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Abstract: In this paper, a deep learning long-short-term memory (LSTM) method is applied to the
forecasting of the critical frequency of the ionosphere F2 layer (foF2). Hourly values of foF2 from
10 ionospheric stations in China and Australia (based on availability) from 2006 to 2019 are used for
training and verifying. While 2015 and 2019 are exclusive for verifying the forecasting accuracy. The
inputs of the LSTM model are sequential data for the previous values, which include local time (LT),
day number, solar zenith angle, the sunspot number (SSN), the daily F10.7 solar flux, geomagnetic
the Ap and Kp indices, geographic coordinates, neutral winds, and the observed value of foF2 at the
previous moment. To evaluate the forecasting ability of the deep learning LSTM model, two different
neural network forecasting models: a back-propagation neural network (BPNN) and a genetic
algorithm optimized backpropagation neural network (GABP) were established for comparative
analysis. The foF2 parameters were forecasted under geomagnetic quiet and geomagnetic disturbed
conditions during solar activity maximum (2015) and minimum (2019), respectively. The forecasting
results of these models are compared with those of the international reference ionosphere model
(IRI2016) and the measurements. The diurnal and seasonal variations of foF2 for the 4 models were
compared and analyzed from 8 selected verification stations. The forecasting results reveal that the
deep learning LSTM model presents the optimal performance of all models in forecasting the time
series of foF2, while the IRI2016 model has the poorest forecasting performance, and the BPNN
model and GABP model are between two of them.

Keywords: ionospheric foF2; neural network; long short-term memory; forecasting model; deep learning

1. Introduction

The ionosphere of the Earth is an extremely complicated and non-linear system chang-
ing with time and space, and an important part of the near-Earth space environment. The
F2 layer contains the highest electron density, and it mainly determines the characteristics
of the ionosphere. Due to the highest level of conductivity in the propagation path, the
propagation of high frequency (HF) waves going through the Earth’s ionosphere are greatly
influenced by the F2 layer’s maximum electron density. It is mainly related to the critical
frequency of ionosphere F2 layer foF2, which is one of the most important parameters
for quantifying the plasma density variability and describing the characteristics of the
ionosphere. Because of the time-varying and dispersive characteristics of the ionosphere,
the working parameters for the HF communication systems and satellite communica-
tions must be adaptively adjusted according to the current state of the ionosphere [1].
During the ionospheric disturbance, the variations of the foF2 play a significant impact
on wireless communication [2,3], which may lead to the degradation or interruption of
the information quality such as communication, navigation, measurement, and remote
sensing [4,5]. Therefore, forecasting foF2 has become an important concern in ionospheric
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studies and applications to provide effective support and decision for high-frequency
radars and shortwave communication systems.

The largest ionospheric variability takes place in the F2-layer and is thus of fundamen-
tal significance in ionospheric modeling [6]. Much work so far has been done to predict the
foF2 with different forecasting models for the short-term ionosphere prediction. The most
complete and widely used predicting model is the International Reference Ionosphere (IRI)
model [7], which has been established with global ionospheric observations. IRI provides
empirically estimated values for a given time and location based on the monthly averages.
Besides, many classical methods have been developed including the multi-linear-regression
method [8], autocorrelation analysis [9], and data assimilation [10,11] that use past foF2
values as an input to predict current foF2. With the development of machine learning, due
to good non-linear mapping ability, self-learning adaptability, and parallel information
processing ability, artificial neural networks are very encouraging in the prediction of foF2
which can approximate and simulate the complex non-linear system of the ionosphere
very well [12]. The technique of neural networks has been successfully employed to build
suitable forecasting models to predict foF2 [13–16]. Meanwhile, various ionosphere models
with different algorithms have been built to improve the performance and accuracy of
neuron networks prediction, including the error backward propagation neural network
method based on gradient descent [17], the improved particle swarm optimization neural
network method [18], and the improved back-propagation (BP) neural network based on
genetic algorithm method [19–22].

In recent years, due to the computing capacity growth, deep learning has been widely
used in the field of ionosphere with the advantage of learning time-series data. The obser-
vations of ionospheric critical frequency foF2 are time sequences, too. By the addition of
connections with the past data, the deep learning method uses the result at the previous
step as an input at the current step to learn time-series data. Based on deep learning,
many forecasting methods are developed for ionospheric parameters prediction, such
as a recurrent neural network (RNN) method [23,24], a long-short-term memory LSTM
method [25,26], and an improved gated recurrent unit (GRU) method [27]. Unlike tra-
ditional neural networks models [28], deep learning models can infer the relationships
between the previous time node and the latter time node of time-series data.

This paper aims to compare and evaluate the predictability and performance of
the deep learning LSTM model with two neural network models for the forecasting of
ionospheric foF2 time series. In Section 2, the structure of two neural network models and
a deep learning network model is introduced and specificized to compare and analyze,
the data sets and the model inputs and output are described too. Section 3 gives the
forecasting results from the LSTM model, the BPNN model, the GABP model, and the
IRI2016 model, together with the error analysis and discussion, followed by conclusive
remarks in Section 4.

