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Abstract: During the acquisition process, hyperspectral images (HSIs) are inevitably contaminated by
mixed noise, which seriously affects the image quality. To improve the image quality, HSI denoising
is a critical preprocessing step. In HSI denoising tasks, the method based on low-rank prior has
achieved satisfying results. Among numerous denoising methods, the tensor nuclear norm (TNN),
based on the tensor singular value decomposition (t-SVD), is employed to describe the low-rank
prior approximately. Its calculation can be sped up by the fast Fourier transform (FFT). However,
TNN is computed by the Fourier transform, which lacks the function of locating frequency. Besides,
it only describes the low-rankness of the spectral correlations and ignores the spatial dimensions’
information. In this paper, to overcome the above deficiencies, we use the basis redundancy of the
framelet and the low-rank characteristics of HSI in three modes. We propose the framelet-based
tensor fibered rank as a new representation of the tensor rank, and the framelet-based three-modal
tensor nuclear norm (F-3MTNN) as its convex relaxation. Meanwhile, the F-3MTNN is the new
regularization of the denoising model. It can explore the low-rank characteristics of HSI along three
modes that are more flexible and comprehensive. Moreover, we design an efficient algorithm via
the alternating direction method of multipliers (ADMM). Finally, the numerical results of several
experiments have shown the superior denoising performance of the proposed F-3MTNN model.

Keywords: hyperspectral images; denoising; framelet; tensor nuclear norm

1. Introduction

Hyperspectral images (HSIs) can provide hundreds of continuous spectral bands, con-
taining rich spatial and spectral information. They are used widely in many applications [1–4],
including food safety, biomedicine, urban planning, cadastral investigation, industry, and
so forth. However, during the acquisition process, due to unique physical designs and the
limitations of the imaging mechanism, HSIs are inevitably contaminated by mixed noise [5,6].
This seriously reduces the image quality and bounds the precision of consequent processing
tasks [1,7–9]. Thus, it is significant and challenging to denoise in the preprocessing steps for
HSI applications.

Every spectral band of the HSIs is a gray-scale image measured by different wave-
lengths. From this perspective, numerous denoising methods applied to gray-scale im-
ages can be directly used in HSI denoising along the third dimension. However, these
methods only utilize the structural information of each band individually and ignore the
three-dimensional structural information of HSI. Therefore, the exploration of the spec-
tral low-rankness of HSI is incomplete. To explore spectral characteristics in HSIs, some
methods based on matrix low-rank prior [8,10–18] have been proposed and used widely
and efficiently in HSI denoising tasks. The main idea is to unfold the HSI into a low-rank
matrix by vectorizing spectral bands into columns. Minimizing the rank of the Casorati
matrix is an efficient method for characterizing the low-rankness of HSI. However, it is
unavoidable that the above matricization destroys the high order structures of HSIs [5].
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With the development of tensor technology, more and more scholars have begun to pay
attention to the low-rankness of tensor [19–21]. For example, NMoG uses LRMF to promote
the low-rankness of the target HSIs [22]. In the past decades, a lot of research has been
devoted to defining tensor ranks. The most typical definitions of the tensor rank are the
CANDECOMP/PARAFAC(CP) rank [23,24] and the Tucker rank [25,26]. The CP rank is
computed via the CP decomposition, which is defined as the minimum number of rank-one
tensors required to express a tensor. Nevertheless, for a tensor, calculating the CP rank is
NP-hard [27]. The Tucker rank is computed by unfolding the tensor to a matrix and com-
puting the rank of the matrix based on the Tucker decomposition. However, the unfolding
operation also destroys the spatial structure of tensors in Tucker decomposition [28].

Recently, the tensor singular value decomposition (t-SVD) has been proposed [29,30],
induced by the tensor–tensor product (t-prod) [31], which is widely used in image restora-
tion and denoising [32]. Then, the tensor tubal-rank and the tensor multi-rank have been
defined based on t-SVD. They are accomplished using discrete Fourier transform (DFT).
Due to the operation on the entire tensor, they can describe the low-rankness of tensors
better. Similar to the matrix, minimizing the tensor rank function is NP-hard. The tensor
nuclear norm (TNN) was developed as a convex approximation of the rank function of the
tensors, which can solve this problem. TNN is directly defined on tensors and does not
need the unfolding operation, which avoids losing the inherent information of tensors [33].
Meanwhile, t-SVD can be accomplished quickly by fast Fourier transform (FFT). Therefore,
TNN is widely used in HSI denoising tasks.

However, TNN using DFT also has aspects not considered. Firstly, the Fourier trans-
form can only calculate the magnitude of the frequency and lacks the function of locating
frequency. Secondly, there are many transformations that can make the rank lower in
the transform domain. It has been found that the tubal-rank could be smaller when it is
accomplished with a suitable unitary transform [34]. In addition, it has been proven that a
tensor can be recovered exactly when it has a sufficiently low tubal-rank and the corrupted
entries are sufficiently sparse [34]. Naturally, if there is a transformation to make the
rank of the transformed tensor lower, this is of great significance for more effective image
denoising. Besides the Fourier transform, there are numerous invertible transformations
that can be used in the tensor decomposition scheme [28], for example, the discrete cosine
transform (DCT) and the Haar wavelet transform.

