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Abstract: Canopy closure (CC), a useful biophysical parameter for forest structure, is an important
indicator of forest resource and biodiversity. Light Detection and Ranging (LiDAR) data has been
widely studied recently for forest ecosystems to obtain the three-dimensional (3D) structure of the
forests. The components of the Unmanned Aerial Vehicle LiDAR (UAV-LiDAR) are similar to those
of the airborne LiDAR, but with higher pulse density, which reveals more detailed vertical structures.
Hemispherical photography (HP) had proven to be an effective method for estimating CC, but
it was still time-consuming and limited in large forests. Thus, we used UAV-LiDAR data with
a canopy-height-model-based (CHM-based) method and a synthetic-hemispherical-photography-
based (SHP-based) method to extract CC from a pure poplar plantation in this study. The performance
of the CC extraction methods based on an angular viewpoint was validated by the results of HP.
The results showed that the CHM-based method had a high accuracy in a 45◦ zenith angle range
with a 0.5 m pixel size and a larger radius (i.e., k = 2; R2 = 0.751, RMSE = 0.053), and the accuracy
declined rapidly in zenith angles of 60◦ and 75◦ (R2 = 0.707, 0.490; RMSE = 0.053, 0.066). In addition,
the CHM-based method showed an underestimate for leaf-off deciduous trees with low CC. The
SHP-based method also had a high accuracy in a 45◦ zenith angle range, and its accuracy was stable
in three zenith angle ranges (R2: 0.688, 0.674, 0.601 and RMSE = 0.059, 0.056, 0.058 for a 45◦, 60◦ and
75◦ zenith angle range, respectively). There was a similar trend of CC change in HP and SHP results
with the zenith angle range increase, but there was no significant change with the zenith angle range
increase in the CHM-based method, which revealed that it was insensitive to the changes of angular
CC compared to the SHP-based method. However, the accuracy of both methods showed differences
in plantations with different ages, which had a slight underestimate for 8-year-old plantations and
an overestimate for plantations with 17 and 20 years. Our research provided a reference for CC
estimation from a point-based angular viewpoint and for monitoring the understory light conditions
of plantations.

Keywords: canopy closure; UAV; LiDAR; HP; CHM; SHP; poplar plantation

1. Introduction

Plantations, as a major component of forest ecosystems, play an important role in
biodiversity conservation, climate change and economic development [1,2]. Poplar planta-
tions provide a large amount of timber and forest products in China [3]. So, it is essential
to investigate the resources of poplar plantation timely and accurately [4].

The canopy structure affects different species in forest ecosystems by affecting light
levels [5]. Canopy closure (CC), as a useful biophysical parameter for forest canopy
structure, is widely used as an index for carbon fluxes, forest production, biodiversity
and ecosystem functions by affecting energy transmission and microclimate in forest
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ecosystems [6–9]. Jennings et al. (1999) defined CC as “the proportion of sky hemisphere
obscured by vegetation when viewed from a single point” to distinguish it from the concept
of canopy cover, which was defined as the “proportion of the forest floor covered by the
vertical projection of the tree crowns” [10]. Although both parameters are related to
the penetration of light though the canopy, CC includes all sizes of gaps in the field of
view (FOV), while canopy cover focuses on the space between crown gaps [11]. From
an ecological view, CC is more meaningful for understory light conditions, which can be
used to estimate other canopy indices such as leaf area index (LAI) and foliage clumping
index [12–15].

The filed measure of CC often used hemispherical photography (HP) and quantum
sensors (e.g., LAI-2200) [16–18]. Compared to quantum sensors, HP has the advantage to
record the geometry of canopy openings from different zenith angles with a permanent
two-dimensional form [19,20], but it needs to be taken at dawn, dusk or under an overcast
sky due to the influence of sky lighting [21]. Despite the proven feasibility of HP, it is still
time-consuming in image acquisition and processing, thus limiting its application on a
large scale.

Synthetic Aperture Radar (SAR) and Light Detection and Ranging (LiDAR) have
been widely studied for forest ecosystems to quantify the three-dimensional (3D) vertical
structure of the forests [22–25]. LiDAR is superior to SAR for reconstructing the 3D structure
of the tree canopy more accurately and is less sensitive to different forest vegetation [26].
However, LiDAR has a penetrating ability, is less affected by solar illumination and is thus
considered superior to passive optical sensors in CC extraction [27,28]. Airborne LiDAR
data enable a large-scale continuous monitoring of the biophysical parameters in forest
ecosystems, such as biomass, tree species, tree height and CC [29–32]. In the literature,
the common form of CC extraction is to calculate the ratio of the canopy hits above a
specified height threshold based on airborne LiDAR data, and the threshold performs
well when using the height of HP acquisition [33,34]. Hopkinson and Chasmer (2009) also
found that CC can be calculated based on the ratio of the LiDAR return intensity, and
the results required little calibration [35]. Another similar way is using the ratio between
the number of canopy pixels and the total pixels, which is based on the canopy height
model (CHM) generated from LiDAR data. The height threshold of canopy separation
often used a fixed value, like 2 m [28,36,37]. A circular analysis window is needed for
modeling CC with CHM to delineate the field of view (FOV), and its radial distances
are not very clear, often using a fixed value or the height of the forest canopy [35,38,39].
Another promising method is to convert the point cloud into the angular FOV directly, to
correspond to the characteristics of the photographs. This method is based on synthetic
hemispherical photographs (SHP) from LiDAR data. Many studies have proved that the
SHP-based method is reliable in evaluating canopy indices and solar irradiance based on
the terrestrial LiDAR [40–42] and airborne LiDAR [13,43–45].