2. Models and Data

This section describes models and datasets used to forecast foF2. An LSTM model
using the LSTM algorithm is developed based on hourly foF2 values and related parameters
to forecast ionospheric parameter foF2 by 1 h in advance. To evaluate and compare the
forecasting performance and accuracy of the LSTM model with other prediction models,
two neural network models are established and illustrated for comparison.

2.1. Neural Network Models
2.1.1. Methodology Description

A neural network is an information-processing system [29] that has certain perfor-
mance characteristics in common with biological neural networks and is modeled after
the human brain, which computes some relationship between its input and output [6].
Usually, accurate information about the system is unknown and the observations from the
system are the only thing that can be utilized. A fixed architecture of neural networks can
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be built and control parameters are modified according to some algorithms until a certain
loss function is minimized. Learning is carried out based on a training dataset that consists
of several data samples observed from the actual system [30,31]. In this study, a standard
feed-forward network with a backpropagation BPNN model and an improved BP neural
network by a genetic algorithm GABP model is employed for comparison with the deep
learning LSTM model.

BP neural network is a multi-layer feed-forward network using a learning algorithm
called backward error propagation or simply backpropagation in one-way, the network
consists of three layers, namely the input layer, the hidden layers (which can be multi-
layer), and the output layer [32]. The prediction process is as follows: Firstly, the network’s
weights and thresholds are initialized, then the output and error of each layer are calculated,
and then the weights and thresholds are corrected according to the calculated loss value,
finally, the new output and errors are recalculated until the error is small enough and the
training is over. The BPNN algorithm is based on gradient descent with the characteristic
of rapid forecasting and recognition speed, and good performance of fault tolerance, but it
is easy to fall into “local minimization” [33], and may not get the optimal solution.

A genetic algorithm (GA) is a computational model that mimics the process of Dar-
win’s biological natural evolution to search for optimal solutions. The GABP model uses
GA to optimize the initial weights and thresholds of BP in the neural network to avoid
falling into “local minimization”, which can give better output [17–20]. The forecasting
process is shown in Figure 1:
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Figure 1. BP neural network optimized by the genetic algorithm flowchart.

(1) Initialize the weight, threshold, and population of the BP neural network, set the
population size and genetic algebra;

(2) Calculate the fitness of each individual in the population and replace the least-fit
population with new individuals;

(3) Perform selection, crossover, and mutation operations to obtain the next generation
individuals;

(4) Update to obtain the optimal weight and threshold of the population and perform
BP neural network forecasting as mentioned in the last paragraph.

The flowchart of the GABP neural network algorithm is shown in Figure 1.
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2.1.2. Input and Output Parameters

Our models are obtained by adjusting the network parameters and training with
specified input and output sample data sets. The input factors for our models are a set of
data related to the ionospheric variabilities in terms of time, space, solar and geomagnetic
activity, and other corresponding factors, which are chosen based on the previous experi-
ence of parameters known to cause variations in foF2. The output of our models is usually
the parameters to be forecasted.

The input factors are chosen for our models are as follows:
(1) Local time (LT): The most remarkable feature of ionospheric electron density is

its diurnal variation, which is described by Local time. Also, studies have shown that the
occurrence of ionospheric storms is depended on the local time [34]. Therefore, local time
in the range of 0–23 is utilized as an input factor of our models;

(2) day number (DOY): The previous studies show that the number of days in a
year also affects the variations of ionospheric foF2 [35,36], so DOY is chosen as an input
parameter of our models;

(3) Solar zenith angle (CH): Due to the Earth’s tilt and rotation around the sun, the F2
layer electron density varies with time of the day and with season according to the solar
zenith angle, so the solar zenith angle CH is considered as an input factor of our models;

(4) Geographic coordinates: Studies have shown that there are spatial correlations of
foF2 [37], and the spatial characteristics of ionospheric foF2 are reflected by the geographical
longitude and latitude of the ionosonde stations. Therefore, the geographical latitude (LAT)
and the geographical longitude (LON) are adopted as two input parameters in our models;

(5) Geomagnetic activity: The geomagnetic indices are adopted to represent the
geomagnetic activity. Studies have shown that the 3-h ap of the geomagnetic planetary
index can be easily obtained, but any integration is limited by the 3-h resolution and cannot
be usefully applied to events with time scales of less than several hours [38]. Therefore,
the indices ap(τ) are calculated by a time-weighted accumulation series derived from the
geomagnetic planetary index ap. The formula is defined as,

ap(τ) = (1 − τ)[ap0 + (τ)ap−1 + (τ2)(ap−2) + . . .] (1)

here, ap0 is the initial value of the magnetic index, ap−1, ap−2, . . . represent the values
of 3 h before, 6 h before, respectively; τ is a persistence factor of attenuation multiplier
ranging from 0 to 1, which determines the degree to which ap(τ) depends on previews
ap, the larger τ is, the more ap(τ) depends on the past value. Based on Wrenn’s work,
we chose ap(τ) with τ = 0.8 and ap−10 for the calculation of ap(τ) as an input factor in
our models;

(6) Sunspot number (SSN): Several indices have been developed in the past to map
the response of the peak density in the ionosphere foF2 to variations in solar output. The
sunspot number became a standard index used by many ionosphere models as standard in-
put, including the International Radio Consultative Committee foF2 model [39]. Therefore,
the number of sunspots SSN is used as an input factor of our models;

(7) Solar activity: The existence of a strong relationship between foF2 and solar activity
has been well studied in previous work [32], and the effect of the 27-day solar cycle in the
ionosphere has been investigated [40,41]. So, a 27-day running means of solar radio flux
F10.7 cm is adopted as an input factor in our models, which is provided by the National
Geophysical Data Center of the National Oceanic and atmospheric administration (NOAA)
with the time resolution of one day.

