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Abstract: Drought intensity and duration are expected to increase over the coming century in
the semiarid western United States due to anthropogenic climate change. Historic data indicate
that megadroughts in this region have resulted in widespread ecosystem transitions. Landscape-
scale monitoring with remote sensing can help land managers to track these changes. However,
special considerations are required: traditional vegetation indices such as NDVI often underestimate
vegetation cover in semiarid systems due to short and multimodal green pulses, extremely variable
rainfall, and high soil fractions. Multi-endmember spectral mixture analysis (MESMA) may be
more suitable, as it accounts for both green and non-photosynthetic soil fractions. To determine the
suitability of MESMA for assessing drought vegetation dynamics in the western US, we test multiple
endmember selection and model parameters for optimizing the classification of fractional cover of
green vegetation (GV), non-photosynthetic vegetation (NPV), and soil (S) in semiarid grass- and
shrubland in central New Mexico. Field spectra of dominant vegetation species were collected at
the Sevilleta National Wildlife Refuge over six field sessions from May–September 2019. Landsat
Thematic Mapper imagery from 2009 (two years pre-drought), and Landsat Operational Land Imager
imagery from 2014 (final year of drought), and 2019 (five years post-drought) was unmixed. The best
fit model had high levels of agreement with reference plots for all three classes, with R2 values of
0.85 (NPV), 0.67 (GV), and 0.74 (S) respectively. Reductions in NPV and increases in GV and S were
observed on the landscape after the drought event, that persisted five years after a return to normal
rainfall. Results indicate that MESMA can be successfully applied for monitoring changes in relative
vegetation fractions in semiarid grass and shrubland systems in New Mexico.

Keywords: multi-endmember spectral mixture analysis (MESMA); change detection; land monitoring

1. Introduction

An increase in drought events driven by anthropogenic climate change has been
observed globally [1] and is likely to have profound ecosystem impacts in semiarid lands.
For example, a state of megadrought persisting in the western United States over the past
20 years has been attributed to climate change [2], and drought events in the region are
anticipated to increase in frequency and severity over the next century [2,3]. A drought
event in New Mexico during this period led to growing season declines of up to 40%,
with significant impacts on vegetation observed [4]. Desert ecosystems are fragile and
susceptible to rapid change from climatic and anthropogenic disturbances [5]; recent
evidence suggests these changes may already be in progress [6]. Remote sensing is a critical
tool for monitoring these transitions to inform management decisions [7], and to better
understand their ecological drivers [8] and impacts on carbon sequestration [9].

However, using remote sensing methodologies to monitor vegetation in arid and
semiarid environments requires special considerations when compared to more mesic
systems. Relatively low concentrations of both green and dormant/non-photosynthetic
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vegetation and high concentrations of bright soil in these environments can make vege-
tation difficult to detect in moderate-to-coarse spatial resolution satellite imagery [10,11].
Sub-pixel analysis methods can be useful in this circumstance: sparse cover and high
spatial variability of vegetation cover are captured by relative fractions, and can better
capture dormant/non-photosynthetic vegetation, which comprises a larger fraction of total
vegetation cover in semiarid systems [12]. Fractional cover mapping can be a powerful tool
for monitoring on the landscape to the continental scale [13]. Multi-endmember spectral
mixture analysis (MESMA) in particular can produce highly accurate fractional cover
estimates by allowing variable endmember definitions that better reflect conditions on the
ground [5], and even allow for the discernment of species-level dynamics [14].

Vegetation monitoring using MESMA in desert environments is subject to certain
limitations based on the spectral, physiological, and phenological characteristics of desert
vegetation. Soil brightness can interfere with signals for green vegetation classes due
to both the comparatively low concentration of green vegetation in these environments
and physiological factors of the plants themselves leading to less pronounced spectral
curves than related species in wetter environments [15]. In desert grassland, spectral
curves for dormant (non-photosynthetic) vegetation can also be muted by the brightness
of soil, or easily confused with it [5]. Nonetheless, MESMA has been employed success-
fully in semiarid woodland environments to map canopy dynamics, including periods
of dieback [16,17], and has been used to examine green vegetation cover across multiple
biome transition zones in New Mexico [18]. This method thus holds promise for mapping
vegetation dynamics across broad time scales in the semiarid grass- and shrublands of
central New Mexico.