Recently, an unmanned aerial vehicle (UAV) has become an alternative remote sens-
ing platform, which can effectively monitor the forest parameters by carrying different
sensors [46–49]. The UAV-RGB system (i.e., a UAV platform carrying a camera or sensor
with red, green and blue bands), a widely used UAV system, is often used for forest classi-
fication and parameters extraction in combination with deep learning algorithms, because
it can obtain ultra-high spatial resolution images to describe forest characteristics [50].
Meanwhile, image processing techniques, such as structure from motion (SfM), can be
used to generate dense point clouds from RGB images to estimate forest parameters [51].
Although the UAV-RGB system has a lower cost, the UAV-LiDAR system has its advan-
tages in monitoring the forest’s 3D structure due to its ability to penetrate the canopy [52].
Moreover, the UAV-LiDAR system has been proven to be more accurate than the airborne
LiDAR system in forest parameter investigations because of its higher density point cloud,
simple operation, flight flexibility and lower costs [52–55]. Brede et al. (2017) compared
terrestrial LiDAR and UAV-LiDAR for estimating forest canopy heights and diameter at
breast heights (DBH), and their results showed a strong correlation of two LiDAR data in
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the DBH estimation (R2 = 0.98) [56]. Liu et al. (2018) evaluated the capability of the UAV-
LiDAR system for estimating forest structural attributes and analyzed the effects of point
cloud densities. They found that it was robust for estimating forest attributes when the
point cloud density is higher than 16 pts·m−2 [57]. Wu et al. (2019) used UAV-LiDAR data
to estimate the canopy cover of a ginkgo-planted forest with three methods and found that
the CHM-based method with a 0.5 m resolution had a high accuracy (R2 = 0.92) [54]. Thus,
the UAV-LiDAR data with high density point cloud are highly advantageous in describing
the forest canopy structure, which has a high potential for an accurate CC extraction.

Although there have been many studies using LiDAR data for CC extraction, few of
them evaluate the method based on CHM and SHP comprehensively, such as exploring
the effects of different FOVs on different methods and explaining the scope of applicability
of different methods. Moreover, previous studies rarely focused on the CC estimation in
forest plantations based on UAV-LiDAR data. Therefore, this study aims to evaluate an
efficient method to extract CC directly from UAV-LiDAR data. To achieve this goal, the
specific objectives are: (1) to estimate CC in three zenith angle ranges, of 45◦, 60◦ and 75◦,
based on CHM and SHP data from UAV-LiDAR data; (2) to validate the results of the two
CC extraction methods by the classification results from HP data; (3) to explore the effect
of different resolutions and stand ages on CHM-based and SHP-based methods.

2. Materials and Methods
2.1. Study Area

The study area is located in Dongtai City, Jiangsu Province (Figure 1). The area
is flat, with a range of elevation from 11 to 14 m. It falls in the climate region of the
transition zone between the subtropical and warm temperate area [58]. The annual mean
temperature is 15.4 ◦C, the annual rainfall is 1494.0 mm and the average relative humidity
is 76.0% [58]. The main soil type is desalted meadow soil, and the soil texture is sandy loam,
alkaline (pH = 8.2). The main tree species include poplar (Populus deltoids), fir (Metasequoia
glyptostroboides), ginkgo trees (Ginkgo biloba L.). Among all the three species, poplar has the
largest plantation area, as well as with a variety of stand ages.
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Figure 1. The study area and field sample design. The pink dots are the location of the photos taken,
the yellow and blue rectangular boxes represent two different size sample plots.

2.2. Field Design and Field Data Collection

The field work was conducted in May 2021. According to the difference in the size
of poplar sublots, two different scale plots were set (60 × 60 m, 30 × 30 m; Figure 1). The
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plots contain varying stand ages, planting spacing and canopy structural characteristics
(Table 1). A total of 29 square sample plots were measured, including 20 small plots (i.e., the
total area is 900 m2) and 9 large plots (i.e., the total area is 3600 m2). Each of the plots was
divided into several small blocks by a 10 × 10 m grid, and the center of each small block
was the location for taking HP (Figure 1). In total, 570 HP were collected from 29 plots. All
the HP were taken horizontally using a Canon M50 with a LAOWA CF 4 mm F2.8 circular
fisheye lens. The camera was fixed on a tripod and each photo was taken 1.4 m above the
ground. The HP was taken before sunrise, after sunrise or during daytime at an overcast
sky to ensure a low light condition. All photos were taken in auto-exposure mode, and the
shooting location was avoided too close to the trees. The shooting location was recorded
below the tripod using a HUACE T10 real-time-kinematic (RTK) equipment (centimeter
accuracy), and corrected with high precision real-time signals received from continuously
operating reference stations (CORS). The recorded location of the global positioning system
(GPS) points was regarded as the shooting location of HP.

Table 1. The descriptions of poplar plot per site location.