(8) Neutral winds: The variation and distribution of the ionospheric F2 layer ionization
are affected by the thermospheric wind [42]. According to the well-known vertical ion drift
equation [13],

W = U cos(θ − D) cos I sin I (2)

where, D and I are the magnetic declination and inclination, respectively. W is the vertical
ion drift velocity, U is the horizontal wind velocity and θ is the geographic azimuth
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angle. We adopt magnetic declination D and magnetic inclination I as two input factors of
our models.

In this study, we concentrate on the forecasting of ionospheric foF2, and the output
parameter of our models is the foF2 value at the corresponding time.

2.1.3. Configuration and Training

The network configuration block diagram for the two neural network models is shown
in Figure 2. The GABP model has the same input and output parameters as the BPNN
model as they are only different in the learning algorithms, so they have the same network
architecture. The network consists of a set of units that constitute an input layer with
ten inputs, one or more hidden layers of computational nodes, and the output layer with
one output.
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Generally, there are no hard and fast rules for choosing the number of hidden layers
in training or the number of nodes. According to Poole’s work, consensus favors the view
that little is to be gained by having more than one hidden layer [16], which means it is not
necessary to choose 2 or more hidden layers in most cases. After training with one and
two hidden layers, respectively, by comparing the error difference between the observed
and predicted values of foF2, we found that even one hidden layer can produce a good
performance of forecasting foF2, eventually, we chose one hidden layer for the BPNN
and GABP models in our work. The number of nodes within the hidden layer is chosen
based on trial and error, fewer nodes produced a less effective network, while more nodes
increased the training time without significantly improving the rms error and might result
in overfitting problems. Based on the empirical principle that the number of hidden layer
nodes should be less than twice the number of input nodes, we have trained many different
combinations by training the BPNN and GABP from node 1 to 20 to obtain the relatively
superior settings, measured by comparing the rms errors from testing data sets. Finally,
the recommended network configurations are as below: the BPNN configuration is with
one hidden layer and the number of nodes is 17; While the GABP configuration is with
one hidden layer and the number of nodes is 18, the population size is 30 and the genetic
algebra is 1000.

2.2. Deep Learning LSTM Model
2.2.1. Methodology Description

It is known that the observations of ionospheric critical frequency foF2 are time
sequences. The long-short-term memory network LSTM model is based on the recurrent
neural network (RNN) model which can infer the relationships between the time-series
data. The RNN model is the addition of the recurrent connection to a typical neuron
network structure that uses the result at the previous epoch as an input at the current epoch.
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By improving the internal structure of RNN neurons, the LSTM model has the ability of
long-term memory for important historical information, avoiding the effect of gradient
vanishing or gradient exploding that might occur in the deep learning RNN model. Many
researchers have extensively explored the prediction of the ionospheric TEC (total electron
content) variability for short terms by using LSTM methods [43,44], and also some studies
on the forecasting of ionospheric foF2 parameters [45].

The LSTM model is the addition of several gates and memory cells to the existing neu-
ron structure. The LSTM network utilizes three special “gate” structures: input gate, forget
gate, and output gate. Through their cooperation, information is selectively memorized
and status is fed back to the neural network at each moment. Past data can be stored in the
memory cell and awakened in due course, or forgotten if deemed unnecessary. In this way,
it can remember any long-term behaviors of data. Information forgetting and retention are
determined by the combination of “forget gate” and “input gate”, making LSTM preserve
long-term memory effectively. Through the memory of historical data and used as input
for the next moment, the LSTM model can make good use of the information from the
historical data to predict the data in the future.

The deep learning LSTM model contains the following layers: input layers, LSTM
layers, hidden layers, and output layers, as depicted in Figure 3. At every time step, the
learning rule is applied by forwarding the previous trained information to each layer and
allowing it to perform sequence forecasting. Ht is the output of the current LSTM network,
which is based on the cell state Ct. It is noteworthy that Ht maintains information from
the previous step’s hidden state and thus, this algorithm can make use of all previous foF2
values of time series.
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2.2.2. Input and Output Parameters

The LSTM model utilizes 11 relevant factors which were illustrated in Section 2.1.2
as input parameters: local time (LT), annual accumulated days (DOY), solar zenith angle
(CH), geographic latitude (LAT), geographic longitude (LON), integration in the first 33 h
of ap (ap(τ)), sunspot number (SSN), F10.7, magnetic declination (D), magnetic inclination
angle (I), and the observed value of foF2 at the previous moment. The output parameter of
the model is the foF2 value at the current moment.

2.2.3. Configuration and Training

We used MATLAB’s deep learning toolbox to perform LSTM sequence-to-sequence
regression forecasting, and the foF2 value after 1 h was forecasted from the time series
sequence. At each time step of the input sequence, the LSTM network learns to forecast the



Remote Sens. 2021, 13, 3849 7 of 20

value of the next time step. The function predicts one timestep at a time and updates the
state of the network at each forecasting step.

