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Abstract: Aerosol Optical Depth (AOD) is a crucial parameter for various environmental and climate
studies. Merging multi-sensor AOD products is an effective way to produce AOD products with more
spatiotemporal integrity and accuracy. This study proposed a conditional generative adversarial
network architecture (AeroCGAN) to improve the estimation of AOD. It first adopted MODIS
Multiple Angle Implication of Atmospheric Correction (MAIAC) AOD data to training the initial
model, and then transferred the trained model to Himawari data and obtained the estimation of 1-km-
resolution, hourly Himawari AOD products. Specifically, the generator adopted an encoder–decoder
network for preliminary resolution enhancement. In addition, a three-dimensional convolutional
neural network (3D-CNN) was used for environment features extraction and connected to a residual
network for improving accuracy. Meanwhile, the sampled data and environment data were designed
as conditions of the generator. The spatial distribution feature comparison and quantitative evaluation
over an area of the North China Plain during the year 2017 have shown that this approach can better
model the distribution of spatial features of AOD data and improve the accuracy of estimation with
the help of local environment patterns.

Keywords: aerosol; conditional generative adversarial network; spatio-temporal estimation

1. Introduction

Spatio-temporal completed and accurate AOD products are fundamental data to
various aerosol-related studies [1]. AOD can be obtained from ground-based measurements,
satellite retrieves, and model simulations; each has its advantages and disadvantages.
The AERONET (AErosol RObotic NETwork) can provide accurate globally distributed
observations of spectral AOD but limited spatial coverage [2]. Model-simulated AOD
such as the Global 3D Atmospheric Chemical Transport model (GEOS-Chem) [3] driven by
the Goddard Earth Observing System (GEOS) and the Weather Research and Forecasting
model coupled to Chemistry (WRF-Chem) [4] could generate aerosol profiles and column
concentrations with a high temporal resolution, but the spatial resolution and accuracy
are still limited. In contrast, satellite AOD retrievals, such as the Moderate Resolution
Imaging Spectro-Radiometer (MODIS) [5] and the Advanced Himawari Imager (AHI) [6],
are widely used because of their extensive spatial coverage. However, due to the limited
swath width, the influences of cloud cover, and the inherent theoretical limitation of AOD
retrieval algorithms, the AOD products from a single satellite sensor are still not enough in
accuracy and spatiotemporal completeness. The complementary characteristics of various
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AOD products from different satellites provided possibilities to estimate the spatiotemporal
distributions of AOD. Therefore, taking advantage of the strengths of the different satellite
AOD products, we could generate high spatiotemporal AOD products with more integrity
and quality [7,8].

Usually, most methods for merging multi-sensor AOD products are mainly spatial and
temporal interpolation, which utilize the neighborhood pixel values of an AOD product to
fill in the missing values of other types of AOD products at the same locations [9]. For in-
stance, according to the relationship of group AOD pixel values at the same geographic
locations from different satellite sensors, researchers developed polynomial regression mod-
els [10], maximum likelihood estimation models [11], least square estimation models [12],
optimal interpolation [13], and some simplified merge schemes [14]. Additionally, there are
some geostatistical methods, including the universal kriging method [15], the geostatistical
inverse modeling [16], and the spatial statistical data fusion [17]. These interpolation
methods mainly focus on improving spatial coverage. Moreover, they usually lead to
smooth diffusion and increase the uncertainty of AOD products.

In recent years, some deep learning and data-driven methods achieved promising re-
sults in remote sensing data processing [18–20], and they also have received more attention
in some aerosol-related studies. For example, Tang et al. [21] developed a spatiotemporal
fusion framework based on a Bayesian maximum entropy, which is used for the MODIS
and the Sea-viewing Wide Field-of-view Sensor AOD products. Zhao et al. [22] utilized
statistical machine learning algorithms to train the model for estimating AOD values,
which seeks the relationships between AOD retrievals from satellites and other factors
(e.g., meteorological parameters). Chen et al. [23] proposed an artificial neural network for
aerosol retrieval, which is implemented for joint retrieval of MODIS AOD and fine mode
fraction. These methods show some of the advantages of machine learning in merging
multi-sensor AOD products. However, very few studies have focused on the improvement
of spatial resolution of AOD by using the deep learning method.