Among these transformations that can be used within the t-SVD framework, we adopt
the tight wavelet frame (framelet). Compared with the Fourier transform, the framelet
transform has the following advantages. Firstly, the framelet can link the frequency in-
tensity information with the position information, which solves the shortcomings of the
Fourier transform to a certain extent. Secondly, the framelet is redundant [35]. Conse-
quently, the representation of each fiber is sparse. For this, we conduct experiments to
verify this result. One can see Section 3 for details. As a result, we find that the framelet is a
suitable transformation, which can make the rank of the transformed tensor lower, and we
can minimize the TNN based on the framelet to solve the problem in HSI denoising tasks.

Additionally, the traditional tensor rank based on t-SVD only transforms along the
spectral dimension, which mainly describes the low-rankness of the spectral correlations
and inevitably ignores the spatial information. From this perspective, we need to deal
with various correlations along three modes of HSI. However, the traditional tensor rank
based on t-SVD lacks the ability and flexibility [5]. To remedy this defect and improve
noise reduction performance, we use three-modal t-SVD based on framelet transform to
define the tensor rank and the framelet-based three-modal TNN (F-3MTNN) as its convex
relaxation. It is more flexible and precise to represent the low-rankness characterization of
the HSI. The details are introduced in Section 3.

The main contributions are listed as follows: (1) Taking full advantage of the redun-
dancy of the framelet transform and the low-rankness of the framelet-based transformed
tensor, we propose the framelet-based TNN, which is more conducive to exploring low-
rankness for denoising tasks; afterwards, to overcome the shortage of the exploration in
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the low-rank characteristics of three dimensions, we propose the F-3MTNN model, which
is more flexible, accurate and complete in dimensionality; (2) Based on the above, we
proposed a framelet-based TNN minimization model and applied it to HSI denoising. To
solve the proposed model, based on the ADMM algorithm, a fast algorithm is built [36].

2. Preliminaries
2.1. Notations and Definitions

In this section, some related operations and definitions are generalized [5]. Generally,
we denote the third-order tensor as A ∈ Rn1×n2×n3 . Its (i, j, s)th element is denoted as
A(i, j, s), following the terminology used in MATLAB. Given a tensor A ∈ Rn1×n2×n3 ,
the transformed tensor via FFT along the third mode is Ak, that is, Ak = f f t(A, [ ], 3).
Certainly, we can compute A via A = i f f t(Ak, [ ], k). The kth-modal permutation of
A is defined as Ak = permute(A, k), k = 1, 2, 3, where the m-th third-modal slice of Ak
is the m-th kth-modal slice of A, that is, A(i, j, s) = A1(j, s, i) = A2(s, i, j) = A3(i, j, s).
Naturally, the inverse operation is A = ipermute(Ak, k). ‖ · ‖F is the Frobenius norm,
which is defined as ‖A‖F := (∑i,j,s |A(i, j, s)|2) 1

2 . ‖ · ‖1 is the l1 norm, which is defined as
‖A‖1 := ∑i,j,s |A(i, j, s)|.

2.2. Framelet

The tight frame X ⊂ L2(R) of L2(R) is defined as:

‖ f ‖2
2 = ∑

g∈X
|〈 f , g〉|2, ∀ f ∈ L2(R),

where 〈·, ·〉 is the inner product in L2(R) and ‖ · ‖2 = 〈·, ·〉 1
2 .

A wavelet system X(Ψ) is the collection of dilations and shifts of a finite set Ψ ⊂ L2(R),
that is,

X(Ψ) = {2k/2ψ(2kx− j) : ψ ∈ Ψ, k, j ∈ Z},

then ψ is called a framelet if X(Ψ) is also a tight frame for L2(R).
In the actual application of image processing, to facilitate calculations, the framelet

transform can be represented as a decomposition operator. For example, given a vector
a ∈ Rn, its transformed vector â can be calculated by â = Wa ∈ Rwn, where W ∈ Rwn×n

is the framelet transform matrix (w = (n− 1)l + 1, n is the number of filters and l is the
number of levels). The generating process of W is detailed in [35,37], and will not be
repeated here.

2.3. Problem Formulation

HSIs are degraded by different types of mixed noises. These noises are usually
composed of Gaussian noise, impulse noise, striped noise, and so on [38]. It is assumed
that the original hyperspectral data are X ∈ Rn1×n2×n3 , where n1 × n2 is the spatial size
and n3 is the spectral size of HSI. Then, the degradation model can be presented as follows:

X = L+N + S , (1)

where X ,L,N ,S ∈ Rn1×n2×n3 ; L is the clean HSI without noise; X is the original HSI; N
represents the Gaussian noise; S represents the sparse noise composed by impulse noise,
striped noise, and so forth.

Based on the degradation model (1), HSI denoising obtains the original clear HSI
through observation data. Obviously, it is a serious ill-posed problem. Therefore, taking
advantage of the prior information of HSI, the regularized denoising framework can be
used to solve this problem. It can be presented in a concise form:

arg min
L,N ,S

rank(L) + λ1‖N‖2
F + λ2‖S‖1 s.t. X = L+N + S , (2)
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where rank(·) represents the rank of the tensor; λ1 and λ2 are regularization parameters.

2.4. DFT-Based Tensor Fibered Rank

As mentioned above, the low-rank prior is an essential part of the regularized denois-
ing framework. To represent rank(·) more accurately, the tensor fibered rank is proposed
in [5].