In the LSTM model shown in Figure 3, stacked LSTM layers are used to extract
representative features from historical input data and then are connected to the fully
connected hidden layer. To obtain the relatively superior architecture of the LSTM model,
we have tried several experiments with different sets of hyperparameters and hidden nodes
based on the experience of previous works [46]. At last, the neuron node number of the
hidden layer is chosen to be 21, which is determined by training the LSTM model from
node 1 to 30. Consequently, the recommended configuration for our LSTM model is set as:
the number of hidden nodes is 21, the size of batch data used in each iteration is 3, and the
maximum number of training rounds is 250.

2.3. Data and Processing
2.3.1. Data Sets

In this work, the hourly foF2 time series from 10 ionosonde stations both in China and
in Australia are utilized. Figure 4 displays the geographical distribution of the 10 stations.
The URSI (Union of Radio Science International) code is labeled as the name of stations and
the red stars are marked as the location of the selected stations, of which MH453, BP440,
WU430, SH427, and SA418 are located in the China region, DW41K, BR52P, CN53L, CB53N,
and HO54K are distributed in Australia region.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 22 
 

 

2.3. Data and Processing 
2.3.1. Data Sets 

In this work, the hourly foF2 time series from 10 ionosonde stations both in China 
and in Australia are utilized. Figure 4 displays the geographical distribution of the 10 sta-
tions. The URSI (Union of Radio Science International) code is labeled as the name of sta-
tions and the red stars are marked as the location of the selected stations, of which MH453, 
BP440, WU430, SH427, and SA418 are located in the China region, DW41K, BR52P, 
CN53L, CB53N, and HO54K are distributed in Australia region.  

 
Figure 4. Spatial distribution map of the ionosonde stations. The URSI code in red font and the red 
stars indicate the name and the location of the selected ionosonde stations, respectively. 

Table 1 listed the URSI code, name, country, time range, and geographic coordinates 
of the selected ionosonde stations. These stations are mainly concentrated in the middle 
and low latitudes of the northern and southern hemispheres. The hourly ionospheric ob-
served data foF2 from 2006 to 2019 and the relevant parameters are utilized, and training 
sample sets (2015 and 2019 are excluded) are formed to train the neural network models 
and the deep learning model. The data of 2015 and 2019 are utilized as test sample sets to 
ensure the correctness and rationality of the test results. 

Table 1. Geographic coordinates and details of the ionosonde stations. 

No. URSI Station/Abbreviation Country Time Zone Lat Lon 

01 DW41K Darwin (DAR) Australia UTC + 10 −12.45 130.95 

02 SA418 Sanya (SAY) China UTC + 8 18.34 109.62 

03 SH427 Shaoyang (SHY) China UTC + 8 26.9 111.5 

04 BR52P Brisbane (BRI) Australia UTC + 10 −27.06 153.06 

05 WU430 Wuhan (WUH) China UTC + 8 30.54 114.34 

06 CN53L Camden (CAM) Australia UTC + 10 −34.05 150.67 
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Figure 4. Spatial distribution map of the ionosonde stations. The URSI code in red font and the red
stars indicate the name and the location of the selected ionosonde stations, respectively.

Table 1 listed the URSI code, name, country, time range, and geographic coordinates of
the selected ionosonde stations. These stations are mainly concentrated in the middle and
low latitudes of the northern and southern hemispheres. The hourly ionospheric observed
data foF2 from 2006 to 2019 and the relevant parameters are utilized, and training sample
sets (2015 and 2019 are excluded) are formed to train the neural network models and the
deep learning model. The data of 2015 and 2019 are utilized as test sample sets to ensure
the correctness and rationality of the test results.
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Table 1. Geographic coordinates and details of the ionosonde stations.

No. URSI Station/Abbreviation Country Time Zone Lat Lon

01 DW41K Darwin (DAR) Australia UTC + 10 −12.45 130.95
02 SA418 Sanya (SAY) China UTC + 8 18.34 109.62
03 SH427 Shaoyang (SHY) China UTC + 8 26.9 111.5
04 BR52P Brisbane (BRI) Australia UTC + 10 −27.06 153.06
05 WU430 Wuhan (WUH) China UTC + 8 30.54 114.34
06 CN53L Camden (CAM) Australia UTC + 10 −34.05 150.67
07 CB53N Canberra (CAN) Australia UTC + 10 −35.32 149
08 BP440 Beijing (BEJ) China UTC + 8 39.98 116.37
09 HO54K Hobart (HOB) Australia UTC + 10 −42.92 147.32
10 MH453 Mohe (MOH) China UTC + 8 53.49 122.34

Table 2 shows the data availability of 10 ionosonde stations from 2006 to 2019. Most
data are concentrated in 2013–2019 with a one-hour resolution. The diagonals indicate the
missing measured data. As can be seen in Table 2, the data availability of each station is
different. To make sample datasets as big as possible, all the observed data are utilized
as sample datasets in the training BPNN model and GABP model. While in the training
LSTM model, unwanted interruptions might be caused due to low data availability in
the time series training practice, so we only utilize the data observed in stations that data
availability more than 70% during the period of 2014–2018.