According to the above analysis, this study proposes a conditional generative adver-
sarial networks-based architecture (AeroCGAN) and training strategy to estimate high
spatiotemporal resolution AOD. The MODIS Multiple Angle Implication of Atmospheric
Correction (MAIAC) algorithm utilizes multi-angle information from time series of MODIS
observation for up to 16 days for a given pixel at the resolution of 1 km. It enables retrieval
of aerosol loading at high resolution of 1 km, providing an excellent opportunity for aerosol
research at finer spatial scales [24]. Current C6 MODIS MAIAC aerosol products have been
comprehensively evaluated [5,25]. Since the MAIAC algorithm has striking advantages
in cloud and snow/ice screening, spatial coverage, and pixel resolution, the complete-
ness of the MAIAC product may be higher than other products. The statistics with the
ground-truth AERONET data showed that 69.84% of retrievals fall within the expected
error envelope and the correlation coefficient is greater than 0.9, indicating a good accuracy
for MAIAC products in China. Moreover, MAIAC AOD values exhibit higher accuracy
in Beijing and Xianghe, the main study areas of this research. Therefore, we first adopted
MODIS MAIAC AOD data to train the model and then transferred the trained model to
Himawari data and finally obtained 1-km-resolution, hourly estimates of the Himawari
AOD product. Specifically, for the generator, it adopted an encoder–decoder network
for preliminary resolution enhancement, then used a three-dimensional convolutional
neural network (3D-CNN) [26] for environment features’ extraction, and finally added the
features to a residual network [27] for improving the accuracy. Meanwhile, the sampled
data and environment data were designed as conditions of the generator. The spatial visual
comparison and quantitative evaluation have both shown that this approach achieved
competitive performances.

Specifically, the main contributions of this paper include:

• Taking advantage of the high spatial resolution of MODIS MAIAC AOD products
and high temporal resolution of Himawari AOD products, a data-driven method is
proposed to improve the spatio-temporal resolution of AOD. It uses MAIAC AOD
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as training data to capture the complex spatial patterns and perform estimation to
Himawari AOD based on this learned knowledge.

• According to the features of AOD data and the correlation between auxiliary data (e.g.,
meteorological, land-related data are described in Section 2.3) and AOD, the proposed
model AeroCGAN constructs two conditions: the sampled data as a spatial condition
for generating reasonable spatial distribution; and the environment features extracted
from auxiliary data as an environmental condition for improving the accuracy and
producing more realistic details.

• The model can effectively capture complex spatial patterns and preprocess the data
with an active window selection strategy. In this way, the model could increase spatial
coverage and generate high spatial resolution AOD with more realistic details, which
is on a reasonable spatial scale.

The rest of this paper is organized as follows: Section 2 first explains the fusion
framework for spatiotemporal AOD, then describes the detailed structure of the proposed
network, including the conditions, generator, discriminator, and loss function design.
Section 3 introduces the study area and experimental dataset, the evaluation metrics,
and presents the experimental results of different methods. In addition, the comparison,
validation, and analysis between the original Himawari 5 km AOD and generated high
Himawari 1 km AOD are also performed. Finally, the overall conclusion of this paper is
summarized in Section 4.

2. Materials and Methods
2.1. The Fusion Framework for Spatiotemporal AOD

This task of estimating high spatiotemporal AOD is similar to spatiotemporal fusion
and super-resolution (resolution enhancement) in some fields. Nevertheless, the AOD
data are quite different from the natural or optical remote sensing images. Specifically,
we considered the following differences between common optical images and AOD data
as follows.

• Spatiotemporal Difference: The surface reflectance shows temporally slow and spa-
tially high variations, whereas the aerosol loading changes very fast over time and
varies only on a limited space scale. Different from natural images, the variations in
remote sensing images are mainly caused by phenology, seasons, disaster, or human
activities. Most of the land surface changes in multi-temporal optical remote sensing
can be regarded as a relatively independent slow feature for analysis [28]. In contrast,
AOD is a physical quantity that characterizes the degree of atmospheric turbidity,
which has different spatiotemporal heterogeneity and dramatic variability; mean-
while, it has strong correlation with other atmospheric or geographic environmental
information data [29];

• Spectral Difference: Usually, natural images contain three bands of red, green,
and blue. Optical remote sensing images usually have multiple bands which
can provide more information for the analysis of characteristics. However, AOD
data have its own physical meaning that is different from multi-spectral or hyper-
spectral images;

• Feature Difference: The features in natural images usually have strong logical corre-
lation. In addition, high- and low-resolution natural images are basically coherent
in visual structure information. Optical remote sensing has complex feature types
and rich textural features, and their features have lower logical correlation. However,
features of AOD images tend to be monotonous and poor, so that the complexity of
the spatiotemporal heterogeneity makes its estimation and validation more difficult.

Because of the above differences, super-resolution methods for natural images or
spatial-temporal fusion algorithms for optical remote sensing images are not entirely
suitable for AOD resolution enhancement. In addition, there is information complementary
of multi-sensor and auxiliary environmental data, which could provide more different
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supplements for AOD estimates. For example, the MODIS MAIAC AOD products have
a high spatial resolution, the Himawari AOD products have a high temporal resolution,
and the auxiliary data (e.g., meteorological, land-related data) have a correlation with
AOD [22,30]. These data are helpful for estimating high spatiotemporal resolution AOD.
In this paper, we adapted the generative and adversarial architectures to fuse the multi-
source information and improve the resolution of Himawari AOD.