The objectives of this research were to: (1) determine how accurately MESMA can
model fractional cover of grasses (largely non-photosynthetic vegetation, NPV), shrubs
(largely green vegetation, GV), and soil (S) in desert grass- and shrubland environments
in New Mexico using Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land
Imager (OLI) imagery as a base; (2) determine the optimal endmember selection techniques
and MESMA parameters for modeling NPV, GV, and S fractions using Landsat imagery in
this environment; and (3) use optimized model parameters to observe changes in fractional
cover of NPV, GV, and S after a major disturbance event. Four endmember selection
techniques and three model parameters were varied to determine the optimal parameters
to maximize accuracy of fractional cover estimates in unmixed Landsat imagery. Fractions
from pre- and post-drought periods were compared to determine whether the impacts of a
regional drought could be detected. This research contributes to a larger investigation of the
landscape scale impacts of increasing climatic variability in the grassland and shrubland
environments of the southwestern US [19].

2. Materials and Methods
2.1. Study Site

The Sevilleta National Wildlife Refuge (SNWR), located in central New Mexico about
80 km south of the city of Albuquerque (Figure 1), is largely composed of former cattle
rangeland which received refuge status in 1973 [20]. The refuge encompasses four biomes
transitioning between Great Plains shortgrass prairie, Colorado Plateau shrub steppe, Chi-
huahuan desert, and pinon-juniper woodland [21]. The three main vegetation community
types present on the refuge are blue grama (Bouteloua gracilis) grassland, black grama
(Bouteloua eriopoda) grassland, and creosote (Larrea tridentata) shrubland; all are common
dominant vegetation communities throughout the western US [21]. Smaller areas of the
refuge include Rio Grande riparian woodland [21]. The refuge is home to a long-term
ecological research station in the National Science Foundation’s LTER network that has
been collecting data since 1988 [21]. Average elevation at the SNWR is ~1500 m [21].



Remote Sens. 2021, 13, 3840 3 of 24Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 24 
 

 

 

Figure 1. Map of study area, with SNWR boundary in black. Circles are reference plots used to 

assess accuracy of MESMA-derived fractional images. White circles are mixed cover plots derived 

from 2019 UAS imagery; green and black circles are pure vegetation and soil plots, respectively, 

derived from 2019 Landsat 8 OLI imagery. 

The climate of the SNWR is semiarid, with average annual precipitation between 
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intense drought from 2010–2014 (Figure 2). While total annual rainfall was average in 

2013, it occurred off the normal monsoon season, leading to persistence of severe drought 

conditions in 2014 in large portions of the state, including the SNWR [24].  

Figure 1. Map of study area, with SNWR boundary in black. Circles are reference plots used to assess
accuracy of MESMA-derived fractional images. White circles are mixed cover plots derived from
2019 UAS imagery; green and black circles are pure vegetation and soil plots, respectively, derived
from 2019 Landsat 8 OLI imagery.

The climate of the SNWR is semiarid, with average annual precipitation between
1981–2016 of 286 mm (±58 mm standard deviation), with relatively high interannual vari-
ability [22]. Precipitation comes in two phases: a brief summer monsoon pulse beginning
between July and September, and winter precipitation from January to March. Grass and
forb species tend to experience rapid growth patterns during the monsoon pulse, while
shrub species tend to experience slower, steadier growth in the spring during snowmelt [23].
The average summer temperature is 24 ◦C; winter 5 ◦C [21]. The area experienced a brief
and intense drought from 2010–2014 (Figure 2). While total annual rainfall was average in
2013, it occurred off the normal monsoon season, leading to persistence of severe drought
conditions in 2014 in large portions of the state, including the SNWR [24].
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Figure 2. Monthly precipitation at the SNWR with the drought period as defined by the NOAA National Integrated
Drought Information System shaded in grey. Landsat image dates used for MESMA are indicated with dashed grey lines.
Precipitation data from Oregon State PRISM Climate Group.

2.2. Data

Field spectroscopy of dominant vegetation species were collected at the study area and
post-processed to form a spectral library. The spectral library was used to unmix Landsat
5 TM imagery from 2009 and Landsat 8 OLI imagery from 2014 and 2019 with MESMA.
Visible range high resolution imagery, collected using an uninhabited aerial system (UAS),
was used to validate fraction estimates.

2.2.1. Field Spectroscopy

Spectral reflectance measurements of vegetation were collected monthly from May to
September 2019 to build a comprehensive spectral library capturing dormancy and growth
phases of the dominant grass and shrub species. An ASD Fieldspec 4 Standard Resolution
Spectroradiometer with spectral range 350–2400 nm collecting 2151 bands (1.4 nm full
width at half maximum from 350–1000 nm, 1.1 nm in width from 1001–2500 nm) was used
to collect 10 measurements of each target in one burst. A Halon white reference panel
was used to calibrate the equipment; a new white reference measurement was taken every
10 min during sampling. All measurements were conducted within +/− 2 h of solar noon,
under cloud-free skies.