Stand
Age (yrs)

Average Height
(m)

Average Branch
Height (m)

Planting
Spacing (m)

Point Cloud
Density (pts·m−2)

Plot Size
(m)

8 21.3 9.0 4 × 6 76 60 × 60
11 23.7 10.0 4 × 8 77 60 × 60
12 24.8 12.5 3 × 5 53 30 × 30
14 24.4 12.0 3 × 8 72 60 × 60
16 28.8 13.5 6 × 5 77 30 × 30
17 28.5 14.5 6 × 5 84 60 × 60
20 32.2 17.0 5 × 6 140 60 × 60

The UAV-LiDAR data were collected via a Velodyne VLP-16 LiDAR sensor carried
by a six-rotor DJI M600 PRO UAV. The parameters of the LiDAR sensor are as follows:
wavelength 903 nm, vertical scanning angle ±15◦, horizontal scanning angle 360◦ (a range
of ±70◦ was reserved), pulse frequency 30 kHz. The flight parameters are the following:
flight altitude 70 m, flight speed 3.6 m·s−1, flight interval 60 m. The point density of
different sample plots was not the same because of the difference of flight strip numbers
(Table 1). In addition, the forest planting spacing, the average tree height and the average
branch height of each plot were collected for the subsequent data processing and analysis
(Table 1).

2.3. Methodology

After the pre-processing of UAV-LiDAR data, including georeferencing, strip align-
ment, merging, de-noising and the interpolation of point clouds with different types, CHM
and a normalized point cloud were generated. Then the shooting locations of HP data
were used to delineate the FOV in CHM and normalized point cloud data, and the CC of
different plots was extracted by height based on the FOV-CHM. SHP data were generated
using a 3D polar coordinate conversion method to extract CC from all the normalized
point cloud data directly. Finally, the CC extracted by the UAV-LiDAR data of different
resolutions was validated by the results from HP data in different FOVs. The age effects of
poplar plantations on CC extraction from UAV-LiDAR point cloud data were also explored
in this study. In addition, a new classification model was developed to extract CC from
HP data in this study as the validation data to compare the CC extraction result from UAV-
LiDAR point cloud data using the CHM-based and SHP-based methods. An overview of
the flowchart for CC extraction is shown in Figure 2.
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Figure 2. Methodology flowchart. DEM: digital elevation model; DSM: digital surface model;
CHM: canopy height model; HP: hemispherical photography; FOV: field of view; SHP: synthetic
hemispherical photography; CC: canopy closure.

2.3.1. Preprocessing of UAV-LiDAR Point Cloud Data

The raw UAV-LiDAR point cloud coordinate was transformed based on UAV station
GPS data, inertial measurement unit (IMU) data and base station data. Each strip was
adjusted by a surface matching method based on the iterative closest point (ICP) algo-
rithm [59]. After merging all the strips, the noised points were removed depending on the
maximum distance from the point to its neighboring points in the LiDAR360 software. The
ground points were classified by an improved progressive triangulated irregular network
(TIN) densification filtering algorithm [60]. Then, the ground points were interpolated to
generate the digital elevation model (DEM) by the TIN algorithm, and the digital surface
model (DSM) was generated by the same interpolation method. Then, we subtracted the
DEM from the DSM to generate CHM of different resolutions. We also normalized the
height of the denoising point cloud based on the DEM to generate normalized point cloud
data in preparation for the subsequent generation of SHP data.

2.3.2. Preprocessing of HP and FOV Delineation

Each photo was checked for quality, and the ones with overexposure and underex-
posure were discarded. We cropped all the photos and reduced the effect of image local
highlights in the Adobe Photoshop CC 2019 software. The resolution of the processed
photo was 3124 × 3124 pixels. The directed upward HP had a nearly polar projection, so
the azimuth angle and zenith angle ranges of the photo could be divided according to the
center of the photo [20]. Considering the difference of CC extraction results in different
zenith angle ranges [42,61], we calculated the CC from three zenith angle ranges, of 45◦,
60◦ and 75◦. The different zenith angle ranges represented the different FOVs and radius
in the image (Equation (1)).

r
R

=
θ

90◦
(1)

where R is the radius of the entire FOV in the photograph, and 90◦ represents the theoretical
maximum zenith angle. θ is the zenith angle, which in this study is 45◦, 60◦ and 75◦. r is
the new radius with different FOVs in HP.

2.3.3. CC Extraction by the CHM-Based Method with a Hemispherical FOV

Compared to the estimation of canopy cover using CHM, it is a challenge to estimate
the CC using CHM by a hemispherical FOV. In this study, the delineated FOV was used as
the analysis window to calculate CC based on the CHM data generated by the preprocessed
point cloud data. Because the FOV for field measured CC has the shape of an inverted
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cone, the horizontal radius of the analysis window should be generated based on the tree
height [38]. However, the analysis window radius in the CHM-based method was not clear
in previous studies [35,62]. Parent et al. (2014) put it forward using the height multiplied
by the tangent of the zenith as the CHM radius range [37], but we found the radius of this
model too large to fit the actual results of HP data in our study. Thus, we improved this
FOV-delineated model based on the average height of the sample plot and the zenith angle
of interest (Equation (2)).

r =
h × tan(θ)

k
(2)

where r is the radius of the CHM analysis window; k is the distance coefficient to adjust
the radius (i.e., the radius that with k is 2 and 3 in the three zenith angle ranges); h is the
average height of a sample plot, and θ is the zenith angle of interest.

