture area, and the area was often the area at the junction of land and 
sea. This is mainly because the spectral characteristics of the sea–land junction are more 
complex, and the traditional machine learning algorithm has a relatively weak feature 
extraction ability and cannot extract deeper features. Therefore, the complex spectral areas 

Figure 5. The extraction results of the floating raft aquaculture area and the cage aquaculture area on the test image (as the
left part of the test area is all land and there is no aquaculture area, this area has been removed): (a) test image; (b) ground
truth; (c) original U-Net; (d) DeepLabV3+; (e) SVM; (f) improved U-Net. The orange area in the figure represents the cage
aquaculture area; the green area represents the floating raft aquaculture area; and the blue area represents the background.

In order to better evaluate the classification accuracy of each model in the offshore
floating raft and cage aquaculture area in the study area, two typical study areas were
selected from the classification results to further analyze the model performance. Figure 6
shows the classification results of each model in the typical study area. Figure 6e shows the
classification results based on the traditional machine learning algorithm SVM. The machine
learning algorithm SVM can be used for floating raft aquaculture and cage aquaculture
areas, but many background areas were mistakenly divided into floating raft aquaculture
and cage aquaculture areas. Combined with Figure 6a, it can be seen that the misclassified
area was often the area with spectral characteristics similar to the floating raft and cage
aquaculture area, and the area was often the area at the junction of land and sea. This
is mainly because the spectral characteristics of the sea–land junction are more complex,
and the traditional machine learning algorithm has a relatively weak feature extraction
ability and cannot extract deeper features. Therefore, the complex spectral areas at the
sea–land junction were often mistakenly divided into floating raft aquaculture areas or
cage aquaculture areas in the classification result map based on SVM.
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The classification results of the original U-Net model and DeepLabV3+ model are
shown in Figure 6c and Figure 6d, respectively. From the classification results, it can be
seen that these two classification methods have a certain degree of leakage in the extraction
of cage aquaculture areas. In combination with the original remote sensing image, it can
be seen that this is mainly because the spectral characteristics of this part of the cage
aquaculture area are similar to those of the background information, which resulted in this
part of the cage aquaculture area being divided into the background. The classification
result diagram of the improved U-Net model in this paper is shown in Figure 6f. The
floating raft aquaculture area and the cage aquaculture area were recognized, and the cage
aquaculture area similar to the background spectral characteristics was not mistakenly
classified as the background. The land area with similar spectral characteristics as the
floating raft aquaculture and cage aquaculture area was also accurately classified as the
background. In summary, the improved U-Net model proposed in this paper has better
feature extraction capabilities, can accurately identify floating raft aquaculture areas and
cage aquaculture areas, and can avoid misclassification and omission.

In order to further analyze the extraction results of aquaculture areas in each model,
we selected a typical region from the prediction results of the model, as shown in Figure 7.
In order to simplify the image labeling process, we labeled the aquaculture areas that were
relatively close to each other as a whole. Therefore, there may have been some errors
between the labeled image and the real image, but such errors can also enhance the obvious
generalization ability to a certain extent. As can be seen from Figure 7, the extraction effect
of the deep learning method was significantly better than that of the traditional machine
learning algorithm SVM. The traditional machine learning algorithm SVM had a poor
recognition effect on the fuzzy floating raft culture area. The main reason is that the fuzzy
image features of the floating raft and cage culture areas were bright white, while the
traditional machine learning algorithm SVM cannot learn deeper features, thus the floating
raft culture area was mistakenly divided into the cage culture area. However, the deep
learning method had a stronger feature extraction ability, thus it could correctly identify the
floating raft culture area and cage culture area. Among the prediction results of the three
deep learning methods, it is obvious that the classification results of our improved U-Net
model were better than those of the other two methods. As can be seen from Figure 7e of
the prediction results, the prediction of floating raft breeding areas was more complete, and
the edges between different floating raft breeding areas were clearer. This also proves that
our improved U- Net model can learn more semantic information and location information.