Definition 1 (DFT-based tensor fibered rank [5]). Given a tensor A ∈ Rn1×n2×n3 , the fibered
rank ofA is a vector, denoted as rank f (A), in which the kth element is the number of nonzero fibers

of Sk, where Sk comes from the SVD of Ak: Ak = Uk · Sk · VT
k .

The Definition 1 is based on the Fourier transform. In [5], the DFT-based characteriza-
tion of low-rankness in tensors played an important role in HSI denoising.

3. Proposed Model
3.1. Framelet-Based Tensor Fibered Rank and Corresponding Three-Modal TNN

Definition 1 is used to describe the rank of tensors, which characterizes the correlations
of different dimensions of HSIs flexibly. However, it is more important that the framelet
will bring in redundancy, which means the transformed tensor has a lower rank. As an
example, we use two datasets, which are the Pavia City Center dataset and the USGS
Indian pines dataset to compare the fibered rank after FFT transformation and framelet
transformation. Their sizes are 200× 200× 80 and 145× 145× 224, respectively. Since each
transformed tensor’s slice has numerous small singular values for real image data [28], we
only keep the singular values that are greater than the truncation parameter for discussion.
The result is shown in Table 1. The result shows that the transformed tensor via framelet
has a lower fibered rank than that via the Fourier transformation. As a result, we can
believe that using the framelet-based tensor rank to constrain low-rank prior will have a
better effect in HSI denoising.

Table 1. The mean value of fibered rank for three orders by using a different transform.

Data τ Transformation The First Mode The Second Mode The Third Mode

Pavia
0.04 FFT 78 78 188

Framelet 13 13 70

0.05 FFT 75 75 185
Framelet 10 10 65

Indian
0.04 FFT 16 16 106

Framelet 3 3 42

0.05 FFT 16 16 105
Framelet 3 3 40

Accordingly, we propose the new tensor fibered rank based on the framelet transform.
At first, similar to the previous notation, we denote the transformed tensor by the framelet
along the kth mode as:

Âk = WkAk,

where Wk ∈ Rwnk×nk is the framelet transform matrix. According to the unitary extension
principle (UEP) [39] property, we have Ak = WTÂk.

Then, we define the framelet-based tensor fibered rank.

Definition 2 (tensor fibered rank [5]). Given a tensor A ∈ Rn1×n2×n3 , the fibered rank of A is
a vector, denoted as rankF

f (A), whose kth element is the number of nonzero fibers of Ŝk, where Ŝk

satisfies Âk: Âk = Ûk · Ŝk · V̂T
k .
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To demonstrate the superiority of the representation for tensor low-rankness, we use
the Pavia City Center dataset to conduct some empirically numerical analyses. For the
frontal slices in each transformed tensor, we count the number of the singular values in each
magnitude interval. The ratio is shown in Figure 1. Compared with the original tensor and
the transformed tensor via FFT, we find that the singular values of the transformed tensor
via framelet are mostly gathered in the smaller interval, which means the transformed
tensor via framelet has a lower fibered rank than that via the Fourier transformation.

However, it is NP-hard to minimize the framelet-based tensor fibered rank. The
following framelet-based three-modal TNN (F-3MTNN) is defined as the convex relaxation
of the framelet-based tensor fibered rank.
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Figure 1. The distribution of singular values on each frontal slice of the two different transformed
tensors. (a) The first mode, (b) the second mode, (c) the third mode.

Definition 3. (F-3MTNN) The F-3MTNN of a tensorA ∈ Rn1×n2×n3 , denoted as ‖A‖F−3MTNN ,
is defined as:

‖A‖F−3MTNN :=
3

∑
k=1

wk‖A‖F
TNNk

,

where wk > 0(k = 1, 2, 3), ∑3
k=1 wk = 1 and ‖A‖F

TNNk
is the framelet-based kth-modal TNN of

A, defined as:

‖A‖F
TNNk

:=
wnk

∑
i=1
‖(Âk)

(i)‖∗,

where ‖· ‖∗ is the matrix nuclear norm and (Âk)
(i) is the ith third-modal slice of Âk, that is,

(Âk)
(i) = Âk(:, :, i).
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The F-3MTNN is a convex envelope of the l1 norm of the rankF
f (·). The HSI is low-rank

in both spatial and spectral dimensions. Based on this data characteristic, F-3MTNN has
the ability to explore the correlations along different modes flexibly and simultaneously.

3.2. Proposed Denoising Model

According to the advantages of the framelet-based tensor fibered rank, the HSI de-
noising model (2) is rewritten as:

arg min
L,N ,S

rankF
f (L) + λ1‖N‖2

F + λ2‖S‖1 s.t. X = L+N + S . (3)

As mentioned earlier, it is an NP-hard problem to minimize the tensor fibered rank.
Based on F-3MTNN, the proposed model (3) can be represented as:

arg min
L,N ,S

‖L‖F−3MTNN + λ1‖N‖2
F + λ2‖S‖1 s.t. X = L+N + S , (4)

that is,

arg min
L,N ,S

3

∑
k=1

wk‖Lk‖F
TNNk

+ λ1‖N‖2
F + λ2‖S‖1 s.t. X = L+N + S , (5)

where wk > 0(k = 1, 2, 3) and ∑3
k=1 wk = 1.