Table 2. Data availability of ionosonde stations during the period of 2006–2019.

Year 2006 2007 2008 2009 2010 2011 2012

BEJ 3973/8760
(45.35%)

8637/8760
(98.60%)

8327/8784
(94.80%)

7215/8760
(82.36%)

6567/8760
(74.97%)

6935/8760
(79.17%)

8012/8784
(91.21%)

MOH / / / / 2643/8760
(30.17%)

8110/8760
(92.58%)

8012/8784
(91.21%)

WUH / / / / 2845/8760
(32.48%)

5873/8760
(67.04%)

8523/8784
(97.03%)

SAY / 1507/8760
(17.20%)

7374/8784
(83.95%)

6587/8760
(75.19%)

7958/8760
(90.84%)

8194/8760
(93.54%)

6261/8784
(71.28%)

SHY / / / / / / 5641/8784
(64.22%)

Year 2013 2014 2015 2016 2017 2018 2019

BEJ 8626/8760
(98.47%)

8521/8760
(97.27%)

8672/8760
(99.00%)

8733/8784
(99.42%)

7735/8760
(88.30%)

8423/8760
(96.15%)

6538/8760
(74.63%)

MOH 8332/8760
(95.11%)

8628/8760
(98.49%)

8132/8760
(92.83%)

8649/8784
(98.46%)

8635/8760
(98.57%)

8585/8760
(98.00%)

8422/8760
(96.14%)

WUH 8372/8760
(95.57%)

8666/8760
(98.93%)

7323/8760
(83.60%)

8617/8784
(98.10%)

8542/8760
(97.51%)

8665/8760
(98.92%)

8542/8760
(97.51%)

SAY 8273/8760
(94.44%)

8461/8760
(96.59%)

8593/8760
(98.09%)

8590/8784
(97.79%)

8595/8760
(98.12%)

7168/8760
(81.83%)

8669/8760
(98.96%)

SHY 8420/8760
(96.12%)

8542/8760
(97.51%)

8556/8760
(97.67%)

8446/8784
(96.15%)

8689/8760
(99.19%)

7991/8760
(91.22%) /

DAR / 8574/8760
(97.88%)

6959/8760
(79.44%)

8367/8784
(95.25%)

8492/8760
(96.94%)

7520/8760
(85.84%)

8439/8760
(96.34%)

BRI / 8739/8760
(99.76%)

7982/8760
(91.12%)

8643/8784
(98.39%)

8332/8760
(95.11%)

8073/8760
(92.16%)

8559/8760
(97.71%)

CAM / 7962/8760
(90.89%)

7557/8760
(86.27%)

7245/8784
(82.48%)

8407/8760
(95.97%)

3509/8760
(40.06%)

2816/8760
(32.15%)

CAN / 8620/8760
(98.40%)

7752/8760
(88.49%)

7908/8784
(90.03%)

8509/8760
(97.13%)

6552/8760
(74.79%)

7593/8760
(86.68%)

HOB / 8014/8760
(91.48%)

6934/8760
(79.16%)

7261/8784
(82.66%)

8177/8760
(93.34%)

7757/8760
(88.55%)

7945/8760
(90.70%)
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The data of the IRI2016 model for 10 ionosonde stations listed in Table 2 from 2006
to 2019 is utilized for comparison with other forecasting models. IRI is an international
project sponsored by the Committee on Space Research (COSPAR) and the International
Union of Radio Science (URSI). The IRI model is one of the most widely recognized models,
which has often been used to estimate the prediction performances for ionospheric models.
The IRI model provides the specification of ionospheric parameters based on all worldwide
available data from ground-based as well as satellite observations, which is continuously
being improved by the IRI working group [47].

Currently, the latest version of IRI is the IRI2016 model, which is used in our work.
For a given location, time, and date, the IRI2016 model provides an empirical estimation of
foF2 values based on the monthly averages. A web interface for computing and plotting
IRI values are accessible from the IRI homepage at http://irimodel.org/, accessed on
10 April 2021.

The data sets are available from different sources listed as below: The geomagnetic
indices ap, SSN, and F10.7 used in this work are available in convenient ASCII format by
the website at https://www.gfz-potsdam.de/en/kp-index/ via FTP server ftp://ftp.gfz-
potsdam.de/pub/home/obs/Kp_ap_Ap_SN_F107/, accessed on 20 April 2021. While the
data of magnetic declination D and magnetic inclination I are calculated by using World
Magnetic Model in MATLAB with relevant factors as LAT, LON, and year.

2.3.2. Data Preprocess

We use the hourly foF2 data for training our models, so we need to preprocess the data
obtained from websites. The original foF2 data are presented in text files, it is necessary to
extract the parameters such as time, station name, latitude, longitude, and foF2 values to
import to the database in hourly values. Besides, all input and output parameters need to
be combined into a matrix as one of the sample datasets hourly before training the network.
Also, those datasets with none numeric values or beyond reasonable values need to be
excluded to make sure the sample datasets are effective.

To standardize the sample data and accelerate the convergence of the network to
improve the generalization ability for the network, it is necessary to normalize the input
and output data to the range of [−1, 1] before training. We used MATLAB’s mapminmax
function to perform the normalization of the input parameters and the output parameter.