The flowchart of the proposed method is shown in Figure 1. For clarity, Table 1 lists
the notations in the following sections and Figure 1, where em and eh are the environment
features that match MAIAC and Himawari, respectively, extracted from auxiliary data
by 3D-CNN networks. Overall, the framework mainly contains two stages: (a) training
generator G with MAIAC AOD data, and (b) applying the trained generator G to Himawari
AOD data. Considering the strong temporal and spatial correlation between the MODIS
MAIAC and the Himawari AOD products in the studied region, the trained model with
MAIAC AOD could be applied to Himawari AOD. Therefore, during stage (a), we aim to
train the generator G with those MODIS MAIAC AOD. MHR, M

′
LR, and M

′
HR constitute

the corresponding high- and low-resolution data, and em will help to improve the model
accuracy. During stage (b), we apply the trained generator G to the Himawari AOD
products, using HLR and eh as inputs to obtain high-resolution Himawari AOD H

′
HR.

In addition, the good spatial coverage of sampled data are essential to retaining local
spatial variabilities in spatial interpolation. In addition, we adopted an active window
selection strategy to ensure the sampled data on a reasonable spatial scale, which will be
described in detail in Section 2.3.

3D-CNN
Embedding

Active Window
Selecting

MHR

Down-
sampled

H'HRHLR

Original
MAIAC AOD 1km

Original
Himawari AOD 5km

Active Window
Selecting

Environment Features

H'LR

M'LR

recovery

Generated
Himawari AOD 1km

G
Generator

G
Generator

Spatiotemporal 
Matching

MLR

(b) Applying G to Himawari data

(a) Training G
with

MAIAC data

M'HR

D
Discriminator

real fake

Auxiliary data

MAIAC em

Himawari
eh

Figure 1. Flowchart of the proposed method, including data preprocessing, model training, and applying. Stage (a)
is training generator G with MAIAC AOD data; Stage (b) is applying the trained generator G to Himawari AOD data.
The 3D-CNN is used to extract environment features from auxiliary data. Spatiotemporal matching is required when using
the environment features in the model.



Remote Sens. 2021, 13, 3834 5 of 16

Table 1. The notations in the following sections and Figure 1.

Notation Explaination

MHR original high-resolution MAIAC AOD (1 km, daily)
MLR low-resolution MAIAC AOD down-sampled from the MHR (5 km, daily)
M
′
LR sample data from MLR

M
′
HR generated high-resolution MAIAC AOD (1 km, daily)

HLR original low-resolution Himawari AOD (5 km, hourly)
H
′
LR sample data from HLR

H
′
HR generated high-resolution Himawari AOD (1 km, hourly)

em environment features matching MAIAC
eh environment features matching Himawari

2.2. Network Architecture of AeroCGAN

Figure 2 displays the network architecture of the proposed AeroCGAN, which is based
on conditional generative adversarial network (CGAN). For clarity, we will begin with a
brief introduction to the concepts of GAN and CGAN. Then, based on the gaps between
our research and the general conditional generation tasks, we illustrate our strategy to
reform general CGAN and construct the proposed model.

real
or
fake

Conv LeakyReLU Concat BN Sigmoid ReLU

Encode Decode

Residual

3x3x4

3D-CNN
kernel

…

k3n16s2

6 residual blocks

Element-wise

or
real

fake

or
samples

e

Environment features

k3n8s1 k3n4s1 k3n4s1 k3n8s1 k3n16s2

k3n16s1

k3n16s2

k3n16s2 k3n8s1 k3n4s1

k3n32s2 k3n32s1 k3n32s1 k3n32s1 k3n32s1

(a)

(b)

Figure 2. The network architecture of the proposed model with the corresponding kernel size (k), number of feature
maps (n), and stride (s) indicated for each convolutional layer. (a,b) are the network architecture of the generator and
discriminator, respectively.

The GAN introduced by Goodfellow et al. [31] contains two parts: a generator G
that attempts to capture the data distribution and a discriminator D to judge whether
a sample comes from the real dataset or from fake data of G. Usually, G maps a noise
vector z from the prior distribution pz(z) to the data space as G(z), in this way to learn a
generator distribution similar to the distribution pdata(x) of a dataset x. The discriminator
D outputs a single scalar representing the probability of judging the sample x, which
comes from the real dataset rather than the generated samples of G. From an adversarial
perspective, the G and D are similar to a two-player minimax game. The goal is to minimize
log(1−D(G(z)) and maximize log(D(x))+ log(1−D(G(z)) at the same time. During this
game, the parameters θg of G are adjusted to confuse the discriminator maximally, and the
parameters θd of D are adjusted to make the best judgement. The objective function of the
minimax game is given as

min
θg

max
θd

(
Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))]