As shown in Table 1, the classification results of each model were analyzed quantita-
tively. It can be seen that the F1 score and MIoU of the proposed improved U-Net model
were significantly higher than those of other classification methods. The F1 score of the ma-
chine learning algorithm SVM classification result was 68.51%, and the Mean Intersection
over Union (MIoU) was 58.03%, both lower than the classification accuracy of other deep
learning methods. Although the precision of SVM method was the highest at 82.86%, recall
was very low at only 63.03%, resulting in the F1 score and MIoU being the worst among
all the results. Combined with the classification result diagram of SVM, it can be seen
that the areas where the sea–land phase intersected and the image features of aquaculture
areas were fuzzy were the main areas with a poor classification accuracy of SVM. This
may be due to the fact that the machine learning-based method must first perform a water
and land separation operation to separate the land area in the image to obtain an area
containing only seawater before classifying the image for offshore aquaculture areas, and
then classify the area for aquaculture. Therefore, the classification results were affected
to a certain extent by the operation of water and land separation. On the other hand, the
feature extraction ability of the machine learning algorithm SVM was weaker than the deep
learning method and could not extract more advanced features. The spectral features of
offshore aquaculture areas were complex, and the image features were more difficult to
extract. In summary, the traditional machine learning algorithm SVM model after a high
precision value may be benefit from the land and water separation and only needs to pay
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attention to the aquaculture of easy points; recall values, F1 low scores, and MIoU may be
because the model could not handle difficult points of aquaculture.
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Table 1. Accuracy evaluation table of classification results of different models; the best value is underlined.

Methods Precision (%) Recall (%) F1 (%) OA (%) Kappa MIoU (%)

U-Net 67.92 90.01 75.65 97.18 0.7498 64.91
DeepLabV3+ 70.02 88.34 77.16 97.02 0.7339 66.04

SVM 82.86 63.03 68.51 95.31 0.6893 58.03
ours 81.56 86.72 83.75 97.53 0.7924 73.75

The F1 scores and MIoU scores of DeepLabV3+ model were 77.16% and 66.04%,
respectively, which were 1.51% and 1.13% higher than those of the original U-Net model.
The precision of DeepLabV3+ was slightly higher than that of the original U-Net model,
while the recall was slightly lower than that of the original U-Net model. The results show
that the original U-NET model and DeepLabV3+ model had their own advantages and
disadvantages in the classification of offshore aquaculture. The original U- Net model had
a better recall, while the extraction results of DeepLabV3+ model had a better precision. In
general, the classification accuracy of the two models was roughly the same.
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The MIoU and Kappa coefficients of the improved U-Net model were 83.75%, 73.75%,
and 0.7924, respectively. The F1 scores, MioU, and Kappa coefficients were also improved
by 6.59%, 7.71%, and 0.0426, respectively, compared with the second-best results, as shown
in Table 1. The precision of the improved U-Net model was 81.56%, which was better than
that of the other methods except the SVM method. In summary, the improved U-Net model
had better classification performance compared with common deep learning methods and
traditional machine learning algorithms. At the same time, the improved U-Net model
had better F1 scores and MIoU, which also indicates that the proposed model had better
robustness, which is helpful for its application in the extraction task of aquaculture areas in
other seas.

4.4. Ablation Study

In order to further evaluate the effectiveness of the improved U-Net model proposed
by us, ablation experiments were carried out in this section to better verify the effectiveness
of the improved ASPP structure and up-sampling structure proposed in this paper All
ablation experiments were performed on the same machine, using the same data set for
training and validation, and the parameter settings during the training process are also the
same. U-Net is the original U-Net model without any improvement. Based on the original
U-Net model, U-Net_1 uses the up-sampling structure proposed in this paper instead of
interpolation to restore the image size. U-Net_2 is the improved U-Net model proposed in
this paper. Compared with U-Net_1, it uses the improved ASPP structure proposed in this
paper to connect the encoder part and the decoder part. The results of the ablation analysis
are shown in Table 2.

Table 2. Accuracy evaluation table of ablative analysis, the best value is underlined.

Methods Precision (%) Recall (%) F1 (%) OA (%) Kappa MIoU (%)

U-Net 67.92 90.01 75.65 97.18 0.7498 64.91
U-Net_1 73.97 89.72 80.34 97.49 0.7861 69.91
U-Net_2 81.56 86.72 83.75 97.53 0.7924 73.75

The F1 score of the U-Net_1 model was 80.34%, and the Mean Intersection over Union
(MIoU) was 69.91%. Compared with the original U-Net model, it was increased by 4.69%
and 5%, respectively. Except for recall, the accuracy of U-Net model with up-sampling
structure is better than that of the original U-Net model. It also shows that the proposed
up-sampling structure can better utilize the semantic information and location information
of aquaculture regions than the interpolation method.