Four sampling sites were identified to capture the major vegetation community types
at the refuge studied by the LTER: one black grama-dominated site, one creosote-dominated
site, one blue grama-dominated site, and one mixed grass and shrub site. A minimum of
10 individuals of each major vegetation species at each site were sampled (Table 1), though
a few species that were rare at the landscape level but locally prevalent were also sampled
opportunistically. At least one patch of bare soil with a minimum 60 cm diameter to avoid
overhanging vegetation was sampled at each site. A total of 296 targets were sampled over
six field dates.
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Table 1. Vegetation species sampled at the SNWR

USDA Species Code Scientific Name Common Name No. Targets

BOGR2 Bouteloua gracilis Blue grama 20
BOER4 Bouteloua eripoda Black grama 31
LATR2 Larrea tridentata Creosotebush 35
ATCA2 Atriplex canescens Fourwing saltbush 14
CYIM2 Cylindropuntia imbricata Tree cholla 20
EPTO Ephedra torreyana Torrey’s jointfir 22

GUSA2 Gutierrezia sarothrae Broom snakeweed 29
JUMO Juniperus monosperma Oneseed juniper 8

CERCO Cercocarpus montanus Mountain mahogany 10
KRLA2 Krascheninnikovia lanata Winterfat 9
OPUNT Opuntia spp Pricklypear 22
PRGL2 Prosopis glandulosa Honey mesquite 4
YUGL Yucca glauca Soapflower yucca 15

DAPU7 Dasyochloa pulchella Low woolygrass 2
PLJA Pleuraphis jamesii James’ galleta 7

SCBR2 Scleropogon brevifolius Burrograss 4
SPORO Sporobolus spp Dropseed 3
CHER2 Chaetopappa ericoides Rose heath 15
MAPIP Machaeranthera pinnatifida Lacy tansyaster 10

Field spectra were individually examined in ViewSpecPro post-processing software.
Obvious outliers and errors were discarded, referencing datasheet notes (e.g., clouds
passed over during collection, disturbance to equipment, etc.): 20 target samples (i.e.,
10 measurements of one target) were removed in this manner. The remaining spectra were
then averaged by target and exported, resulting in 276 spectra.

2.2.2. Imagery Collection and Pre-Processing

Atmospherically corrected imagery with <5% cloud cover was acquired from the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). Landsat TM and
Landsat OLI scenes were selected to track vegetation dynamics from five years pre-drought
(2009), peak drought (2014), and five years post-drought (2019). Image dates were filtered
to correspond as closely as possible to mid-May, the optimal spectral separability season
between NPV, GV, and S in a nearby study area [17], as well as the anniversary date of
UAS reference imagery collection (26 June 2019). Three scenes from Path 33 Row 36 were
selected with image dates 10 May, 2009; 9 June, 2014; and 30 June, 2019 (Figure 2).

High resolution airborne imagery was collected at three sample sites on 26 June,
2019 using a DJI Mavic Pro UAS equipped with a Hasselblad L1D-20c sensor (Figure 1).
Flights were conducted at 120 m AGL with 80% forelap and 60% sidelap between frames,
with a GSD of ~2.5 cm; altogether, 323 frames were collected across all sites (129 at site
1, 76 at site 2, and 118 at site 3). Two sites were located near previously established
LTER vegetation monitoring sites: one near the creosote shrubland and black grama
grassland monitoring sites, and the other near the blue grama grassland monitoring site.
The last sampling site was located in the blue and black grama grassland ecotone. Each
site covered at least 2.5 km2. To facilitate accuracy assessment of the 2019 endmember
fraction images, orthomosaics with 2.5 cm spatial resolution and estimated positional
accuracy +/− 3 m were produced from the imagery using Agisoft Metashape Professional
photogrammetry software.

2.2.3. Vegetation Community Map

A vegetation community classification map for the SNWR [25] was retrieved from the
Sevilleta LTER database to examine changes in NPV, GV, and S by vegetation community type.
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2.3. Analysis
2.3.1. Spectral Library Creation and Optimization

A spectral library was constructed from the combined field-collected spectra from
all dates using the open-source Visualization and Image Processing for Environmental
Research (VIPER) 2.1 toolset [26] in ENVI 5.2. The field spectra were convolved to Landsat
8 OLI and Landsat 5 TM bands, creating two master libraries of the same set of spectra.
Bands 2–7 were then reserved from the OLI library and bands 1–5 and 7 were reserved from
the TM library to align the spectral coverage of the two sensors. The spectral separability
of NPV, GV, and S were evaluated using Jeffries-Matusita distance prior to analysis; each
individual pair comparison scored 1.93 or above (GV-NPV: 1.94; NPV-S: 1.99; GV-S: 1.99),
with the maximum possible score of 2 [27]. These scores are considered highly separable
for classification purposes [28].