)
. (1)
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Adding the same auxiliary information y as a condition to the G and D, the GAN
will be extended to a conditional version named CGAN [32], which can restrict G in its
generation process and D in its discrimination process. In general studies, the G generated
different random fake data on the same condition from the noise vector z and the condition
y. However, the discriminator D receives x (or G(z, y)) and y as inputs to make a judgment
based only on y without considering z. The objective function of a CGAN is formalized
as follows:

min
θg

max
θd

(
Ex∼pdata(x)[log D(x, y)] + Ez∼pz(z)[log(1− D(G(z, y), y))]

)
. (2)

2.2.1. Conditions of Proposed AeroCGAN

In recent years, researchers have designed various CGAN-based networks to achieve
the expected generation effect in the field of geosciences [33,34]. In this study, the proposed
approach is also based on classical CGAN. We think the reasonable design of the network
condition parameters will help to learn spatially deep features. Thus, according to the
features of AOD data and the correlation between auxiliary data (e.g., meteorological,
land-related data) and AOD, the proposed model AeroCGAN constructs two conditions:
the sampled data (such as M

′
LR and H

′
LR in Figure 1) as a spatial condition for generating

reasonable spatial distribution; the environment features are extracted from auxiliary
data as an environmental condition for improving the accuracy and producing more
realistic details.

On the one hand, we analyze characteristics of the aerosol spatial distribution. AOD
data are similar to a grayscale image. It has its physical meaning, which is different from
multi-spectral or hyper-spectral images. In certain geographical space, at time t, we can
think that the AOD with a high spatial resolution can be expressed by the summary of
low spatial resolution value and a difference value within the corresponding pixel range.
The specific formula can be expressed as follows:

Hi
t = Lt + εi

t, (3)

where Hi
t represents the high spatial resolution AOD value, and εi

t represents the differ-
ence value of the corresponding low spatial resolution AOD value Lt. There are various
factors that cause the difference value εi

t, such as reflectance conditions and cloud coverage.
The spatial resolution of AOD is usually measured in kilometers. Considering the spatial
resolution of 1 km (MAIAC AOD) vs. 5 km (Himawari AOD), the overall different charac-
teristics of the surface objects and the atmosphere are relatively small. In the corresponding
pixel, there is a big gap between Lt and εi

t in magnitude, but with a much smaller value of
εi

t. Therefore, in a certain geographical space, the high spatial resolution AOD and the low
spatial resolution AOD actually contain similar spatial distribution trend features.

On the other hand, the aerosol retrieval theory is also worth mentioning. In the basic
strategy of aerosol remote sensing [35], the top of atmosphere reflectance ρTOA can be
expressed as

ρTOA(µs, µv, φ) = ρ0(µs, µv, φ) +
T(µs)T(µv)ρs(µs, µv, φ)

[1− ρs(µs, µv, φ)S]
, (4)

where ρ0 represents the atmosphere path reflectance, T is the transmission function de-
scribing the atmospheric effect on upward and downward reflectance, S is the atmosphere
backscattering ratio, and ρs is the angular surface reflectance. These parameters (ρ0, T,
and S) are functions of solar zenith angle, satellite zenith angle, and solar/satellite relative
azimuth angle (µs, µv, φ). Except for the surface reflectance, each term on the right-hand
side of Equation (4) is a function of the aerosol type and AOD.

According to the basic strategy of aerosol remote sensing and Equation (4), we could
think that εi

t has a strong relation with surface reflectance. Moreover, many studies il-
lustrated the significant influence of the aerosol–radiation interaction on meteorological
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forecasts, and some weather forecast centers are conducting research to facilitate the in-
clusion of more complex aerosol information in operational numerical weather prediction
models [36,37]. Therefore, we think that aerosol and meteorological variables have interac-
tion and cause εi

t.
Thus, according to the spatial distribution features of AOD data, it is more likely a

spatial interpolation process during the encoder–decoder stage. The input of G is no longer
a random noise vector z, but a spatially sampled (and hence, low spatial resolution) data
(M

′
LR or H

′
LR) denoted as s. The overall spatial distribution characteristics are still retained

in s. Thus, s is designed as a spatial condition. Single input data are insufficient to recover
AOD with full spatial resolution. Comprehensively considering the characteristics of AOD
data and its relationship with other auxiliary data (e.g., meteorological, land-related data),
we used a three-dimensional convolution kernel to extract environment features from
the auxiliary data and construct another environment condition e (em or eh). During the
residual network stage, it is conditioned on e to correct errors and generates more realistic
details. The object function of AeroCGAN is formalized as follows:

min
θg

max
θd

(
Ex∼px(x)[log D(x, (s, e))] + Es∼ps(s)[log(1− D(G(s, (s, e)), (s, e))]

)
. (5)