2.4. Error Analysis

To evaluate and compare the forecasting results of each model, the errors are calculated
by root to mean square error (RMSE) and percentage deviation (PD), and correlation
coefficient (ρ). Among them, RMSE and PD stand for forecasting performance, while ρ
presents the correlation between forecasting values and the observed values [14,16].

RMSE =

√√√√ 1
N

N

∑
i=1

( fobsi − f f orei)
2 (3)

PD =
1
N

N

∑
i=1

∣∣∣ fobsi − f f orei

∣∣∣
fobsi

(4)

ρ =

N
∑

i=1
( f f orei − f f ore)( fobsi − fobs)√

N
∑

i=1
( f f orei − f f ore)

2
√

N
∑

i=1
( fobsi − fobs)

2
(5)

where N is the total number of data samples, fobsi and f f orei are the observed value and
forecasting value, respectively. fobs and fpre are the average of the observed and forecasting
values, respectively.

http://irimodel.org/
https://www.gfz-potsdam.de/en/kp-index/
ftp://ftp.gfz-potsdam.de/pub/home/obs/Kp_ap_Ap_SN_F107/
ftp://ftp.gfz-potsdam.de/pub/home/obs/Kp_ap_Ap_SN_F107/
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3. Results and Discussion
3.1. The Forecasting Performance

Due to data missing, the ionospheric foF2 data from 10 ionosonde stations shown in
Table 3, each for the year 2015 (solar maximum) and 2019 (solar minimum) except SHY
(missing data in 2019), are selected to verify the forecasting ability and performance from
4 models in the prediction of the hourly foF2, including two neural network BPNN and
GABP models, a deep learning LSTM model, and the IRI2016 model. The forecasting
results of all these models are compared with that of the observed data.

Table 3. The prediction errors of foF2 between the observed and forecasting values derived from the 4 models during the
year of solar maximum (2015) and solar minimum (2019).

Station Year
BPNN GABP IRI2016 LSTM

RMSE
(MHz) ρ PD (%) RMSE

(MHz) ρ PD (%) RMSE
(MHz) ρ PD (%) RMSE

(MHz) ρ PD (%)

DAR
2015 1.784 0.842 16.72 1.803 0.846 16.25 1.819 0.837 18.39 1.148 0.937 12.67
2019 1.054 0.873 17.24 1.095 0.869 17.44 1.575 0.860 25.56 0.913 0.898 14.65

SAY
2015 1.5 0.908 13.95 1.462 0.913 13.78 1.823 0.894 15.36 1.134 0.948 11.07
2019 1.497 0.882 25.90 1.425 0.893 24.65 1.758 0.887 27.56 0.937 0.945 14.39

SHY 2015 1.717 0.876 15.63 1.685 0.882 15.64 1.859 0.867 16.06 1.084 0.953 11.18

BRI
2015 1.033 0.849 12.02 1.058 0.841 12.18 1.147 0.831 13.29 0.833 0.907 9.35
2019 0.768 0.728 13.18 0.785 0.722 13.80 0.980 0.757 16.59 0.676 0.757 11.44

WUH
2015 1.254 0.843 13 1.198 0.858 12.15 1.317 0.843 14.69 1.194 0.862 11.98
2019 0.786 0.878 14.44 0.791 0.885 14.55 1.392 0.859 25.13 0.648 0.919 11.68

CAM
2015 0.963 0.867 13.04 0.953 0.869 12.87 1.026 0.853 13.79 0.751 0.921 9.53
2019 0.656 0.746 12.06 0.648 0.749 11.92 1.033 0.760 20.13 0.593 0.790 10.12

CAN
2015 0.955 0.86 13.31 0.879 0.881 12.21 0.998 0.847 13.84 0.661 0.935 8.66
2019 0.652 0.772 12.72 0.670 0.768 13.19 0.802 0.776 15.68 0.529 0.827 10.19

BEJ
2015 0.852 0.914 10.67 0.832 0.919 10.41 0.875 0.91 11.28 0.666 0.949 8.07
2019 0.593 0.860 11.64 0.587 0.865 11.38 0.888 0.847 16.74 0.514 0.887 9.55

HOB
2015 0.976 0.85 14.17 0.918 0.869 13.47 1.031 0.826 15.23 0.803 0.903 10.89
2019 0.587 0.800 12.28 0.597 0.797 12.27 0.788 0.811 16.88 0.592 0.795 11.92

MOH
2015 0.913 0.892 13.76 0.918 0.893 13.7 0.966 0.879 14.35 0.625 0.952 9.03
2019 0.595 0.808 13.87 0.621 0.815 14.02 0.779 0.805 16.94 0.415 0.897 8.81

In this work, three evaluation criteria are utilized to evaluate the forecasting ability
and performance of the models: minimum root mean square error (RMSE), percentage
deviation (PD), and correlation coefficient ρ. The specific definitions are expressed in
Formulas (3)–(5). The comparison results between the BPNN model, the GABP model, the
LSTM model, and the IRI2016 model are shown in Table 3, listed the predicted RMSE, PD,
and ρ of the 4 prediction models for the year 2015 and 2019.