CC extraction from CHM images is a method based on the ratio of extracted canopy
pixels to total pixels. The separation of canopy pixels and non-canopy pixels usually used
a fixed height threshold (i.e., 2 or 3 m [28]). By using this threshold, the point cloud of the
low plants had little effect on the generation of CHM data, so a CHM image with a height
greater than this threshold is assumed as canopy pixels (Figure 3). However, the spatial
resolution of CHM images might have influences on CC extraction. Thus, it is worth to
explore whether there is an optimum spatial resolution to extract CC with the CHM-based
model. Thus, we generated CHM with three spatial resolution, of 0.5, 2 and 5 m, for a
sensitivity analysis. The CHM images were generated by a preprocessed point cloud data,
and the different spatial resolutions were generated through an interpolation algorithm
(see the description in Section 2.3.1). All the steps of the CHM-based method were written
as a python script (see Supplementary Materials) to enhance the capacity of automatic
batch-processing of this method.
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Figure 3. Examples of CHM-based method. (a) a sample of HP: the pink dot is the view point of
HP, and the blue circle is the zenith angle of 60◦ in HP.; (b) CHM image with a spatial resolution
of 0.5 m generated from the UAV-LiDAR point cloud data collected in the same location of (a): the
green circle and the purple circle represent the analysis window range when k is 2 and 3, respectively;
(c) a height threshold of 2 m was applied to (b): the black and grey pixels in (c) are canopy pixels and
non-canopy pixels, respectively.

2.3.4. Estimation of CC with a SHP-Based Method

In order to extract CC from a point-based angular viewpoint, we transformed the
coordinate system of the normalized point cloud data. The traditional Cartesian coordinates
(x, y, z) were converted into polar coordinates (r, θ, ϕ), and all the point cloud data were
printed in the polar coordinate system to simulate the photos taken by a circular fisheye
lens [44] (Equation (3)).

θ = arccos(z/r)
ϕ = arctan((y − y0)/(x − x0))

r =
√
(x − x0)

2 + (y − y0)
2 + (z − z0)

2
(3)
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where θ is the zenith angle in the polar coordination; ϕ is the azimuth in the polar coordina-
tion; r is the distance between point cloud and the shooting location; x, y and z are the 3D
properties of the point cloud; x0 and y0 are the GPS-coordinates of the shooting location; z0
is the height of the camera set (a constant of 1.4 m in this study).

The maximum horizontal distance between the transformed point cloud and origin
(i.e., shooting location) would have an effect on the results [44]. A large distance would
ensure the correctness of the results [44], but the huge data of the point cloud would reduce
the efficiency of the computing process. Considering that the maximum zenith angle in
our study was 75◦, we used the maximum tree height multiplied by a tangent of 75◦ as a
theoretical distance range of the point cloud data in this study (i.e., 80 m). To eliminate the
influence of the different point cloud density, we used the point cloud thinning algorithm
to transform all the data into the same point density (50 pts·m−2). Then, the average
branch height of each plot was used as the threshold to mask out the point clouds of the
main tree trunks. The zenith angle information of the converted point cloud was used to
correspond to the results from photos in three FOVs. Finally, we generated the SHP data,
which correspond to the HP data (Figure 4).
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2.3.5. A new Semi-automated Classification Method for CC Extraction from HP  

Figure 4. Examples of CC extraction via the SHP-based method from poplar plantations with stand
ages of 8, 11 and 20. The yellow dots in the plot are the shooting location, corresponding to the HP
below. The yellow circle is the zenith angle of 75◦ in HP. The zenith angle range and grid resolution
in SHP is 75◦ and 1.5, respectively.

In order to extract the optimum value of CC with this point cloud density, we need
to establish different grid resolutions based on the zenith and azimuth angles of all the
point clouds data. Too many grids would make the projected area of the point clouds too
small in the overall grid; on the contrary, too few grids would make it too large. So, we
selected three different resolutions, of 1, 1.5 and 2, to extract the CC based on the range of
zenith angles and azimuth angles. For example, resolution 1 represents the use of 1 degree
to split the gird composed of the zenith angle (the maximum zenith angle is 90◦) and the
azimuth angle (the maximum azimuth angle is 360◦), and it has 360 × 90 grids when the
zenith angle is 90◦. Similarly, resolution 1.5 represents 240 × 60 grids in a zenith angle
of 90◦, and resolution 2 refers to 180 × 45 grids in a zenith angle of 90◦. Then, the CC
was calculated by the ratio of the number of grids with existing point clouds to the total
number of grids. We used this model instead of the method based on a binarized image to
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avoid the subsequent image processing. All the steps of the SHP-based method, including
the coordinate system transformation and the CC automatic extraction, was written as a
python script based on the version of Python 3.8 (see Supplementary Materials).

2.3.5. A New Semi-Automated Classification Method for CC Extraction from HP

We developed a new semi-automatic classification method based on the morphology
image processing and threshold classification. According to the spectral characteristics of
the tree trunks in the three bands of RGB in the images, we used an index (R > G and R > B)
to extract most of the trunks. Then, the extracted portion was morphologically processed to
preserve the main trunk, this process included one mode filtering, two minimum filtering
and two maximum filtering. The sky and canopy were then distinguished after the main
trunk components were masked out from the images. The blue band was often used as the
optimal channel for classifying sky and canopy pixels [35,63]. However, a fixed threshold
(G < 200) based on the green band was used to distinguish canopy pixels from the sky
pixels due to the influence of bright blue leaves under the influence of light in the blue
band. Then, CC was calculated based on the ratio of classified canopy pixels to total pixels
(Equation (4)). All the steps were written as a python script (see Supplementary Materials)
to enhance the capacity of automatic batch-processing of this method.

CC =
canopy pixel

total pixel
(4)

where CC means canopy closure; canopy pixel were canopy pixels classified from the new
semi-automatic method; total pixel refers to total pixels of the preprocessed HP, including
the pixels of sky, tree trunk and tree canopy.