Four endmember selection methods, outlined below, were used to derive optimized
libraries for the MESMA (Table 2). Spectral reflectance curves of selected endmembers in
each optimized library can be viewed in Appendix A.

Table 2. Results of four endmember (EM) selection methods on spectral library composition

Endmember
Selection Method Citation No. NPV EM No. GV EM No. S EM

EMC Tane et al., 2018 3 3 2
inCOB Roberts et al., 2003 4 8 2

IES Roth et al., 2012 5 21 2
Reduced IES Roth et al., 2012 3 11 2

There are three main metrics for evaluating potential endmembers based on spectral
characteristics: count-based endmember selection (CoB), endmember average RMSE (EAR),
and minimum average spectral angle (MASA). The three together are referred to as EMC
(EAR/MASA/CoB) metrics.

The first two metrics, EAR and MASA, are similar to each other in that they evaluate
intraclass variability; minimizing both values selects the endmembers that best model other
members of the same class. EAR and MASA use the same formula, but MASA evaluates
summed spectral angle in place of RMSE to determine the endmember that best models
others of the same class [29].

Count-based endmember selection (CoB) is another metric to select the endmembers
that best model others within the same class [30]. MESMA is applied to the spectral library
instead of the image, yielding two values: the number of spectra within the class modeled
by a given endmember (inCoB), and the number of spectra outside of the class modeled
by a given endmember (outCoB). An ideal endmember will have an inCoB equal to the
number of spectra in the same class, with outCoB equal to zero [26].

Multiple methods have been developed for endmember selection based on some
combination of EMC metrics. For this study, two methods were used to derive two separate
libraries. The first library (‘EMC’) selected three endmembers per class (NPV/GV/S): the
single spectra with the lowest EAR, the lowest MASA, and the highest inCoB, respectively.
In cases where the same individual endmember was selected through multiple metrics (for
example, if the same spectra had both the lowest EAR and highest inCoB), fewer endmem-
bers were selected for that class. This method was validated by Tane and colleagues [29] in
their comparison of endmember selection methods and has the benefit of taking advantage
of all metrics for selecting the spectra maximally representative of in-class variability. The
resulting EMC library contained 8 endmembers: 3 NPV, 3 GV, and 2 S.

The second library (‘inCoB’) filtered only by inCoB value; all unique inCoB values
>0 were reserved. EAR and MASA were considered only to break ties between spectra
with the same inCoB value. This method was validated by Roberts and colleagues [30] in a
study of a semiarid shrubland system in California. This method ensures that all selected
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endmembers can be used to model others of the same class, a factor not guaranteed by favorable
EAR or MASA values. The inCOB library contained 14 endmembers: 4 NPV, 8 GV, 2 S.

Two iterative endmember selection (IES) techniques were also tested. IES maximizes
class separability by selecting potential endmembers with the highest kappa values for
modeling the entire library [31]. Two libraries were created using IES as an optimization
method- an ‘original’ IES and a ‘reduced’ IES library. The original IES (IES) used only
a single pass of the algorithm, while the reduced IES library used a fresh pass on each
derived library, until the derived library no longer reduced with a new pass. The advantage
to reduced IES over single-pass IES is savings in computational power by reducing the
number of endmembers in the library [32]. The IES library contained 28 endmembers
(5 NPV, 21 GV, and 2 S), while the reduced IES library contained 16 (3 NPV, 11 GV, and 2 S).

2.3.2. Multiple Endmember Spectral Mixture Analysis

Landsat pixels were unmixed by modeling fractional cover of green (photosynthetic)
vegetation (GV), non-photosynthetic vegetation (NPV), soil (S), and photometric shade.
The four libraries were each used to unmix Landsat imagery from 30 June 2019.

Three parameters were altered on each run to improve model accuracy. Adjustments
were made to the overall RMSE threshold, the multifusion threshold, and the use of stable
zone unmixing. First, the overall model RMSE threshold, below which a pixel remains
unmodeled, was set at either 0.025 or 0.007, the former being standard in the literature [14]
and the latter adjusted to match the accepted optimum setting for the multifusion threshold.

The multifusion threshold, which is the RMSE at which the algorithm switches from
a model with fewer endmembers to more endmembers, was set at either 0.025 or 0.007.
Adjusting this value lower should make the model more likely to select more endmembers
to model a pixel in complex environments; this is potentially useful in an environment like
the SNWR, where variability of cover is high at fine spatial scales, and all cover types are
expected to be present within most pixels. Roberts et al. [32] found the optimum setting
to be 0.7% after testing in multiple complex environments; a threshold of 2.5% was also
tested to correspond to the overall RMSE threshold.