Unlike the traditional t-SVD using the Fourier transform, the proposed model uses
the framelet transform and explores the low-rank characteristics of HSI more accurately,
for the reason that the tensor fibered rank after the framelet transform is lower, and the
framelet transform has redundancy. In addition, F-3MTNN can maintain the advantage
in characterizing low-rankness as the convex approximation of the framelet-based tensor
fibered TNN.

3.3. Optimization Procedure

Based on ADMM, we introduce three auxiliary variables Zk(k = 1, 2, 3) to solve (5).
Then, we reformulate (5) as:

arg min
L,Zk ,N ,S

3

∑
k=1

wk‖Zk‖F
TNNk

+ λ1‖N‖2
F + λ2‖S‖1

s.t. X = L+N + S ,L = Zk, k = 1, 2, 3.

(6)

Based on the ALM method, we rewrite (6) as:

arg min
L,Z ,N ,S

3

∑
k=1
{wk‖Zk‖F

TNNk
+

µk
2
‖L −Zk‖2

F + 〈Yk,L−Zk〉}

+ λ1‖N‖2
F + λ2‖S‖1 +

β

2
‖X − (L+N + S)‖2

F

+ 〈M,X − (L+N + S)〉,

(7)

where Yk(k = 1, 2, 3) andM are the Lagrange multipliers; µk(k = 1, 2, 3) and β are the
penalty parameters. In the pth iteration, the solution of (7) in the p + 1th iteration can be
divided into the following subproblems:
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(a) The subproblem of L:

Lp+1 = arg min
L

3

∑
k=1
{µk

2
‖L −Z p

k ‖
2
F + 〈Yk,L−Z p

k 〉}

+
β

2
‖X − (L+N p + S p)‖2

F + 〈M,X − (L+N p + S p)〉

= arg min
L

3

∑
k=1

µk
2
‖L+

Yk
µk
−Z p

k ‖
2
F +

β

2
‖L+N p + S p −X − M

β
‖2

F.

(8)

Then, we have:

Lp+1 =
∑3

k=1 µk(Z
p
k −

Yk
µk
) + β(X + M

β −N
p − S p)

∑3
k=1 µk + β

. (9)

(b) The subproblem of Zk

Z p+1
k = arg min

Zk
wk‖Zk‖F

TNNk
+

µk
2
‖Lp+1 −Zk‖2

F + 〈Yk,Lp+1 −Zk〉

= arg min
Zk

wk‖Zk‖F
TNNk

+
µk
2
‖Zk −Lp+1 − Yk

µk
‖2

F.
(10)

Based on [40], we can obtain the result of (10) by the singular value shrinkage operator
as follows. The details are presented in Algorithm 1.

Z p+1
k = Dwk/µk

(Lp+1 +
Yk
µk

). (11)

Algorithm 1 Framelet-besed kth-modal singular value shrinkage operator.

Input: A ∈ Rn1×n2×n3 , τ, W ∈ Rwnk×nk , w and k
Output: Dτ(A)
1: Âk = WAk
2: for i = 1, ..., wnk do
3: [Û, Σ̂, V̂T ] = SVD(Âk

(i)
)

4: Âk
(i)

= Û · (Σ̂− τ)+ · V̂T

5: end for
6: Compute Dτ(A) = WTÂk.

(c) The subproblem of N

N p+1 = arg min
N

λ1‖N‖2
F +

β

2
‖X − (Lp+1 +N + S p)‖2

F + 〈M,X − (Lp+1 +N + S p)〉

= arg min
N

λ1‖N‖2
F +

β

2
‖N + Lp+1 + S p −X − M

β
‖2

F.

(12)
Then we have:

N p+1 =
β(X + M

β −L
p+1 − S p)

2λ1 + β
. (13)
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(d) The subproblem of S

S p+1 = arg min
S

λ2‖S‖1 +
β

2
‖X − (Lp+1 +N p+1 + S)‖2

F + 〈M,X − (Lp+1 +N p+1 + S)〉

= arg min
S

λ2‖S‖1 +
β

2
‖N p+1 + Lp+1 + S − X − M

β
‖2

F

= arg min
S

λ2‖S‖1 +
β

2
‖S − (X +

M
β
−Lp+1 −N p+1)‖2

F.

(14)
The optimization result can be immediately obtained as follows:

S p+1 = <λ2/β(X +
M
β
−Lp+1 −N p+1), (15)

where <λ2/β(·) is the soft-thresholding (shrinkage) operator in [41].
After solving the subproblems, the Lagrangian multipliers Yk(k = 1, 2, 3) andM can

be updated as follows:{
Y p+1

k = Y p
k + µ

p
k (L

p+1 −Z p+1
k )

Mp+1 =Mp + βp(X −Lp+1 − S p+1 −N p+1).
(16)

The solving algorithm can be acquired in Algorithm 2.

Algorithm 2 HSI Denoising via the F-3MTNN minimization.