Two random photos were selected from each sample plot to perform the accuracy
assessment of the semi-automatic classification method of HP. Twenty random points
were generated in each photo for accuracy assessment. The confusion matrix F-score was
selected as the indicator of accuracy assessment (Equations (5)–(7)).

r =
TP

TP + FN
(5)

p =
TP

TP + FP
(6)

F =
2(r ∗ p)

r + p
(7)

where r is the recall of the results, p is the precision of the results and F is an index of the
overall accuracy. TP is the number of canopy pixels classified correctly by the model. FN
is the number of canopy pixels classified incorrectly by the model. FP is the number of
other pixels which were extracted as canopy by the model.

2.3.6. Validation and Accuracy Assessment of CC Extraction from UAV-LiDAR Point
Cloud Data

The CC extraction results from HP were used to validate the CC extraction from the
UAV-LiDAR point cloud data based on the CHM-based method by a hemispherical FOV
and the SHP-based method. The accuracy of the CC estimation was evaluated with the
coefficient of determination (R2) and root mean squared error (RMSE), and the significance
test was also conducted (Equations (8) and (9)).

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (8)

RMSE =

√
1
n

n

∑
i=1

(yi − yi)
2 (9)
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where n is the number of all hemispherical photos, y is the field measured CC, yi is the
average of the field measured CC, ŷi is the estimation value by the model.

3. Results
3.1. The Extracted CC from UAV-LiDAR Data in Different Poplar Plots

Along with the increase of the FOV, the result range of extracted CC from UAV-LiDAR
data by both CHM-based and SHP-based methods becomes narrower (Figure 5a), which
indicates that the CHM-based and SHP-based methods with smaller FOV are more sensitive
to extract CC. CC extraction from HP, the validation data in this study, had a narrower
data range than the CC extracted from UAV-LiDAR (Figure 5a). The extracted CC results
by HP classification and the SHP-based method increased according to the increase of
the zenith angle range from 45◦ to 75◦, while the extracted results by the CHM-based
method are not sensitive to the FOV change (Figure 5a). The performance of CC extraction
based on the three methods was different in the poplar plantations with different stand
ages (Figure 5b–d). The range of the extracted value of CC by the three methods was
relatively consistent in the 45◦ zenith angle range comparing to that in the 60◦ and 75◦

zenith angle ranges (Figure 5b). Comparing to the CC extraction from the HP classification,
the CC extraction by the CHM-based method had an underestimation trend along with the
increasing FOV (Figure 5c,d).

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 18 

Remote Sens. 2021, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/remotesensing 

 

Along with the increase of the FOV, the result range of extracted CC from UAV-Li-

DAR data by both CHM-based and SHP-based methods becomes narrower (Figure 5a), 

which indicates that the CHM-based and SHP-based methods with smaller FOV are more 

sensitive to extract CC. CC extraction from HP, the validation data in this study, had a 

narrower data range than the CC extracted from UAV-LiDAR (Figure 5a). The extracted 

CC results by HP classification and the SHP-based method increased according to the in-

crease of the zenith angle range from 45° to 75°, while the extracted results by the CHM-

based method are not sensitive to the FOV change (Figure 5a). The performance of CC 

extraction based on the three methods was different in the poplar plantations with differ-

ent stand ages (Figure 5b–d). The range of the extracted value of CC by the three methods 

was relatively consistent in the 45° zenith angle range comparing to that in the 60° and 75° 

zenith angle ranges (Figure 5b). Comparing to the CC extraction from the HP classifica-

tion, the CC extraction by the CHM-based method had an underestimation trend along 

with the increasing FOV (Figure 5c,d).  

 

Figure 5. The extracted CC in the poplar plots using HP and UAV-LiDAR data. (a) The overall range of CC extracted by 

three methods in different FOVs. (b-d) Boxplots for the HP, CHM-based and SHP-based methods of CC extraction with 

three FOVs from poplar plantations with different ages. The 17-L represents a leaf-off poplar plantation caused by soil 

acidification in the 17-year-old plantations. 

3.2. Validation of CC Extraction by the CHM-based Method with the Extraction Results from 

HP 

The relationship between the CC extracted from HP and the CC extracted by the 

CHM-based model fit the broke-line relationship instead of a simple linear relationship 

(Figure 6). It indicated that the CC extracted from HP might have a saturation issue in the 

range of a high CC value, comparing to the CC extract by the CHM-based method with a 

hemispherical FOV. The validation model had different responses for the CHM-based 

method with different FOVs (Figure 6). Among all the three validation models (i.e., 45°, 

60° and 75° zenith angle ranges; Figure 6), the model with a 45° zenith angle range had 

the best performance (R2 = 0.751, RMSE = 0.053; Figure 6a) with a segmented point of 0.537. 

The model with a 60° zenith angle range had a similar result with the zenith angle of 45° 

(R2 = 0.707, RMSE = 0.053; Figure 6b) with a segmented point of 0.518. However, the vali-

dation model with a 75° zenith angle range shows a lower correlation between the CC 

Figure 5. The extracted CC in the poplar plots using HP and UAV-LiDAR data. (a) The overall range of CC extracted by
three methods in different FOVs. (b–d) Boxplots for the HP, CHM-based and SHP-based methods of CC extraction with
three FOVs from poplar plantations with different ages. The 17-L represents a leaf-off poplar plantation caused by soil
acidification in the 17-year-old plantations.