Finally, stable zone unmixing, which subsets the bands in an image set for analysis
by preserving only those which maximize separability of each endmember pair [33], was
tested for each threshold configuration.

With all parameter adjustments combined, each library was used to unmix the Landsat
image eight times, yielding 32 MESMA runs in total (see Appendix A). For all runs, the
range of possible endmember fractions was constrained from –0.05 to 1.05, consistent with
the literature for this environment [17], and the maximum shade fraction was constrained
to 30% to prevent over-modeling of shade in the largely barren and open study area. Only
three- and four-endmember models were enabled due to the high variability of cover over
small spatial scales in the study area noted in the mixed reference plots (Table 3), creating
the expectation that all cover types would be present in a majority of pixels. All models
were shade-normalized prior to accuracy assessment.

Accuracy assessment was performed to determine which MESMA-derived fraction
images best modeled all three classes of cover in 2019. The library and settings for the
run that derived the best fit 2019 fraction image were used to unmix imagery from 2009
and 2014. Because suitable reference imagery was not available, independent accuracy
assessment was not performed for the 2009 and 2014 fraction images.

Table 3. Cover fractions of NPV, GV, and soil for all reference plots. Some rows may not sum to 100%
due to rounding.

Plot ID NPV
Fraction

GV
Fraction

Soil
Fraction

Community
Type Imagery Source

Green 1–5 0% 100% 0% Agriculture Landsat / NAIP
Soil 1–5 0% 0% 100% Barren

(Arroyo/Wash)
Landsat / NAIP
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Table 3. Cont.

Plot ID NPV
Fraction

GV
Fraction

Soil
Fraction

Community
Type Imagery Source

BOER4_1 45% 13% 43% Grassland UAS
BOER4_2 55% 5% 40% Grassland UAS
LATR2_1 15% 32% 53% Shrubland UAS
LATR2_2 38% 16% 46% Shrubland UAS
LATR2_3 39% 15% 46% Shrubland UAS
LATR2_4 32% 21% 46% Shrubland UAS
BOGR2_1 71% 2% 27% Grassland UAS
BOGR2_2 51% 10% 40% Grassland UAS
BOGR2_3 62% 2% 36% Grassland UAS

Transition 1 35% 9% 56% Grassland UAS
Transition 2 44% 11% 45% Grassland UAS
Transition 3 42% 9% 48% Grassland UAS

2.3.3. Accuracy Assessment

Two types of reference plots were used to evaluate the fit of the models: plots of pure
green vegetation or soil; and mixed plots of NPV, GV, and soil (Table 3). To derive the
mixed plots, 90 × 90 m grids representing the ground footprint of nine Landsat pixels were
overlaid on the UAS reference imagery. The size of the plots was set to allow for minor co-
registration errors between the Landsat and reference imagery. Three plots were randomly
selected from each reference imagery collection site, plus two more at the creosote collection
site to allow for a more representative balance between grass- and shrubland, to yield
12 mixed plots (Figure 1, Table 3). The plots were overlaid with a dot matrix of 18 by
18 points, or 324 points per plot (Figure 3). The cover type beneath each point was classified
through manual interpretation to yield estimates of fractional cover of NPV, GV, and S
for each plot. A least-squares regression analysis was then used to compare the fractional
cover between the reference and MESMA-estimated cover fractions [17,34].

Pure cover plots were derived from the 2019 Landsat 8 imagery displayed in a false
color composite (bands 7, 5, and 2) to emphasize soil through the SWIR band and vegetation
through the NIR band. Five plots of 100% soil cover were identified in arroyos and other
natural drainages based on red saturation (the higher the saturation, the drier/likely purer
soil, lack of vegetation). Five plots of 100% green vegetation cover were derived from
agricultural areas based on green saturation (the greener the saturation, the more densely
vegetated). National Agriculture Imagery Program (NAIP) imagery from 2014 was used
to verify the accuracy of these interpretations. We were unable to locate unmixed areas
of non-photosynthetic vegetation of sufficient size in the study area; even in grassland
environments, there was only one plot where NPV cover exceeded 60% (Table 3). The
same least-squares regression was used to compare fractional cover estimates between
the pure reference plots and the MESMA-estimated cover fractions. RMSE, mean average
error (MAE), and R2 values were derived for each of the three cover classes in both types
of reference plots.
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Figure 3. Sample accuracy assessment plot encompassing 90 × 90 m (nine Landsat pixels), with an
18 × 18 point grid. The cover type beneath each point was classified manually as GV, NPV, or S to
yield fractional cover estimates for the plot.