2.2.2. Generator

Figure 2a illustrates the details of the architecture of generator G. It mainly contains
three parts: an encoder–decoder network for preliminary resolution enhancement, a 3D-
CNN network for environment features extraction, and a residual network for improving
the accuracy. The fully convolutional encoder–decoder structure is used as the encoder
which contains three two-dimensional convolution layers. Three two-dimensional trans-
posed convolution layers are used as the decoder. Each layer of the encoder performs a
zero-padding convolution with the given convolving kernel and stride length. Each layer
of the decoder implements the up-sampling of the feature maps through a fractionally
stride transposed convolution with the same settings as the corresponding layer of the
encoder layers. In the output layers of this network, we use the Tanh activation functions.
The 3D-CNN network is mainly used to extract environment features from the auxiliary
data by a three-dimensional convolution kernel with a size of 3× 3× 4. The residual
network structure contains six residual blocks. Each residual block with the same layout
contains two convolutional layers with a small filter kernel size of 3× 3 followed by batch
normalization (BN) layers and a rectified linear unit (ReLU) as the activation function.

2.2.3. Discriminator

Figure 2b illustrates the details of the architecture of discriminator D. It is a CNN
similar to typical models of image classification except that we use a concatenation to
merge the sampled data, environment data, and full-size real/fake data as the input. Each
layer of D performs a zero-padding convolution with the same settings of the encoder
layers in G. The output of D is a scalar, which indicates the input full-size image is
estimated (fake) data or real data. Batch normalization is applied to all layers except for the
input/output layer of D. This can decrease model instability and help gradients flow in the
networks. The LeakyReLU activation is used after convolutions, and the ReLU activation
is used after transposed convolutions. For the output layers in D, we use the Sigmoid
activation functions.

2.2.4. Loss Functions

To utilize more information in the proposed AeroCGAN architecture, the conditional
adversarial loss contains a spatial adversarial loss Lossadv1 and an environment adversarial
loss Lossadv2. They are formulated as

Lossadv1(θG, θD) = − log D
(

MHR, M′LR
)
− log

(
1− D

(
G
(

M′LR
)
, M′LR

))
, (6)

Lossadv2(θG, θD) = − log D(MHR, em)− log
(
1− D

(
G
(

M′LR
)
, em

))
. (7)
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Motivated by a previous study [38], we add a robust spatial content loss function,
LossSC (θG), to enforce the generator G to generate a high resolution AOD data similar to
original AOD given as

LossSC(θG) = arg min
θG

n

∑
i=1

ρ
(

MHR,i −M′HR,i
)
, (8)

where θG means model parameters in G, and ρ(x) =
√

x2 + ε2 is the Charbonnier penalty
function. MHR,i and M

′
HR,i refer to the real and estimated (fake) AOD, respectively. Thus,

the total loss of the generator is given by

Loss(θG, θD) = LossSC(θG) + λ1 Lossadv1(θG, θD) + λ2 Lossadv2(θG, θD), (9)

where λ1 and λ2 are set to balance the loss components. In this study, we alternately update
G and D, and ultimately use the optimized generator to estimate the high resolution
AOD data.

2.3. Study Area and Data Description

Figure 3 displays the MAIAC AOD observation and the study area status. Figure 3a
presents the frequency of valid MAIAC AOD observation in 2017. Figure 3b shows the
annual mean MAIAC AOD observation in 2017. The red rectangle marks the study domain
ranging from 113◦E to 121◦E and 34◦N to 43◦N, and Figure 3c displays the land cover of
the study area. The overlaid dots represent the selected AERONET sites. As can be seen,
the valid observed satellite data of this area can provide rich training data, where aerosol
pollutions have high concentrations and complex properties [39,40]. Good spatial coverage
of sampled data are essential to retain local spatial variabilities in spatial interpolation.
On the contrary, a lower sampling density would cause a worse interpolation result.
Therefore, this study collected the original data in 2017 of this area. Table 2 lists the data
summary information used in this study.
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Figure 3. (a) The frequency of valid MAIAC AOD (470 nm) observation in 2017; (b) the annual mean MAIAC AOD (470 nm)
observation in 2017. The red rectangular area is the study area; (c) the land cover of the study area. The five overlaid dots
represent the AERONET sites.
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Table 2. Summary of the data sources used in this study.

Type Variable Resolution Source

AOD
MAIAC AOD 1 km × 1 km daily MCD19A2
Himawari AOD 5 km × 1 km hourly JAXA
AERONET AOD situ hourly AERONET

meteorological

2 m air temperature 0.1◦ × 0.1◦ hourly ECMWF ERA5
10 m u-component of wind 0.1◦ × 0.1◦ hourly
10 m v-component of wind 0.1◦ × 0.1◦ hourly
relative humidity 0.25◦ × 0.25◦ hourly

land-related surface reflectance 1 km × 1 km daily MCD19A1

• MODIS MAIAC AOD products: The MODIS Multiple Angle Implication of Atmo-
spheric Correction (MAIAC) algorithm enables simultaneous retrieval of aerosol
loading at high resolution of 1 km, providing an excellent opportunity for aerosol
research at finer spatial scales. It is widely used in various aerosol-related studies.
This study collected the MAIAC AOD products from (MCD19A2: https://lpdaac.
usgs.gov/products/mcd19a2v006/ (accessed on 15 June 2020)), and adopted it to
training the initial model.