Compared with the classification results of the U-Net_1 model, the U-Net_2 model
with the improved ASPP structure has increased F1 score and Mean Intersection over Union
(MIoU) by 3.41% and 3.81%, respectively. Compared with U-Net_1, F1 score and MIoU are
further improved. This shows that the proposed improved ASPP structure contributes to
the model to obtain more multi-scale information, which is conducive to the extraction of
aquaculture areas.

The above-mentioned ablation experiment results show that the improved ASPP
structure and the up-sampling structure composed of the FAM and the ECA module
can effectively improve the extraction accuracy of the original U-Net model for offshore
floating raft aquaculture and cage aquaculture areas. The combination of the two can
further improve the performance of the U-Net model. The improved ASPP can obtain more
semantic and location information, while the proposed up-sampling structure can make
full use of the acquired information, and the two complement each other. In summary, it
is verified that the improved U-Net model proposed in this paper is reliable in extracting
medium-resolution remote sensing images from offshore floating raft aquaculture and cage
aquaculture areas.



Remote Sens. 2021, 13, 3854 15 of 19

4.5. Map Marking

We selected the Sentienl-2 MIS image data of the waters near Sansha Bay and Luoyuan
Bay in 2021 (Figure 8). In order to avoid the interference of clouds, the remote sensing
images from January to March were used for synthesis. The relevant details of the data are
the same as above. Afterward, the improved U-Net model in this study was used to predict
the offshore aquaculture area in this area in 2021 based on migration learning prediction,
and the distribution map of the aquaculture area in the area was obtained, as shown in
Figure 7.

Combined with the original image in 2021, as shown in Figure 7a, the extraction
result of the improved U-Net model was the same as the real offshore aquaculture area
distribution. The floating raft and the cage aquaculture area were identified, and the coastal
land and seawater were also not recognized as floating raft aquaculture or cage aquaculture
areas. In summary, the improved U-Net model on medium-resolution remote sensing
images can well identify offshore aquaculture areas.

However, in the 2021 distribution map, there were still some cage culture areas that
were not identified. At the same time, there was also a certain degree of omission for the
relatively fuzzy areas of the aquaculture area on the remote sensing images, and further
research is needed in the future.
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5. Conclusions

We used the Sentinel-2 MSI image data of Sansha Bay and Luoyuan Bay in the
northeastern sea area of Fujian Province as the data source. An improved U-Net model
suitable for medium-resolution remote sensing image extraction in offshore aquaculture
areas is proposed. The model connects the encoder part and the decoder part through
an improved ASPP structure and gradually restores the image size of the encoder input
feature map through the proposed up-sampling structure. The improved ASPP structure
uses strip pooling instead of traditional spatial pooling, allowing the model to obtain
multi-scale information while avoiding the redundant information brought by the square
window of traditional spatial pooling. At the same time, strip pooling can better identify
strip floating raft aquaculture and cage aquaculture areas. The proposed up-sampling
structure is composed of a flow alignment module and ECA module, which can make the
model better combine different levels of semantic information, make the model pay more
attention to the semantic information related to offshore aquaculture area, and effectively
avoid the vanishing gradient problem.

We used the improved U-Net model to study the extraction of offshore aquaculture
areas from medium-resolution remote sensing images and compared the experimental
results with the original U-Net model, the DeepLabV3+ model commonly used in the
field of semantic segmentation, and the traditional machine learning algorithm SVM. The
experimental results show that the improved U-Net model in this paper was significantly
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better than other methods for the extraction performance of offshore aquaculture areas on
medium-resolution remote sensing images.

The extraction method proposed in this paper focuses on multi-scale information
from image mining, how to make full use of multi-scale information, improving the
extraction accuracy and automation degree of offshore aquaculture and providing a basis
for relevant departments to conduct large-scale aquaculture monitoring and scientific
planning management. It also helps to protect the stability of offshore marine ecosystems
and achieve the United Nations Sustainable Development Goal 14 (SDG 14). Finally,
due to the relatively low resolution of the remote sensing images, it was more difficult
to distinguish the adjacent areas of aquaculture areas, and adhesion and unclear edges
between aquaculture areas were more likely to occur. In the future, we will continue to
research on our model with the following objectives: (1) to better identify relatively “fuzzy”
aquaculture areas in remote sensing images; (2) to further mine edge information from
remote sensing images to better identify the boundaries of aquaculture areas; and (3) to
further improve the robustness of the model thus that it can be applied to different remote
sensing data sources.
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