Table 3 illustrates that the deep learning LSTM model in each station has significantly
lower RMSE values, PD values, and a higher correlation coefficient in both 2015 and 2019,
which means the LSTM model has better forecasting performance than the other models
for the high and low solar activity years. The RMSE of the BPNN model and GABP model
is between the IRI2016 model and the LSTM model, which reflects that the prediction
performance of the two neural network models is better than the IRI2016 empirical model.
For instance, at Brisbane (BRI) ionosonde station, the LSTM model gives an RMSE as
0.676 MHz, a ρ as 0.757, and a PD as 11.44% for the year 2019, while those of the BPNN,
GABP, and IRI2016 models are 0.768 MHz, 0.728, 13.18%, 0.785 MHz, 0.722, 13.80% and
0.98 MHz, 0.757, 16.59%, respectively. For the year 2015 of high solar activity, the forecasting
errors RMSE of the LSTM model is 0.833 MHz, ρ is 0.907 and PD is 9.35%, while those of
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the BPNN, GABP, and IRI2016 models are 1.033 MHz, 0.849, 12.02%, 1.058 MHz, 0.841,
12.18% and 1.147 MHz, 0.831, 13.29%, respectively.

The LSTM model tends superior to other models in each station indicates the advan-
tages of the deep learning method in the forecasting of foF2 time series. It’s mainly due
to the special “gate” structures, the dependency for long-term variation of foF2 is learned
by the LSTM model, so the trend of time serial can be well obtained. Meanwhile, all the
other three models are superior to the IRI2016 model, possibly because the IRI2016 model
is an empirical ionosphere model based on worldwide available data of ground-based and
satellite observations, it can be used as ionospheric background, without the function of
ionospheric forecasting.

Figure 5 illustrates the root-mean-square error, relative deviation of the four prediction
models for each ionosonde station. The stations are arranged from left to right according to
the latitude from low to high. Figure 5 shows that the overall root-mean-square error of
the 4 prediction models is larger in the low latitude area, but the forecasting performance
of each model in the middle latitude area is better than that in the low latitude area. A
possible explanation is that the variation of foF2 in low latitude areas is larger than that in
high latitude, which increases the difficulty for prediction and produces larger forecasting
errors. The interesting conjecture is also similar to that was found in previous work [48],
but during the geomagnetic storm days.
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For the same ionosonde station, the RMSE in the year of solar maximum is usually
greater than that in the year of solar minimum. While the PD in the year of solar maximum
is often lower than that in the year of solar minimum. A possible reason is that the electron
density of the ionosphere changes more dramatically due to solar activity, and the foF2
during the year of solar maximum is higher than that during the year of solar minimum,
resulting in a larger RMSE and absolute error during the high solar activity period. Similar
speculation can be found in previous works [17,20]. According to Formula (4), PD is the
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ratio of absolute error to the observed value, therefore, the PD is lower during high solar
activity year than that during low solar activity year.

3.2. Diurnal Variations of Forecasting Models

To compare the forecasting ability of the diurnal variations of foF2, three-day observed
data of foF2 in the high solar activity year (2015) and the low solar activity year (2019) are
selected to compare with the forecasting results. The measurements are plotted together
with the results from BPNN, GABP, IRI2016, and LSTM models during days 71–74 and
256–259 in 2019 under geomagnetic quiet conditions at Brisbane, Hobart, Canberra, and
Darwin, as shown in Figure 6.
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Figure 6. Samples of comparisons of daily variations for observed (blue solid line) and 4 models forecasting foF2 values
during a quiet period in the year of solar minimum (2019) during days 71–74 and 256–259.

Figure 6 shows that all 4 models can capture the general trends of foF2 diurnal
variations. In most cases, the result of the BPNN model, the GABP model, and the deep
learning LSTM model are better than that of the IRI2016 model. Among them, the LSTM
model tends to be closer to the measured curve than other forecasting models, especially



Remote Sens. 2021, 13, 3849 13 of 20

at the peaks, some subtle changes can be reflected. For instance, there is a sudden drop
of observed peak value at station BRI near day 72, only the LSTM model successfully
reproduces this drop, while the BPNN model and the IRI2016 model still rise in peak.

To investigate the forecasting ability of foF2 diurnal variability during geomagnetic
storm conditions, two storm events that occurred in 2015 are selected for further analysis.
Figure 7 shows the variation of the solar geomagnetic activity index Dst, Kp, and AE during
two geomagnetic storm periods, where the Dst, Kp, AE data are provided by the website at
https://omniweb.gsfc.nasa.gov/form/dx1.html, accessed 12 May 2021. The storm event
occurred during days 76–79 and 173–176 of 2015. The minimum Dst index of the two storm
events is below −200 nT, reaching the level of severe geomagnetic storms [36].
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Figure 7. Variation of Dst, Kp, and AE index during the geomagnetic storm period of (a) days 73–83 in 2015; (b) days
169–179 in 2015. The variation of the magnetic Dst index during this storm is shown on the top panel, the red dash lines in
horizontal indicate the Dst at the level of −200 nT, and the vertical red dash lines indicate the storm periods.