2.3.4. Changes in Fractional Cover by Vegetation Community

Fraction images from 2009, 2014, and 2019 were differenced in the following com-
binations: 2009/2014; 2014/2019; and 2009/2019. The differenced images were overlaid
with a vegetation community classification map from a prior LTER study [25] and zonal
statistics were calculated to evaluate changes in NPV, GV, and soil over the study period in
black grama grassland, blue grama grassland, the grassland ecotone between the two, and
creosote shrubland. These community types collectively form ~35% of total cover on the
SNWR, and ~57% of cover on the east side of the refuge, where long-term research sites
are located.

3. Results
3.1. Accuracy Assessment

The best fit model was derived from the MESMA using an EMC library with RMSE
and multifusion threshold set to 0.025 with no stable zone unmixing (Figure 4). The class
with the lowest level of agreement was GV, with an R2 of 0.67 and the highest RMSE and
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MAE of all classes. The class with the highest level of agreement was NPV, with the lowest
RMSE and MAE of all classes, and an R2 of 0.85. Soil also showed agreement, with an R2

of 0.74, though with slightly higher RMSE and MAE than NPV. The library and metrics
used to derive the best fit model for 2019 were used to unmix imagery for 2009 and 2014 to
assess cover dynamics during and after the drought period.
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While some of the other fraction images showed higher agreement modeling individ-
ual classes, particularly soil, none of the rest successfully modeled all three. 55% (n = 20)
of models failed to model a sufficient number of pixels to perform an accuracy assess-
ment, largely driven by the inCoB library failing to produce a single assessable model (see
Appendix A). Of the models for which accuracy assessment was possible, both the IES
and Reduced IES libraries failed to model NPV and GV, with R2 values never exceeding
0.41 and often <0.1 (see Appendix A). Only one other EMC library produced a model with
R2 > 0.7 for any class: the EMC with RMSE of 0.025 and multifusion of 0.007 had higher
agreement for soil, with R2 of 0.74.

3.2. Changes in Fractional Cover by Vegetation Community

Changes in fractional cover were evaluated for the drought period (2009–2014) and
the post-drought period (2014–2019) for each cover type (Figure 5). The general trends
captured on the landscape scale by the differenced images show a pattern of vegetation
loss during the drought period, as evidenced by the general increases in soil fraction
accompanied by declines in NPV (Figure 6). The differenced images do not indicate an
overall return to the pre-drought baseline, which is underlined when the change over time
is examined by community type (Figure 5).
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period); second row 2014–2019 (recovery period); and third row 2009–2019 (drought + recovery period). White indicates no
change; green indicates a positive difference from baseline; red indicates a negative difference from baseline.
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Non-photosynthetic vegetation fractions declined in all community types during the
drought period. Blue grama grassland had the steepest drought period decline, at 13%,
followed by black grama grassland at 11% and creosote shrubland at 9%. The ecotone
experienced the smallest decline, at 5%, perhaps due to species diversity enhancing drought
resilience [35]. In the post-drought period, NPV fractions continued to decline in creosote
shrubland and in the ecotone, at 4% and 2% respectively. Blue grama grassland experienced
modest recovery during the post-drought period, at 2%, which was not sufficient to return
to baseline cover. There was virtually no change in NPV fraction in black grama grassland.

Green vegetation fractions increased in all community types over the study period,
including during the drought period. The largest increase was in creosote shrubland,
with a 5% increase during the drought period and a continued 4% increase during the
post-drought period—a total 9% increase over the study period. Black and blue grama
grassland both experienced increases of 4–5% during the drought period and an increase of
1–2% during the post-drought period. The ecotone experienced a slightly smaller increase,
with 2% during the drought period and 2% during the post-drought period.

Soil fractions increased in all community types over the course of the total study
period (2009–2019), with virtually all increases occurring during the drought period. The
steepest drought period increase, 9%, occurred in the blue grama grassland. Black grama
grassland soil fraction increased by 6%, creosote shrubland by 4%, and the ecotone by
2%. The black grama grassland and the blue grama grassland both experienced slight
declines in soil fraction during the post-drought period of 2% and 4% respectively, which
was not sufficient to return to the pre-drought baseline. There was virtually no change in
soil fraction in the post-drought period in the ecotone or creosote shrubland.

4. Discussion

Only one MESMA run, using EMC endmember selection and RMSE and multifusion
thresholds of 0.025, produced a fraction image that successfully modeled fractional cover
in 2019. The IES and CoB libraries likely failed due to phenological mismatches between
these libraries and the Landsat imagery. Because CoB weights the spectra that capture
the highest amount of variability within a class, spectra that modeled the full range of
phenological variation from May through September may not have been appropriate for
modeling vegetation spectra in June specifically. IES weights endmembers that best model
an entire library; similarly, the spectra that best modeled the library as a whole may have
captured inappropriate spectral variations for modeling vegetation spectra in June.