Input: The observed HSI X ∈ Rn1×n2×n3 , wk(k = 1, 2, 3), λ1, λ2, ρ, τ and ε.
Output: The denoised HSI L
1: Initialize: L0 = N 0 = S0 = Z0

k , µk = β = 0, Yk =M = O, ρ = 1.2, ε = 10−6

2: Repeat until convergence:
Update Lp+1 by (9)
Update Z p+1

k by (11)
Update N p+1 by (13)
Update S p+1 by (15)
Update Y p+1 andMp+1 by (16)
Update µp+1 and βp+1: µp+1 = ρµp, βp+1 = ρβp; p = p + 1

3: Check the convergence conditions
max{‖Lp+1 −Lp‖∞, ‖X − Lp+1 −N p+1 − S p+1‖∞, ‖Lp+1 −Z p+1

k ‖∞} 6 ε

4. Experimental Results

To test the performance of our denoising model, the experiments were conducted on
two simulated datasets and two real datasets. For all the testing HSIs, we normalized them
to [0,1] band by band. To evaluate the performance of our model comprehensively, we
chose seven methods for the comparison: (1) LRTA [42]; (2) BM4D [12]; (3) LRMR [13];
(4) LRTDTV [43]; (5) L1HyMixDe [44]; (6) LRTDGS [45]; (7) 3DTNN [5]. Since the LRTA
and BM4D methods are only used to remove Gaussian noise, we pre-processed the datasets
by the RPCA restoration method before implementing them.

We set all parameters according to the original codes or authors’ suggestions in their
articles. The equipment included laptops of 16 GB RAM, Intel(R) Core(TM) i7-10750H
CPU, @ 2.60 GHz, with MATLAB R2017a.

4.1. Experiments on Simulated Datasets

In this subsection, we built and performed some experiments on two simulated
datasets, including a subimage of Pavia City Center dataset [46] (abbreviated as dataset-1),
the size of which was 200× 200× 80, and a subimage of USGS Indian pines dataset [47]



Remote Sens. 2021, 13, 3829 9 of 24

(abbreviated as dataset-2), the size of which was 145× 145× 224. Figure 2a,b lists the two
selected HSIs.

(a) (b)

Figure 2. (a) Pavia City Center dataset, (b) USGS Indian Pines dataset.

We choose three indices to measure the performance of the denoising models. They are
the mean of peak signal-to-noise rate (MPSNR), the mean of structural similarity (MSSIM),
and the spectral angle mapping (SAM).

To simulate the real situation as realistically as possible, we added several kinds of
mixed noise to the HSIs, consisting of Gaussian noise, impulse noise, deadline noise and
stripe noise in different levels, which made the result more descriptive and effective. We
made comparisons of both visual observation and quantitative indicators. Table 2 lists the
specific conditions of the intensity of various noises in eight noise cases:

Table 2. The details of the eight noise cases.

Noise Gaussian Noise Impulse Noise Deadline Noise Stripe Noise

Case 1 mean value = 0, variance = 0.1 percentage = 0.2 \ \

Case 2 mean value = 0, variance = 0.15 percentage = 0.2 \ \

Case 3 mean value = 0, variance = 0.1 percentage = 0.1 \ \

Case 4 mean value = 0, variance = 0.1 percentage = 0.3 \ \

Case 5 mean value = 0,
variance ∼ U(0.05, 0.15) percentage = 0.2 \ \

Case 6 mean value = 0,
variance ∼ U(0.1, 0.2) percentage = 0.2 \ \

Case 7 mean value = 0 percentage = 0.3 10% of the bands \
variance = 0.1 number ∼ U(1, 4) \

Case 8 mean value = 0 percentage = 0.3 10% of the bands 10% of the bands
variance = 0.1 number ∼ U(1, 4) number ∼ U(20, 40)

Note: The number means the number of deadling noise or stripe noise in a band.

4.1.1. Pavia City Center Dataset
(A) Visual Quality Comparison

We show some bands of the Pavia denoised results to reflect the visual advantages of
our model. We selected band 65 under the noise case 3 and band 60 under the noise case 8
for image display, which are shown in Figure 3. From Figure 3, one can see that, due to
noise pollution, the quality of the original HSIs has degraded to a large extent, as shown in
Figure 3a. Dealt with by different denoising methods, the image quality has been improved
to a certain extent. Obviously, the LRTA, BM4D, LRMR methods do not have a satisfying
effect on noise removal. LRMR is better than LRTA and BM4D. However, the image still
has a lot of visible noise. LRTDTV smoothes the image and blurs the details. L1HyMixDe
and LRTDGS are not ideal for edge texture processing. In Figure 3f, the loss of textural
information is obvious. The denoising effect of 3DTNN and our model is relatively good,
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but in terms of the restoration of the bright part, our model is clearly better than 3DTNN.
In Figure 4, the original image is added with Gaussian noise, sparse noise, dead line noise,
and stripe noise. Dealt with by different denoising methods, the LRTA, BM4D, LRMR
methods cannot achieve the efficient denoising results. LRTDTV still has the problem that
it loses the image details and smoothes the image. L1HyMixDe, LRTDGS and 3DTNN are
still insufficient in removing stripe noise. As a result, the denoising results of our method
are better than other denoised methods, which are chosen for visual comparison.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. (a) Original image, (b) noisy image, image denoised by (c) LRTA, (d) BM4D, (e) LRMR,
(f) LRTDTV, (g) L1HyMixDe, (h) LRTDGS, (i) 3DTNN, (j) ours of band 65 in dataset-1, noise case 3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. (a) Original image, (b) noisy image, image denoised by (c) LRTA, (d) BM4D, (e) LRMR,
(f) LRTDTV, (g) L1HyMixDe, (h) LRTDGS, (i) 3DTNN, (j) ours of band 60 in dataset-1, noise case 8.