3.2. Validation of CC Extraction by the CHM-Based Method with the Extraction Results from HP

The relationship between the CC extracted from HP and the CC extracted by the
CHM-based model fit the broke-line relationship instead of a simple linear relationship
(Figure 6). It indicated that the CC extracted from HP might have a saturation issue in the
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range of a high CC value, comparing to the CC extract by the CHM-based method with
a hemispherical FOV. The validation model had different responses for the CHM-based
method with different FOVs (Figure 6). Among all the three validation models (i.e., 45◦,
60◦ and 75◦ zenith angle ranges; Figure 6), the model with a 45◦ zenith angle range had
the best performance (R2 = 0.751, RMSE = 0.053; Figure 6a) with a segmented point of
0.537. The model with a 60◦ zenith angle range had a similar result with the zenith angle of
45◦ (R2 = 0.707, RMSE = 0.053; Figure 6b) with a segmented point of 0.518. However, the
validation model with a 75◦ zenith angle range shows a lower correlation between the CC
extracted from the CHM-based and HP method (R2 = 0.490, RMSE = 0.066; Figure 6c), and
its segmented point was much lower (0.320) due to the underestimate of CC extracted by
the CHM-based method in many locations.
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Figure 6. Validation of CC estimation by the CHM-based method with three zenith angles ((a): 45◦, (b): 60◦and (c): 75◦).
The red line is the trend line of a single linear regression. The blue line is the trend line of the broke-line regression. The 1:1
line is displayed as a black oblique dash line. The segmented position is displayed as a black vertical dash line. The spatial
resolution of CHM images is 0.5 m, and the range coefficient k for the radius is 2.

Different spatial resolutions of CHM images also had an impact on the accuracy of
the model (Table 2). Along with the decreasing CHM pixel size, the accuracy of the model
gradually declined for all the FOVs. The model accuracy declined faster from the 0.5 m
to 2.0 m and from the 2.0 to 5.0 m spatial resolutions in a 45◦ zenith angle range than in
the 60◦ and 75◦ zenith angle ranges (Table 2). In other words, the model accuracy was
relatively stable in the 60◦ and 75◦ zenith angle ranges (Table 2).

Table 2. Accuracy assessments of CHM-based models of varying spatial resolutions (the range
coefficient k for the radius is 2).

CHM
Pixel Size

Zenith Angle-45◦ Zenith Angle-60◦ Zenith Angle-75◦

R2 RMSE R2 RMSE R2 RMSE

0.5 m 0.751 0.053 0.707 0.053 0.490 0.066
2.0 m 0.706 0.057 0.679 0.055 0.467 0.067
5.0 m 0.634 0.064 0.670 0.056 0.445 0.069

The different radius of the CHM analysis window (i.e., different range coefficient (k)
for radius) also had an influence on the model’s accuracy (Table 3). There was an obvious
decline of model accuracy in the 45◦ zenith angle range, along with the reduction of the
radius range (i.e., the range coefficient for radius (k) from 2 to 3). A slight decline of
accuracy was observed in the 60◦ zenith angle range when k changes from 2 to 3. However,
the model accuracy had a great improvement for the validation model with the 75◦ zenith
angle range (i.e., R2 increased from 0.490 to 0.589; RMSE decreased from 0.066 to 0.059).
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Table 3. Accuracy assessments of the CHM-based models of varying areas (the resolution of CHM is
0.5 m).

Coefficient k
Zenith Angle-45◦ Zenith Angle-60◦ Zenith Angle-75◦

R2 RMSE R2 RMSE R2 RMSE

2 0.751 0.053 0.707 0.053 0.490 0.066
3 0.707 0.057 0.679 0.055 0.589 0.059

3.3. Validation of CC Extraction by the SHP-Based Method with the Extraction Results from HP

Comparing to the CC extraction from HP, the SHP-based models also had a good
performance in the CC extraction from UAV-LiDAR data (Figure 7). The validation models
for the relationship between the CC extraction with the SHP-based method and the CC
extraction from HP fit the broke-line relationship better than a simple linear relationship
(Figure 7), which also indicated that the CC extraction from HP might have a saturation
issue in the range of the high CC value, comparing to the extraction results with the SHP-
based method in all three FOVs. The grid resolution has slight effects on the model accuracy.
The SHP-based method with a 1.5 grid resolution showed the best fit along with the 1:1 line
before the segmented point (Figure 7b,e,h). However, comparing with the results from HP,
the extraction with the SHP-based model showed an underestimation and overestimation
in the range of lower CC values before the segmented point with a grid resolution of 1.0
and 2.0, respectively (Figure 7). With the optimum grid resolution of 1.5, the validation
model in a 45◦ zenith angle range had the best performance (R2 = 0.688; RMSE = 0.065;
the segmented point is 0.474; Figure 7b), and the model in a 60◦ zenith angle range had a
similar result (R2 = 0.674; RMSE = 0.062; the segmented point is 0.463; Figure 7e). However,
the model in a 75◦ zenith angle range had a slightly lower performance (R2 = 0.601;
RMSE = 0.064; the segmented point is 0.546; Figure 7h).

4. Discussion
4.1. The Advantages and Disadvantages of CC Extraction from UAV-LiDAR Data by CHM-Based
and SHP-Based Methods with a Hemispherical FOV