The interventions in thresholding and stable zone unmixing generally did not provide
appreciable increases in model accuracy. Stable zone unmixing is more likely to improve re-
sults for image sets with high spectral resolution [33]; the Landsat scenes, after adjustments
to the layer stacks to align the spectral coverage of OLI 8 and TM5, left only six bands
for analysis. Adjustments to the RMSE and multifusion thresholds gave similar results
in terms of percentage of pixels modeled and overall accuracy in different runs derived
from the same library. However, adjusting the multifusion threshold to 0.025 to match the
overall RMSE threshold boosted accuracy for GV for the best fit model. It is known that
lower multifusion thresholds favor the selection of models with more endmembers [32].

The most dramatic change in all community types was the decrease in NPV fraction,
with declines of roughly 10% in most communities, which is consistent with expectations
of grassland dieback during drought. The increases in GV across community types in the
drought and post-drought period are consistent with observations of community reordering
occurring under climate change in semiarid grasslands [6]. A study of drought legacy
effects on aboveground net primary production (ANPP) additionally found an increase in
ANPP at two SNWR sites when rainfall increased in the study area in 2013 [36], despite
the continued regional drought pattern, which may account for some of the GV increase
observed in these results. The blue grama grassland was the only community to experience
recovery in NPV fraction in the post-drought period. This observation, combined with
the similar declines in NPV fraction between black grama and blue grama grassland,
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contradicts observations of black grama grassland’s greater resilience in drought [37].
However, the change in GV should be viewed with some caution given the RMSE of
the best fit model for green vegetation exceeded the percent change in cover observed
(see Appendix A).

There were notable limitations to the best fit 2019 model, the foremost of which was its
unreliability at detecting green vegetation at less than ~30% cover (Figure 4), consistent with
the literature for this environment [15], particularly given the limited spectral information
from the imagery set analyzed [38]. Multiple climatic and physiological factors likely
contributed to this issue. First, GV was likely a weak signal due to the comparatively low
presence of green vegetation throughout the grassland and shrubland in study area: in the
mixed reference plots, green vegetation averaged 12% cover and never exceeded 33%, even
in shrubland. The already low concentrations of GV were likely limited in 2019 due to a
weak monsoon pattern, leading to only a limited ‘green up’ of grasses at the SNWR and to
some extent even perennial shrubs. The spectral similarity between non-photosynthetic
vegetation and soil, and the weak spectral curve of ‘green’ desert grasses and shrubs, even
in the best of conditions, may have also contributed to the difficulty in deriving an accurate
model for GV [5].

Two methods might be used to address this shortcoming. The first, and most straight-
forward, is the use of an imagery set with more spectral information. The drawback is the
limited availability of hyperspectral imagery for the area of interest and the comparatively
short temporal record of this imagery hindering the ability to assess dynamics over long
time periods, one of the main advantages of Landsat. MODIS, another multispectral im-
age source with greater spectral coverage than Landsat, could present an alternative, but
Okin [39] found that NPV and soil were not separable using MESMA on MODIS bands,
and instead used a relative spectral mixture analysis (RSMA) to track changes in fractions
relative to a specified time. RSMA would be useful for tracking landscape-level trends in
changes in fractions of GV, NPV, and S, but would not be suitable for mapping as it does
not attempt to quantify absolute cover [39]. Another method might be the introduction
of multitemporal endmembers and the unmixing of multidate image stacks [33,40]. With
phenological variation as an additional variable, it may be possible to emphasize even a
relatively weak green signal [34].

Though no independent accuracy assessment was performed to confirm the reliability
of the 2009 and 2014 fraction images, other multidate MESMA studies have successfully
used the same field-spectra derived library to unmix imagery sets of the same area across
time [17,34]. It is worth noting that the high interannual climatic variability of deserts leads
to substantial changes in average spectral curves within classes, and spectral separability
between classes [5], which could impact the reliability of results from year to year. Both the
field spectra and the reference imagery in 2019 will allow future retrospective investigations
to address this possible issue, given that both will be available to the public through the
NSF LTER database.

5. Conclusions

We present a workflow to utilize MESMA to estimate cover fractions of GV, NPV,
and S in semiarid grass- and shrubland with high accuracy using Landsat imagery as
a base. The ability of MESMA to track NPV dynamics provides a more comprehensive
representation of vegetation dynamics in semiarid systems over traditional vegetation
indices such as NDVI due to these indices reliance on greenness, which is often ephemeral
in these systems. The changes detected during and after the drought period indicate better
understanding of NPV fraction will be critical to tracking vegetation dynamics in these
systems, especially as drought events are expected to increase in frequency and intensity in
this region [2,3]. Because of its ability to accurately model NPV fraction, MESMA is useful
tool for tracking vegetation dynamics at the landscape scale in semiarid systems.
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Appendix A

Table A1. Log of MESMA attempts by endmember selection strategy and model constraints. All MESMA was performed
on Landsat imagery collected 06/30/2019, with a 30% maximum shade constraint, and incorporated three- and four-
endmember models.