(B) Quantitative Comparison

We choose MPSNR over all bands, MSSIM over all bands, and SAM to objectively
describe and compare image quality. It is clear that we need to ensure that MPSNR
and MSSIM are large enough and that SAM is small enough, which means a superior
denoising performance.

Under the different eight noise cases, Table 3 shows the values of indices of eight
denoising methods for quantitative assessment in dataset-1. We overstrike the best values
of each index to emphasize them. It can be seen that, on almost all indices, the proposed
model has a better performance than the other comparable methods. Under strong noise,
this phenomenon is particularly noticeable. Taking the MPSNR in case 3 as an example,
compared with 3DTNN, our model is 1 dB higher than 3DTNN. In case 5, this value is as
high as 1.8 dB. The PSNR and the SSIM for all denoised bands are listed in Figures 5 and 6.
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As a result, compared to other methods, the proposed model has a better performance in
PSNR and SSIM values in most denoised bands.

Figure 7 shows the spectral curves at pixel (30, 30) denoised by all denoising methods
in noise case 5. It is clear that, due to the noise, spectral curves fluctuate violently, and
then the fluctuation amplitude is depressed after denoising by various methods. What
is more, it is obvious that, in our denoised HSI, the spectral curves have fewer spectral
distortions. Thus, in all the chosen methods, from the perspective of removing mixed noise,
the proposed model obtains excellent denoising results.

Table 3. The value of quantitative indices in the dataset-1.

Noise
Case Level Evaluation

Index LRTA BM4D LRMR LRTDT L1HyMixDe LRTDGS 3DTNN Our

Case 1
MPSNR 29.4396 29.7014 31.2593 32.2970 32.9077 33.2535 32.1996 32.9243

G = 0.1 MSSIM 0.9048 0.9203 0.9045 0.9138 0.9177 0.9253 0.9307 0.9256
P = 0.2 SAM 6.8049 5.8404 6.8244 4.9305 4.4064 4.3546 3.4856 3.7368

Case 2
MPSNR 27.0258 27.4204 29.0133 30.1107 30.6235 30.9044 29.8947 30.9274

G = 0.15 MSSIM 0.8480 0.8787 0.8494 0.8669 0.8745 0.8833 0.8854 0.8857
P = 0.2 SAM 7.8247 6.6710 7.6899 5.8480 4.9587 5.4792 4.2935 4.4098

Case 3
MPSNR 30.2658 30.3936 32.3389 33.1557 34.3770 34.2453 32.9942 33.9806

G = 0.1 MSSIM 0.9190 0.9281 0.9237 0.9267 0.9421 0.9374 0.9423 0.9477
P = 0.1 SAM 6.4482 5.5052 6.4019 4.6077 3.5472 4.0836 3.1475 3.6220

Case 4
MPSNR 28.4836 28.8640 30.1731 31.1878 32.1109 31.9825 31.1434 32.1440

G = 0.1 MSSIM 0.8868 0.9098 0.8814 0.8972 0.9068 0.9057 0.9088 0.9099
P = 0.3 SAM 7.2045 6.2362 7.2500 5.3489 4.7865 5.4171 4.3108 4.1209

Case 5
MPSNR 28.9336 29.1991 30.4432 31.6456 33.2988 33.5211 32.1036 33.8946

G = (0.05,0.15) MSSIM 0.9003 0.9161 0.8880 0.9062 0.9283 0.9293 0.9293 0.9302
P = 0.2 SAM 7.1954 6.0548 7.1967 5.2504 4.2118 4.2629 3.6644 3.8739

Case 6
MPSNR 26.0073 26.4507 28.0358 29.0656 30.0129 30.8340 29.9707 30.7688

G = (0.1,0.2) MSSIM 0.8239 0.8621 0.8188 0.8452 0.8640 0.8808 0.8859 0.8777
P = 0.2 SAM 8.3887 6.9711 8.1535 6.4062 5.5859 5.5074 4.5080 4.2183

Case 7
G = 0.1 MPSNR 28.4375 28.8168 30.1479 31.1278 32.1303 31.9213 30.9232 32.1686
P = 0.3 MSSIM 0.8863 0.9095 0.8812 0.8951 0.9108 0.9079 0.9123 0.9167

+deadline SAM 7.2212 6.2393 7.2828 5.3694 6.6968 6.7940 5.2777 4.1205

Case 8
G = 0.1 P = 0.3 MPSNR 28.3902 28.7718 30.0586 31.0073 31.9432 31.8225 30.2764 32.0232

+deadline MSSIM 0.8852 0.9088 0.8798 0.8939 0.9075 0.9068 0.9027 0.9063
+stripe SAM 7.2192 6.2496 7.3609 5.6445 6.9130 7.1390 5.7186 4.3586

The best is in bold.
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Figure 5. The PSNR values of each band in dataset-1 after denoising by eight different methods
under (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 5, (f) case 6, (g) case 7, (h) case 8.
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Figure 6. The SSIM values of each band in dataset-1 after denoising by eight different methods under
(a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 5, (f) case 6, (g) case 7, (h) case 8.
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Figure 7. The reflectance of pixel (30, 30) in (a) noisy dataset-1, dataset-1 denoised by (b) LRTA,
(c) BM4D, (d) LRMR, (e) LRTDTV, (f) L1HyMixDe, (g) LRTDGS, (h) 3DTNN, (i) ours under noise
case 4.