• Himawari AOD products: Himawari-8 is a Japanese geostationary satellite operated
by Japan meteorology agency, carrying Advanced Himawari Imager (AHI), a mul-
tiwavelength imager [6]. The full disk observation with high temporal resolution
(10 min) exhibits a prominent advantage in monitoring aerosols over the East Asia
region. The AHI has 16 channels from 460 to 13,300 nm to capture visible and in-
frared spectral data. This study collected L3ARP Hourly Himawari AOD (L3ARP :
https://www.eorc.jaxa.jp/ptree/index.html (accessed on 15 June 2020)), which is in
the band of 500 nm. The trained model is transferred to Himawari data to obtain the
estimation of 1-km-resolution, hourly Himawari AOD products.

• AERONET AOD data: The AERONET project is a federation of ground-based re-
mote sensing aerosol networks. It has provided long-term, continuous, and readily
accessible public domain database of aerosol optical, microphysical, and radiative
properties for aerosol research and characterization, validation of satellite retrievals,
and synergism with other databases. The provided spectral AOD measurements with
a high temporal resolution (15 min) in the bands of 340–1060 nm, and the processing
algorithms have evolved from Version 1.0 to Version 2.0 and now Version 3.0 are
available from the AERONET website (https://aeronet.gsfc.nasa.gov/ (accessed on
15 June 2020)). This study collected five AERONET sites’ measurements marked in
Figure 3c, which is in the band of 500 nm for validation with Himawari AOD;

• Auxiliary data: The auxiliary data include surface reflectance, temperature, wind
speed, and relative humidity (Table 2). The surface reflectance (SR) data are collected
from (MCD19A1: https://lpdaac.usgs.gov/products/mcd19a1v006/ (accessed on 15
June 2020)). The temperature (TEM) and relative humidity (RH) are collected from
the European Center for Medium-Range Weather Forecasts (ECMWF) atmospheric re-
analysis products (ERA5: https://www.ecmwf.int/en/forecasts/datasets/ (accessed
on 15 June 2020)), wind speed (WS) is calculated from the two wind components (10
m u-component and 10 m v-component of wind collected from ECMWF ERA5) by
using the vector synthesis method. All of the auxiliary data (SR, TEM, RH, and WS)
will be preprocessed and extracted as environment features by a 3D-CNN network.

Due to clouds and high reflectance conditions, satellite-retrieved AOD products
usually have large percentages of missing values. Under conditions of thin cloud cover,
the missing data area could be filled by the surrounding valid observation; thus, we could
obtain reliable sample data for interpolation. On the contrary, when cloud coverage causes
missing data in large areas, and the spatial continuity of sampled data are significantly
inadequate, we could not reliably fill in missing values in such areas. Therefore, we adopted

https://lpdaac.usgs.gov/products/mcd19a2v006/
https://lpdaac.usgs.gov/products/mcd19a2v006/
https://www.eorc.jaxa.jp/ptree/index.html
https://www.eorc.jaxa.jp/ptree/index.html
https://aeronet.gsfc.nasa.gov/
https://lpdaac.usgs.gov/products/mcd19a1v006/
https://www.ecmwf.int/en/forecasts/datasets/
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an active window selection strategy to preprocess data. We defined an active window with
a size of 32 km × 32 km. In order to ensure the quality of training data when preprocessing
MAIAC AOD products, we select the areas where valid pixels are exceeding 95% in the
active window, and then used a simple spatial interpolation method to complete the data
block. Similarly, when estimating Himawari AOD products, we select the areas where
valid pixels are exceeding 80% in the active window, and the missing data are filled by the
surrounding valid observation. In this way, our active window selection strategy can select
the areas where the valid pixels mostly surround the active window block for training
and estimating.

After preprocessing, original MAIAC AOD is divided into single-channel AOD tiles
MHR (1× 32× 32) with no repetition; then, the corresponding M

′
LR is obtained. Each AOD

block covers a 0.32◦ × 0.32◦ geographic tile. We first transform these blocks linearly into
float tensor images. Then, we normalize the tensor images (0.5 mean and 0.5 standard
deviation) to improve training efficiency. All AOD data are mapped back to their orig-
inal values in the reported accuracies. Similarly, preprocessing was used for Himawari
AOD products.