Model ID Endmember
Selection Method RMSE Threshold Multifusion

Threshold
Stable Zone
Unmixing?

Accuracy Assessment
Performed?

1 EMC 0.025 0.025 No Yes
2 EMC 0.007 0.025 No No, 67% unmodeled
3 EMC 0.007 0.007 No No, 67% unmodeled
4 EMC 0.025 0.007 No Yes
5 EMC 0.025 0.025 Yes Yes
6 EMC 0.007 0.025 Yes No, 47% unmodeled
7 EMC 0.007 0.007 Yes No, 47% unmodeled
8 EMC 0.025 0.007 Yes Yes
9 inCOB 0.025 0.025 No No, 25% unmodeled

10 inCOB 0.007 0.025 No No, 84% unmodeled
11 inCOB 0.007 0.007 No No, 84% unmodeled
12 inCOB 0.025 0.007 No No, 25% unmodeled
13 inCOB 0.025 0.025 Yes No, 25% unmodeled
14 inCOB 0.007 0.025 Yes No, 78% unmodeled
15 inCOB 0.007 0.007 Yes No, 78% unmodeled
16 inCOB 0.025 0.007 Yes No, 25% unmodeled
17 IES 0.025 0.025 No Yes
18 IES 0.007 0.025 No No, 66% unmodeled
19 IES 0.007 0.007 No No, 66% unmodeled
20 IES 0.025 0.007 No Yes
21 IES 0.025 0.025 Yes Yes
22 IES 0.007 0.025 Yes No, 62% unmodeled
23 IES 0.007 0.007 Yes No, 62% unmodeled
24 IES 0.025 0.007 Yes Yes
25 Reduced IES 0.025 0.025 No Yes
26 Reduced IES 0.007 0.025 No No, 78% unmodeled
27 Reduced IES 0.007 0.007 No No, 78% unmodeled
28 Reduced IES 0.025 0.007 No Yes
29 Reduced IES 0.025 0.025 Yes Yes
30 Reduced IES 0.007 0.025 Yes No, 69% unmodeled
31 Reduced IES 0.007 0.007 Yes No, 69% unmodeled
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Figure A1. Endmember spectral curves for the four optimized spectral libraries: (a) EMC; (b) inCOB; (c) IES; (d) Reduced
IES. Errors in the 1300–1500 nm and 1800–2000 nm range are due to atmospheric absorption windows.

Table A2. Accuracy assessment report for all fraction images that were able to be assessed, with root mean square error
(RMSE), mean average error (MAE), and R2 values reported for NPV, GV, and soil. Refer to Appendix A for Model ID
correspondences with parameter adjustments.

Model ID RMSE
NPV

RMSE
GV

RMSE
Soil

MAE
NPV

MAE
GV

MAE
Soil R2 NPV R2 GV R2 Soil

1 0.0944 0.223 0.2056 0.0661 0.1741 0.1398 0.8953 0.7161 0.8166
4 0.1613 0.4269 0.2258 0.1020 0.2872 0.1425 0.6741 0.1321 0.7438
5 0.2063 0.3897 0.2855 0.1451 0.2547 0.2309 0.4011 0.2073 0.439
8 0.1893 0.3676 0.2948 0.1363 0.2452 0.2388 0.4857 0.2858 0.4142
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Table A2. Cont.

Model ID RMSE
NPV

RMSE
GV

RMSE
Soil

MAE
NPV

MAE
GV

MAE
Soil R2 NPV R2 GV R2 Soil

17 0.2676 0.3474 0.2402 0.1831 0.2611 0.1835 0.0939 0.2743 0.6702
20 0.2670 0.3459 0.2401 0.1834 0.2592 0.1833 0.0943 0.2808 0.6703
21 0.2986 0.3576 0.2304 0.2213 0.2917 0.1807 0.0318 0.2454 0.6623
24 0.2832 0.3554 0.2287 0.2066 0.2896 0.1727 0.0589 0.2549 0.6965
25 0.2663 0.3348 0.2299 0.2016 0.2205 0.1840 0.1071 0.4121 0.6425
28 0.2612 0.3342 0.2244 0.1952 0.2201 0.1801 0.1239 0.4121 0.6561
29 0.3283 0.3413 0.2502 0.2563 0.2465 0.1996 0.0018 0.3484 0.5627
32 0.3133 0.3426 0.2531 0.2483 0.2488 0.2022 0.0065 0.3416 0.5635
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