Figure 8 is the same format as Figure 6 but during geomagnetic storm conditions.
The comparison between the measurements and the forecasting results for three days
successively at SAY, SHY, WUH, and BEJ. The geomagnetic storm at day 76 has a significant
impact on the variations of foF2, and sudden drops of foF2 peak values near day 77 are
observed at all stations, but only the LSTM model captured this variation trend, while the
BPNN model, the GABP model, and IRI2016 model show a relatively smooth variation in
peak as that in quiet condition, accordingly producing forecasting errors to some extent.
In contrast, the variation of the peak value of observed foF2 is not obvious during the
magnetic storm of day 173–176 in 2015, and all the forecasting models are able to capture
the general trend of observed diurnal variations.

Figure 9 shows the absolute deviation dfoF2 of Figure 8 to evaluate the forecasting
errors of the models specifically, which is calculated by the subtraction of forecasting and
observed values. As can be seen from the left panels of Figure 9, the absolute deviation
of the LSTM model shown in the purple stem is relatively smaller than other models,
particularly around peak values at day 77, indicating that the LSTM model successfully
forecasts the general diurnal variation of foF2 behavior in geomagnetic storm periods. The
right panels of Figure 9 show that there are some data gaps in the geomagnetic storm
period of day 173–175, but the overall trend of absolute deviation shows that the LSTM
model is also relatively small among all models.

https://omniweb.gsfc.nasa.gov/form/dx1.html
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It turns out that the LSTM model forecasting results compared well with the observed
values. Of particular interest is the response of the LSTM model forecasting to the sudden
drop in foF2 value during the magnetic storm of day76–79 in 2015. Thus, the LSTM model
in forecasting foF2 could be used to capture storm events on a global scale, which will be
one subject for our future studies.
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3.3. Seasonal Variations of Forecasting Models

To compare the forecasting ability of seasonal variations of foF2, samples of data at
00:00 UT and 12:00 UT in 2015 and 2019 are selected, respectively.

Figure 10 are samples of seasonal variations of observed and forecasting foF2 values
for 4 stations at DAR, BRI, CAN, and HOB for the low solar activity year in 2019. Similar
samples of comparations between observed and forecasting foF2 values for 4 stations
at SAY, SHY, WUH, and BEJ stations for high solar activity year in 2015. The observed
values are shown together with the forecasting values obtained from BPNN, GABP, IRI2016,
and LSTM models. As can be seen from Figures 10 and 11, all four prediction models can
capture the general trend of seasonal variabilities of foF2 no matter during low or high solar
activity year. However, the variation trend of the LSTM model is closer to the observations,
the BPNN and GABP model are between the LSTM model and IRI2016 model, while the
IRI2016 model deviates from the observation curve to some extent, indicating that the
LSTM model is much better than BPNN, GABP, and IRI2016 models.
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4. Conclusions

In this paper, an LSTM model based on deep learning for foF2 forecasting is developed.
To verify the forecasting ability and performance of the deep learning LSTM model, a BPNN
model and a GABP model are constructed for comparison and analysis. Input parameters
of these models including the factors associated with geographic locations, solar activity,
solar cycle, magnetic activity, neutral wind, diurnal information, and seasonal information.
All the forecasting models are compared with that of the observed data under different
geomagnetic conditions. The results illustrate that all models can successfully forecast the
general diurnal and seasonal shape of foF2 behavior, but the deep learning LSTM model
is the closest to the observed foF2 values. By testing against the international reference
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ionosphere IRI2016 model, we found that the deep learning LSTM model forecasting
overperforms the empirical model for both quiet and active geomagnetic conditions.

Under different solar geomagnetic activities, the results of the four models are com-
pared and analyzed. Compared with the BPNN model and the GABP model, the LSTM
model which can shed light on sequential variation in time-series data shows significantly
better performance in forecasting foF2 values, especially during geomagnetic storm days,
only the LSTM model can capture the variations for sudden drops of foF2 peak values. We
can infer that the deep learning methods are promising in the application for forecasting
ionospheric parameters in contrast to the traditional neuron network methods.

While the accuracy of the deep learning LSTM model is the optimal one of all these
models, there are still some degrees of forecasting deviation. An improvement over the
LSTM model can be achieved if data from more stations are included in the training of the
deep learning network in the future. In addition, some other deep learning methods could
be explored for the forecasting of foF2 and also deep learning methods in the forecasting of
some other ionospheric parameters namely hmF2 (peak heights of the F2 layer), M3000F2
(M factor of F2 layer), and TEC. Moreover, further studies can be explored to improve the
accuracy of the deep learning LSTM model, and significant developments to the LSTM
model are needed for mapping foF2 on a global scale in the short term, or even in real-time
forecasting for our future studies.
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List of abbreviations used in the paper.

LSTM Long-Short-Term Memory
foF2 the critical frequency of the ionosphere F2 layer
LT Local Time
SSN the Sunspot Number
BPNN a Back-Propagation Neural Network
GABP a Genetic Algorithm optimized Backpropagation neural network
IRI the International Reference Ionosphere model
HF High Frequency
RNN a Recurrent Neural Network
GRU Gated Recurrent Unit
GA Genetic Algorithm
TEC Total Electron Content
URSI Union of Radio Science International
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COSPAR the Committee on Space Research
RMSE Root Mean Square Error
PD Percentage Deviation
hmF2 peak heights of the F2 layer
M3000F2 M factor of F2 layer
NOAA the National Oceanic and Atmospheric Administration
WDC the World Data System
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