4.1.2. USGS Indian Pines Dataset

Based on the result in dataset-1, we compare the denoising performance of our method
and the method we want to improve under eight noise conditions in dataset-2. Then, the
visual comparison of the denoising effect of 3DTNN and the proposed model under the
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third and sixth noise conditions are shown in Figures 8 and 9. From the figure, we can see
that our model is better than 3DTNN for the processing of details.

(a) (b) (c) (d)
Figure 8. (a) Original image, (b) noisy image, image denoised by (c) 3DTNN, (d) ours of band 26 in
the dataset-2, noise case 2.

(a) (b) (c) (d)
Figure 9. (a) Original image, (b) noisy image, image denoised by (c) 3DTNN, (d) ours of band 4 in
the dataset-2, noise case 5.

We also compare the quantitative indices to appraise the denoising effect in the dataset-2.
The indices for quantitative assessment are listed in Table 4. The boldface means the best
values. For almost all indices, our model is more effective at denoising than 3DTNN. Under
strong noise, this phenomenon is particularly noticeable. Subsequently, the values of the
PSNR and the SSIM are listed in Figures 10 and 11. It is clear that our model has obvious
advantages under higher noise intensity. For all the denoising methods we used in noise case
4, the spectral curves at pixel (100,30) are shown in Figure 12. One can find that the HSI dealt
by our model has fewer spectral distortions, compared with 3DTNN.
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Figure 10. The PSNR values of each band in the dataset-2 after denoising by 3DTNN and our model
under (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 5, (f) case 6, (g) case 7, (h) case 8.
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Figure 11. The SSIM values of each band in the dataset-2 after denoising by 3DTNN and our model
under (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 5, (f) case 6, (g) case 7, (h) case 8.
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Figure 12. The reflectance of pixel (100,30) in the dataset-2 denoised by (a) 3DTNN and (b) ours
under noise case 3.

Table 4. The value of quantitative indices in the dataset-2.

Noise
Case Level MPSNR 3DTNN

MSSIM SAM MPSNR Our
MSSIM SAM

Case 1 G = 0.1 30.9073 0.9050 2.7583 32.1435 0.8964 2.7254P = 0.2

Case 2 G = 0.15 28.5602 0.8697 3.5259 31.3247 0.9013 2.5945P = 0.2

Case 3 G = 0.1 31.6945 0.9185 2.5888 33.6358 0.9170 2.2334P = 0.1

Case 4 G = 0.1 29.7186 0.8931 2.8884 32.5633 0.9080 2.3556P = 0.3

Case 5 G = (0.05,0.15) 31.2729 0.9089 2.6462 33.7245 0.9329 2.1341P = 0.2

Case 6 G = (0.1,0.2) 28.7189 0.8699 3.5476 31.2484 0.9076 2.6554P = 0.2

Case 7 G = 0.1 P = 0.3 29.9070 0.8747 3.1159 32.7050 0.9274 2.2178+deadline

Case 8 G = 0.1 P = 0.3 29.7521 0.8653 3.2478 32.5152 0.9256 2.3006+deadline +stripe
The best is in bold.
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4.2. Experiments on Real Datasets

We chose the AVIRIS Indian Pines dataset [48] (abbreviated as dataset-3) and the
HYDICE Urban dataset [49] (abbreviated as dataset-4) as the real datasets to design and
perform experiments, which are shown in Figure 13. Dataset-3 was collected by the
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) over the Indian Pines in North-
western Indiana in 1992. Its size was 145× 145× 220. Dataset-4 was acquired by the Hydice
sensor, the size of which was 307× 307× 210.

(a) (b)

Figure 13. (a) AVIRIS Indian Pines dataset, (b) HYDICE Urban dataset.

4.2.1. AVIRIS Indian Pines Dataset

To display the effect of various denoising methods, we chose bands 106 and 163 of the
denoised images to show in Figures 14 and 15. The original image has been completely
polluted by mixed noise, which is shown in Figures 14a and 15a. After denoising, the
denoising effect of LRTA, BM4D, and LRMR was incomplete, and there were still many
visible noises. LRTDTV, L1HyMixDe, LRTDGS and 3DTNN could mainly remove the
mixed noise. However, LRTDTV, L1HyMixDe and LRTDGS made the image too smooth,
which led to the details, shown in red boxes, being seriously degraded. 3DTNN did not
have a good effect on fringe noise. As a result, our model has the best performance in
maintaining complete texture information, at the same time, depressing the mixed noise.

(a) (b) (c)

(d) (e) (f)
Figure 14. Cont.
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(g) (h) (i)
Figure 14. (a) Original image, image denoised by (b) LRTA, (c) BM4D, (d) LRMR, (e) LRTDTV,
(f) L1HyMixDe, (g) LRTDGS, (h) 3DTNN, (i) ours of band 106 in dataset-3.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 15. (a) Original image, image denoised by (b) LRTA, (c) BM4D, (d) LRMR, (e) LRTDTV,
(f) L1HyMixDe, (g) LRTDGS, (h) 3DTNN, (i) ours of band 163 in dataset-3.