2.4. Model Parameters and Experiment Design

Based on experiences in previous studies and our experiments, we set the slope of the
leak to be 0.2 for layers with LeakyReLU activation [41]. In addition, we use the Adam
optimizer [42], where β1 = 0.6 and β2 = 0.999, and the learning rate α for backpropagation
is set to 0.0002. The parameter ε in Equation (8) is set to 10−3. Based on our experiments
and previous study [43], the parameters λ1 and λ2 in Equation (9) are set to 10−4 to balance
the loss components. All gradients are computed using Equations (5)–(9). The multi-input
neural network structure and layer sizes of generator G and discriminator D are shown
in Figure 2. In order to demonstrate the feasibility and efficiency of the proposed model,
the resulting images are evaluated by Peak Signal-to-Noise Ratio (PSNR, ranges: 0–1) and
Structural SIMilarity (SSIM, ranges: 0–100 dB). Furthermore, according to the features of
AOD data, we also added the RMSE index for measurement. Meanwhile, considering
that the Kriging [15,44] method is widely used in geospatial interpolation, and super-
resolution CNN (SRCNN) [45] is a classic super-resolution reconstruction method using
deep convolutional network, we choose them for model comparison.

According to the framework shown in Figure 1, our comparative experiment mainly
contains two parts:

1. Simulation experiments with MODIS MAIAC AOD, which is corresponding to stage
(a) in Figure 1. During this experiment, we acquire about 66,396 MAIAC AOD
blocks in total after data preprocessing, in which 53,000 blocks are taken as the
training dataset and 13,396 blocks are taken as the validation dataset. In addition, the
MAIAC AOD product on 1 June 2017 was selected as testing data for displaying the
performance of the proposed model.

2. Apply the model to real Himawari AOD, which is corresponding to stage (b) in
Figure 1. During this experiment, we compared the spatial distribution of the original
5 km Himawari AOD and generated 1 km Himawari AOD, which picked hourly
data on 1 June 2017 for display. Moreover, we validate generated AOD with ground
AERONET monitoring station data.

3. Results and Discussion
3.1. Training and Validation Model with MAIAC AOD

Table 3 displays the performance of different methods with three evaluation indices.
The proposed model shows better performance in all indices, especially the method with
valuable auxiliary data. In the overall spatial distribution of the AOD, the SSIM value
shows that those methods have similar estimation performance of spatial distribution.
In some details of resolution enhancement of the AOD, the PSNR and RMSE values
demonstrate the accuracy difference. The proposed AeroCGAN model with a 3D-CNN
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extracting environment features from auxiliary data achieved the best indicator values
(RMSE: 0.021, PSNR: 33.24, SSIM: 0.883), and it was significantly improved compared to the
other methods. In particular, the considerable RMSE improvement in AeroCGAN(3D-CNN
embedding) proved that directly adding auxiliary data has limited improvement in model
efficiency, but the 3D-CNN can work better by extracting high-related features from the
auxiliary data.

In order to further show the detailed performance of the proposed model, we use
MAIAC AOD data on 1 June 2017, in order to validate the performance of the method.
The comparison results are shown in Figure 4. Overall, Figure 4a–e shows that all methods
can estimate high-resolution data and fill missing data. This performance is also in line
with the SSIM indicator value of Table 1. In Figure 4f–o, we pick up two experiment areas
for further comparisons, and the ellipse area marks some obvious details. As can be seen,
the estimated result of the classical interpolation method (Kriging) has a similar trend of
the overall spatial distribution with real AOD, but it has distortion in small details. Similar
performances can also be observed on SRCNN results. In other words, when improving
the AOD resolution, the classical interpolation method like Kriging is prone to excessive
smoothing, while the SRCNN method mainly sharpens the edges. They do not provide
enough credible information for the estimation.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

0.4

0.8

1.2

1.6

2.0

0.4

0.8

1.2

1.6

2.0

0.2

0.4

0.6

S2

S1

Figure 4. The spatial distribution performance of different method estimations with MAIAC AOD (1 June 2017). (a) original
MAIAC AOD 1 km; (b) down-sampled MAIAC AOD 5 km; (c) Kriging estimates AOD 1 km; (d) SRCNN estimates AOD
1 km; (e) AeroCGAN estimates AOD 1 km; (a–e) are overall spatial distribution; (f–j) are the detailed comparison of big
rectangular area S2; and (k–o) are the detailed comparison of small rectangular area S1. Some obvious details are marked by
the ellipses area.



Remote Sens. 2021, 13, 3834 12 of 16

Table 3. Performances of different methods with three evaluation indices (using MODIS MAIAC AOD).

Model RMSE PSNR SSIM

Kriging 0.036 28.89 0.868
SRCNN 0.071 22.81 0.796

AeroCGAN (meteorological data) 0.031 30.17 0.864
AeroCGAN (surface reflectance) 0.029 30.75 0.861

AeroCGAN (3D-CNN embedding) 0.021 33.24 0.883

In contrast, the proposed model fills missing data with a reliable value as much as
possible while minimizing distortion in small details. We attribute these advantages to
the architecture conditioned by auxiliary data, which corrected errors in the encoder–
decoder part and generated more realistic details. Therefore, the RMSE values of Table 3
were further validated in Figure 4, and the results of the proposed model have a better
correlation with the original value.