The extracted CC based on the CHM and SHP data had a good relationship and similar
regression trends with the CC extraction from HP classification. Another similarity between
the two methods using UAV-LiDAR data was that they both have the best performance at
the zenith angle of 45◦ compared to that of 60◦ and 75◦ (Figures 5–7). The accuracy of the
two models decreases with the increase of FOV, which was more obvious in the CHM-based
model (Figures 6 and 7). One possible reason was that the CHM-based method does not
correspond well to a ground-based hemispherical FOV for a large zenith angle [11,37]. A
previous study also showed that the CHM-based method might have a better description
for the spatial averages of CC [44]. This could be confirmed with the CC results of the
CHM-based model with the zenith angle range increase (Figure 5a), which might be the
main reason why the accuracy of the CHM-based model continues to decrease with the
increase of the FOV. Another interesting phenomenon was that the SHP-based model’s result
was usually consistent with the 1:1 line before the segmented point, while the CHM result
showed an underestimation (Figures 6 and 7). In addition to the reasons above, another
reason was that the CHM-based method would underestimate CC for leaf-off deciduous
trees (i.e., “17-L” in Figure 5) because the pulses of UAV-LiDAR were more likely to pass
between the branches [37]. Overall, the SHP-based model describes the change of the ground
hemisphere FOV better than the CHM-based method based on UAV-LiDAR data.
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line of the broke-line regression. The 1:1 line is displayed as a black oblique dash line. The segmented position is displayed
as a black vertical dash line. The grid resolutions are 1.0 (a,d,g), 1.5 (b,e,h) and 2.0 (c,f,i).

Although the SHP-based model was relatively stable, its accuracy slightly decreased
with the increase of the FOV (Figure 7), which might be related to the coverage range of
the point cloud and the geographic conditions of poplar plantations [41]. We used the
algorithm of SHP to meet the range of the zenith angle as much as possible, but the range
of the laser pulse is limited and it is hard to detecting the objects far from the shooting
location. Moreover, the point cloud data had been normalized to eliminate the impact of
the terrain, which cannot be achieved in the HP classification. Other factors, including
understory vegetation, the unevenness of foliage lighting, the noise effects of UAV-LiDAR
and other differences between HP and LiDAR data might be magnified in the range of a
high zenith angle [64].

The spatial resolution had some impact on the accuracy of the CHM-based model, but
the CC extraction results were still robust even when we increase the spatial resolution to
5 m (Table 2). The accuracy of the CHM-based model had a pronounced decline with the
decrease of spatial resolution at a low zenith angle range (i.e., 45◦). The gap fraction of the
canopy was more sensitive to the CC extraction with the range of the low zenith angle,
and the small canopy gap might not be the primary factor in CC extraction with a lager
zenith angle range [37]. However, the SHP-based method showed a better robustness with
the grid resolution change (Figure 7). On the one hand, the grid resolution interval of the
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SHP-based method was not very large. On the other hand, the SHP-based method is more
accurate for the description of the canopy gap in a FOV range [48].

Our radius model of the CHM-based method had different CC extraction results in
different zenith angle ranges, and the different distance coefficient (k) provided a probable
reference for it. The fixed radius range was not suitable for our study because of the
distinguishing difference of tree height between the plots. A diverse FOV was also a
big challenge to the accurate radius model. To improve the accuracy of the CHM-based
model, it is necessary to find a better radius model or improve the CHM-based algorithm
in subsequent research. However, the range of area in the SHP-based method was simple,
and the only need was to determine the theoretical maximum horizontal radius at the
maximum zenith angle to obtain the same result as the ground FOV [13,44,45], which
was verified by the visualization results of the SHP algorithm (Figure 4). The point cloud
density’s unevenness in different plots might have an effect on the results [57], but this
impact was eliminated by thinning the point clouds of all sample plots.

4.2. The Accuracy of the Validation Data (CC Extraction from HP)

The validation data were extracted from HP in three zenith angle ranges (Figure 8).
The distribution of CC in different FOVs was different from the histogram of the results
(Figure 8c), and this distribution pattern appeared both in high and low CC conditions
(Figure 8a,b). Overall, the extracted CC from HP is larger when the zenith angle is larger,
which is consistent with Fiala et al.’s results [65]. The accuracy of the HP method was
robust in three zenith angle ranges (Table 4). The overall accuracy of all plots was highest
in the zenith angle of 45◦ (F = 0.967), followed by the zenith angle of 75◦ (F = 0.942) and the
zenith angle of 60◦ (F = 0.938).
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Figure 8. Results of CC extraction from field sites. (a) Example of a HP method result in a high CC
situation. (b) Example of a HP method result in a low CC situation. (c) The CC for hemispherical
photographs covers the range from 0.1 to 0.8 with three zenith angles. The green, black and white pixels
in (a,b) represent canopy pixel, trunk pixel and sky pixel, respectively. θ is the zenith angle in HP.

Table 4. The accuracy assessments for the HP method with three zenith angles.

FOV r p F

0–45◦ 0.951 0.983 0.967
0–60◦ 0.896 0.984 0.938
0–75◦ 0.901 0.986 0.942

In the study, we improved the accuracy of CC extraction in HP by removing the main
trunk of poplar trees because the tree trunks account for a certain percentage (Figure 8a,b).
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In addition, the UAV-LiDAR system could describe the tree crown well, but had difficulty
in describing the trunk [66], so it is necessary to eliminate the trunk’s influence in HP.
HP is essentially a two-dimensional passive sensor in a hemisphere FOV [14], which is
different from the UAV-LiDAR point cloud data. Thus, there is a certain underestimate
after removing the trunks in HP. Moreover, HP data and UAV-LiDAR data are sensitive
to different factors (i.e., sensor differences and sensitivity to the environment) in the CC
extraction. In addition to the difference in sensor parameters, the accuracy of the CC results
from HP is more sensitive to environmental factors, such as radiometric condition, terrain,
wind, unevenness of foliage lighting and the choice of subjective threshold, which would
increase this uncertainty [14,41].