4.2.2. HYDICE Urban Dataset

Similar to dataset-3, we also chose two typical noise bands of dataset-4 to display the
effect of various denoising methods. Bands 104 and 109 of the denoised images are shown in
Figures 16 and 17. As shown in Figures 16 and 17, all methods can remove most of the mixed
noises and restore the image structure. However, the images denoised by LRTA, BM4D and
LRMR still preserve some part of the noise. LRTDTV and L1HyMixDe oversmooth the image.
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LRTDGS and 3DTNN have limitations on fringe noise. Compared with these methods, our
method performs the best at removing noise while at the same time preserving details.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 16. (a) Original image, image denoised by (b) LRTA, (c) BM4D, (d) LRMR, (e) LRTDTV,
(f) L1HyMixDe, (g) LRTDGS, (h) 3DTNN, (i) ours of band 104 in dataset-4.

(a) (b) (c)
Figure 17. Cont.
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(d) (e) (f)

(g) (h) (i)
Figure 17. (a) Original image, image denoised by (b) LRTA, (c) BM4D, (d) LRMR, (e) LRTDTV,
(f) L1HyMixDe, (g) LRTDGS, (h) 3DTNN, (i) ours of band 109 in dataset-4.

4.3. Ablation Experiment

To investigate the necessity of exploring the low-rankness of three modes in F-MTNN,
we conducted several ablation studies. We took dataset-1, noise case 3 as an example. By
setting ω(ω = (ω1, ω2, ω3)), we made the model explore low-rank information only along
spatial or spectral dimensions, compared with the result of F-3MTNN. We show the values
of PSNR and SSIM in Table 5. The proposed model, which explores the low-rankness of
both spatial and spectral dimensions at the same time, can achieve the most efficient results.

Table 5. The ablation experiment of F-3MTNN.

Spatial Information Spectral Information PSNR SSIM

X 21.7398 0.3938
X 25.8850 0.7504

X X 30.9274 0.8857
The best is in bold.

5. Discussion
5.1. Parameter Analysis

We develop a sensitivity analysis of the parameters used in our method including
the weight ω (ω = (ω1, ω2, ω3)), the regularization parameters λ1, λ2, and the threshold
parameter τ = ω/µ. For each parameter, data in three cases of the experiment on dataset-1
are randomly selected for display.

The weight ω is set as (1, 1, θ)/(2 + θ), which controls the proportion of each mode
correlation of HSI, where θ is a balance parameter to control ω. We can find the appropriate
weight ω easily. Figure 18a presents the sensitivity analysis of θ. According to Figure 18a,
when θ > 35, the PSNR value in our method is nearly stable.

The regularization parameters λ1, λ2 control the weight of Gaussian noise and sparse
noise respectively. The sensitivity analysis of λ1, λ2 is shown in Figure 18b,c. For the λ1,
when λ1 > 0.04, the PSNR value in our method is nearly stable. However, as observed, it
is sensitive to λ2. It especially achieves the highest PSNR value when λ2 = 0.007.

We choose the threshold parameter τ as ψ× (1, 1, 1). Figure 18d shows the sensitivity
analysis of ψ. We find that, when ψ > 40, the MPSNR values maintain a high level and,
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when ψ < 40, the recovery effect is not satisfactory. The main reason is that noise occupies
a larger proportion of small singular values, and too little shrinkage parameter will result
in incomplete noise removal.
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Figure 18. PSNR values concerning different values of (a) θ (controls ω), (b) λ1, (c) λ2 and (d) ψ

(controls τ).

5.2. Convergence Analysis

The change of MPSNR and MSSIM values as the number of iterations increases is
shown in Figure 19. From the figure, we can observe that, after several iterations, the values
of these two indicators become stable by degrees, which means our algorithm is convergent.
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Figure 19. The change of (a) MPSNR value, (b) MSSIM value with the iteration.

5.3. Running Time

The running time is shown in Table 6, which measures the efficiency of all denoising
methods used in this paper. The proposed model focuses on the improvement of accuracy.
At the same time, due to the redundancy of the framelet, the running time will inevitably
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increase. However, it can be improved in terms of computing time. For each iteration,
the parallel processing can be used in the calculations of three modes, which will greatly
improve computational efficiency. This is also an improvement that needs to be considered
in future work.

Table 6. The running time (in seconds) of the different methods in the real HSI dataset experiments.

HSI Data LRTA BM4D LRMR LRTDTV L1HyMixDe LRTDGS 3DTNN our

AVIRIS Indian Pines 35 261 412 131 4 123 87 1259
HYDICE Urban 143 4076 6132 960 7 811 1503 6602

6. Conclusions

In this paper, we first use the framelet to define the framelet-based tensor fibered rank,
which is more conducive to the accurate exploration of the global low-rankness of tensors.
Furthermore, we develop the F-3MTNN as its convex approximation, which means that the
information of each dimension of HSI is fully explored. Then, F-3DTNN is applied in a new
denoising model. Finally, to compute this convex model with guaranteed convergence, we
create a fast algorithm based on ADMM. By comparing with the latest competing methods,
including LRTA, BM4D, LRMR, LRTDTV, L1HyMixDe, LRTDGS and 3DTNN, our model
has the ability to remove mixed noise effectively and to retain necessary details.

The method we proposed provides a more accurate characterization of the low-rankness
of tensors; however, long CPU time leads to poor applicability in applications. In follow-up
research, we will adopt parallel computing and other forms to improve the universality of
model applications. In addition, the model can also be applied to data processing tasks such
as image deblurring, image compression and super-resolution reconstruction.
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