3.2. Applying the Model to Himawari AOD

The above result demonstrated the competitive performance of our proposed AeroC-
GAN on MODIS MAIAC AOD. In addition, we applied the trained generator G to the
Himawari data for estimating high spatiotemporal AOD. Considering that there are no real
high spatiotemporal remote sensing AOD to validate our estimated results, we first com-
pared the spatial distribution of generated Himawari 1 km AOD with original Himawari
5 km AOD, which is shown in Figure 5. In terms of the aerosol spatial distribution from
8:00 a.m. to 5:00 p.m., the generated 1 km AOD retains the spatial distribution features
consistent with the original Himawari 5 km AOD. In terms of the aerosol spatial coverage,
it is obviously improved in generated 1 km AOD. For example, at 8:00 a.m., the areas at
the border of Liaoning and Neimenggu (red rectangular area), and north of Henan (dark
rectangular area), the original Himawari observation data are sparse, and there are a lot of
missing values. The corresponding generated 1 km AOD shows that the proposed model
improves spatial coverage and generates high spatial resolution, which is all on a reason-
able spatial scale. We attribute these advantages to the active window selection strategy.
In this strategy, these kinds of missing values filled by our model are surrounding the valid
observation. Similarly, this performance could also be seen at other times, which proved
that our approach is robust in filling missing values. There is a truth that the recovered
result tends to be unreliable if the missing data are in large areas and the spatial continuity
of sampled data are significantly inadequate, which both our approach and others cannot
avoid. However, our filling strategy has always been kept within a reasonable scale in a
large area of missing data. For example, the central Shandong region has extensive missing
data at 5:00 p.m. Although there still exists some missing value area, the region we filled is
always kept in the valid observation area.

Furthermore, we use the ground measurements to validate the estimation performance,
and the result is shown in Figure 6. We picked up the experiment data blocks where there
are AERONET sites located. Then, we generated the improved 1-km-resolution estimates
of these blocks. In addition, we extracted the filled value and the ground measurement
corresponding with AERONET AOD sites. AERONET AOD at 500 nm contains all the five
stations daytime hourly observation in 2017. After matching with Himawari valid AOD,
we obtained 6169 records for correlation analysis. The resulting scatter plots are shown
in Figure 6: (a) is the valuation of original Himawari 5 km AOD against AERONET AOD
(R: 0.836, RMSE: 0.465), while (b) is the valuation of improved 1 km resolution estimated
Himawari AOD against AERONET AOD (R:0.865, RMSE:0.314). Based on these values of R
and RMSE, it has been proved that our estimated results exhibit higher levels of correlation
with the ground AERONET monitoring station AOD data, and the biases were reduced.
Moreover, the scatter dots also show that the estimated data significantly reduce the high
estimation values (>4.0).
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Figure 5. The spatial distribution comparison performance of the original Himawari 5 km AOD and generated Himawari
1 km AOD (1 June 2017, 8:00 a.m. to 5:00 p.m. at Beijing Time).
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The results shown in Figures 5 and 6 all validated that the pre-trained model with MA-
IAC AOD can be effectively applied to Himawari data. The generated, high spatio-temporal
resolution AOD products show reasonable features in both temporal and spatial variations.

AERONET AOD

H
im

aw
ar

iA
O

D

Es
tim

at
io

n
A

O
D

AERONET AOD

y = 1.195x + 0.067
R = 0.836
RMSE = 0.465
N = 6169

y = 1.148x + 0.046
R = 0.865
RMSE = 0.314
N = 6169

（a） （b）

Figure 6. Correlation analysis of all the five AERONET sites daytime hourly observation in 2017. (a) the original Himawari
5 km AOD against AERONET AOD; (b) the estimated Himawari 1 km AOD against AERONET AOD. AOD at 500 nm.

4. Conclusions

In this study, we proposed an architecture and training strategy based on conditional
generative adversarial networks for estimating high spatiotemporal resolution AOD (Ae-
roCGAN). This approach achieved competitive performance by taking advantage of the
high spatial resolution of MODIS MAIAC AOD products and the high temporal resolution
of Himawari AOD products. It adopts MAIAC AOD to train the model and applies the
trained model to Himawari data for estimating high spatiotemporal resolution AOD prod-
ucts. The generator adopts a conditional encoder–decoder and residual network framework
for spatial estimation. We also construct a spatial and environment content loss function
for correcting the process of fusion and generating more reasonable details. The visual
comparison and quantitative evaluation have shown that this approach could capture deep
representations of sampled spatial data and their patterns of interactions with the local
environment. Meanwhile, the proposed method shows competitive performances when
compared with other methods. It improves the spatial coverage and generates high spatial
resolution with more realistic details, which is achieved on a reasonable spatial scale.
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