4.3. Stand Age Effects on the Model Accuracy for CC Extraction

The residual boxplot distribution results were similar in the young poplar plantations
(i.e., 8, 11 and 14 years old) in the 45◦ zenith angle range. A significant overestimation
of the CC extraction from UAV-LiDAR data was observed in the old plantations (i.e., 17
and 20 years old; Figure 9a). However, by the CHM-based models, the results appeared
an underestimation in the young plantations and an overestimation in the old plantations
with the 60◦ and 75◦ zenith angle ranges (Figure 9b,c). This phenomenon also appeared in
the results of the SHP-based method, but the underestimation was slighter in the 8-year-old
plantations and more obvious in the 20-year-old plantations (Figure 9b,c). However, along
with the increase of the zenith angle range, there was an obvious increase of the CC value
extracted by the HP and SHP-based methods, while there was no significant change by
the CHM-based method (Table 5). The characteristics of the CHM-based method, which
had a better description for the spatial averages of CC, cause this phenomenon (see the
description in Section 4.1 for a detailed discussion).
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Figure 9. Residual boxplots for the CHM-based and SHP-based models in plantations with different ages with three zenith
angles ((a): 45◦, (b): 60◦and (c): 75◦). The resolution is 0.5 m, and the range coefficient k for the radius is 2 with the
CHM-based models. The grid resolution is 1.5 with the SHP-based models.

Table 5. The growth rate of HP, SHP-based and the CHM-based method for each 15◦ zenith angle increase in plantations
with different ages. The mean is the average growth rate of 45–60◦ and 60–75◦.

Poplar
Plantations

HP SHP CHM

45◦–60◦ 60◦–75◦ Mean 45◦–60◦ 60◦–75◦ Mean 45◦–60◦ 60◦–75◦ Mean

4 0.095 0.127 0.111 0.195 0.117 0.156 −0.003 0.045 0.021
7 0.161 0.175 0.168 0.236 0.181 0.209 −0.102 −0.019 −0.060
10 0.115 0.089 0.102 0.155 0.095 0.125 −0.003 0.008 0.003
13 0.121 0.100 0.111 0.111 0.053 0.082 0.003 0.003 0.003
16 0.110 0.098 0.104 0.125 0.084 0.104 −0.013 −0.016 −0.015

all years 0.121 0.118 0.119 0.164 0.106 0.135 −0.024 0.004 −0.010
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The distinguished differences in the extraction of CC in young poplar plantations and
old poplar plantations had a great impact on the accuracy of the model. The variety of
tree heights in different ages plots is the main reason for the difference in CC extractions,
and different structures in the poplar age plots would affect the extraction accuracy as
well [13,67]. The longer distance between the camera lens and the tree canopy lead to
a low resolution of the canopy, which brings errors in the CC extraction of HP [61,68].
Another reason is the difference of light conditions between plots, because we found there
was a slight exposure in HP of these old poplar plantations, especially at the larger zenith
angle. Thus, this might be due to the underestimation of CC from HP instead of the
overestimation of CC from the UAV-LiDAR point cloud data in old poplar plantations,
because the photographs are more sensitive to changes of the environment [41,64]. The
age effects caused by the limitation of the camera sensor led to a saturation tendency in
the model. However, the regression relationship of the model under the same age plot is
theoretically linear. One way of eliminating age effects is to consider regression models for
each age plot, but it might not be effective in plantations with uniform planting density,
because the narrow range of CC often leads to an insignificant regression relationship in
the model [69]. Another way is to find a balance coefficient to normalize all plots, but it
is also a challenge due to the difficulty of quantifying complex environmental conditions.
Further research is needed to assess the age effects and how to eliminate them.

Overall, the UAV-LiDAR system can obtain reliable forest CC information over ex-
tensive areas. This is also a good way to store the 3D information of the forest canopy, in
which there is an agreement of the extracted CC results with the hemispherical photos
taken in the same location. The automatic CC extraction from UAV-LiDAR data would
benefit the description of understory light conditions as well, which is consistent with the
finding, in the previous study, that CC extraction is promising for assessing regional solar
radiation metrics [70]. Moreover, CC often have a strong relationship with various forest
parameters. Thus, our results and methods of CC extraction can become good references
for further studies on the extraction of other forest parameters in plantation forests.

5. Conclusions

Both CHM-based and SHP-based methods show a good performance when extracting
CC from UAV-LiDAR data in poplar plantations with a uniform planting density. The
CHM-based method had the highest accuracy in a 45◦ zenith angle range (R2 = 0.751,
RMSE = 0.053), and the accuracy showed a decline when choosing a zenith angle of 60◦

and 75◦ (R2 = 0.707, 0.490; RMSE = 0.053, 0.066). The higher resolution of pixel size
enhances the performance of CC extraction by the CHM-based model, and a suitable radius
of the CHM analysis window is another factor which can mitigate the bias in the model.
The accuracy of the SHP-based method was stable in three zenith angle ranges (R2: 0.688,
0.674, 0.601 and RMSE = 0.059, 0.056, 0.058 for 45◦, 60◦ and 75◦ zenith angle ranges), and
it showed a better consistency with the 1:1 line before the segmented point. Comparing
to the HP results, the CC extracted from UAV-LiDAR data showed an overestimation
in old poplar plantation plots due to the difference between camera and LiDAR sensors.
Compared to the HP results, the SHP-based method was more sensitive to the FOV changes
than the CHM-based method. Based on our research, the SHP-based model had a better
performance in CC extraction than the CHM-based method in different FOVs. Our research
proved that the UAV-LiDAR data are useful for CC estimation in forest plantation, which
provided a reasonable reference for monitoring regional understory lighting conditions in
the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13193837/s1. Python scripts, ArcToolbox.
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