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Abstract: Radar data are essential to convection nowcasting and nudging-based radar data assimila-
tion through diabatic initialization is one of the most effective approaches for forecasting convective
systems with numerical weather prediction (NWP) models, used at several advanced global weather
centers. It is desired to assess the uncertainty and physical consistency of this assimilation process.
This paper investigated impacts of relaxation coefficient, radar data update intervals and continuous
assimilation time duration and addressed the key issues and possible solutions of the radar data
assimilation based on the WRF hydrometeor and latent heat nudging (HLHN) developed at the
National Center for Atmospheric Research (NCAR). It is revealed that excessively large relaxation
coefficient forced the model to observations with a tendency greater than the physical terms of the
convection, causing the dynamic imbalances and serious convection “ramp-down” right after the
free forecast starts. Assimilating high update frequency radar data can make the tendency terms
moderate and sustained thereby maintaining the assimilation effect and reducing fortuitous con-
vection. HLHN requires a minimum continuous assimilation duration to contain the initial forced
disturbance of the model. For a summer Meiyu precipitation case studied, the minimum duration is
~1 h. Appropriate selection of the HLHN parameters is able to effectively improve the temperature,
humidity, and dynamic fields of the model. In addition, several issues still remain to be solved to
further enhance HLHN.

Keywords: convection nowcasting; radar data assimilation; hydrometeor and latent heat nudging;
WRF-FDDA

1. Introduction

Convection is one of the most unstable chaotic and nonlinear components of atmo-
spheric processes, and convection nowcasting has always been a hot and challenging
research topic in meteorological research and operations. Traditional, nowcasting is usually
considered to use the previously initiated model forecast or reanalysis data as a background,
combined with observational information from different measurements, using a variety of
methods to quickly forecast the weather conditions from the current moment to several
hours later [1].

In the past few years, advances in weather radar observation techniques have led to
valuable progress in methods based on numerical weather prediction (NWP) and radar
echo extrapolation [2–4]. At present, weather radar is the only instrument that perform
frequent and refined sampling of convective storms. But developing an accurate method
to assimilate the radar observation into numerical models remains a difficult task [5].
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Firstly, there are large uncertainties with the radar detection accuracy, formulation of
forward operators, and/or cloud hydrometeors and latent heat retrieving. Although radars
provide spatiotemporally high-resolution observations, at present, the assimilation of the
refined detection data does not necessarily result in more accurate forecasts. The rapid
growth of the small-scale errors, coupled with pre-existing large-scale errors may limit
the effectiveness of such methods [6,7]. Secondly, it is inevitable to lose some small-scale
precipitation information in the process of radar quality control and data upscaling to
model grids. Therefore, it is necessary to improve the atmospheric thermodynamics and the
microphysical fields at the same time during radar data assimilation to maintain the model
dynamical and physical consistencies [6]. Finally, although weather radars allow measuring
clouds in very high resolution, the occlusion of ground objects, non-meteorological echo
and incomplete detection coverage often result in a lack of data in some spaces.

Since the 1990s, many data assimilation methods have been developed, including
three-dimensional variational data assimilation (3D-VAR) [8–11], four-dimensional varia-
tional data assimilation (4D-VAR) [12–15], ensemble Kalman filter (EnKF) [16–18], New-
tonian relaxation-based nudging method [19–21] and hybrid assimilation that combines
variational and ensemble Kalman filtering (even hybrid methods including radar extrap-
olation techniques) [22–24]. These methods have been tested for radar data assimilation
and showed encouraging impacts. However, there are still many problems that have not
been solved.

In 3D-VAR technologies, a three-dimensional balance constraint that is imposed dur-
ing minimization of the cost function often does not adequately represent the internal
and peripheral balance of convection, or the consistency among the dynamical and ther-
modynamic state of convective storms. Therefore, the storms initialized with radar data
assimilation often cannot be sustained in the model forecast [4]. In addition, the back-
ground error covariance required by 3D-VAR is typically assumed to be stationary, nearly
homogeneous, and isotropic, and therefore cannot properly reflect the characteristics of
a particular storm [25]. 4D-VAR relies on complex adjoint of atmospheric dynamical
and physical equations. It requires massive calculation and thus limits its operational
applications [12]. Meanwhile, the model errors are relatively larger at convection scales
and convection systems evolve very fast, the linearity assumption required by 4D-VAR
subjects to violation in many situations. The hybrid assimilation of variational and radar
extrapolation effectively prolongs the forecast lead time, but due to the different weighting
methods, the forecasting effect for different weathers is not stable [22]. Recently, several
studies applied ensemble Kalman filter (EnKF) for radar data assimilation. EnKF makes
use of a set of short-term ensembles to estimate the background error covariance, and then
performs Kalman Filter to update the analysis and its error covariance [16]. EnKF is able
to exploit flow-dependent background error covariances, but the effect of EnKF highly
depends on the effectiveness of ensemble members in the representation of the convection
and the errors, both of which contains large uncertainties. In fact, formulating high-quality
model ensembles is one of the major research foci on EnKF. Recent studies have shown
that variational and EnKF hybrid assimilation methods present a promising direction for
future improvements in convective scale prediction of NWP [26,27].

Different data assimilation methods for convective-scale NWP have been adopted
by major operational weather centers worldwide. Although variational and Kalman fil-
tering methods have been adopted for assimilating general data, most centers continue
to employ nudging technology to provide convection initialization. For nudging tech-
nology, the observation-based forcing tendency terms are introduced into the model and
the observation information is digested by the model dynamics and physics during the
process of forward integration, effectively interacting with the model dynamic, thermal,
and microphysical variables. This method is a highly cost-effective way to promote the
generation of mesoscale convective structures in areas where precipitation is continuously
observed. National Oceanic and Atmospheric Administration (NOAA) and National Cen-
ters for Environmental Prediction (NCEP) in the United States currently executes two NWP
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systems to provide high-resolution convection-permitting forecasts for the United States,
namely CONtiguous United States nest of North American Mesoscale system (CONUS-
NAM) and High-Resolution Rapid Refresh system (HRRR). Both use hybrid 3DEnVAR
technology to assimilate various data except for radar data which are assimilated by using
a non-variational cloud analysis and a latent heat tendency derived from radar reflectivity
factor (also called reflectivity: Z or ZH). For each forecast cycle, the initialization process
lasts for 6 (or 1)-h, and then a 60 (or 18)-h continuous forecast is issued [11,28].

Similarly, in Europe, the United Kingdom Met Office employs 3DVAR and 4DVAR for
data assimilation with its global and limited regional models, but the precipitation rate and
radar data are added into the model through latent heat nudging (LHN) technology [29,30].
Deutscher Wetter Dienst (DWD) introduced an assimilation system based on Local Ensem-
ble Transform Kalman Filter (LETKF) to the consortium for small scale modeling (COSMO)
in 2016 and applies LHN derived from radar precipitation rate to initialize each ensemble
member [21,31]. In addition, COSMO-DE (initially named LMK), a COSMO-based short-
term forecasting system that focuses on convection scales, also uses the LHN technology
to assimilate the latent heat derived from the surface precipitation. This algorithm con-
siders the horizontal drift of falling hydrometeors and the latent heating time-lag, which
significantly improves the forecast of short-term convection. In Canada, Environment
and Climate Change Canada (ECCC) made use of LHN technology for large-area radar
assimilation experiments over North America, and established a quality factor for radar
reflectivity to reduce the representative error of radar data assimilation [32]. In Italy, the
nudging technology based on humidity profile has also been tested in the Bologna Limited
Area Model (BOLAM). As a result, the precipitation forecast in the Mediterranean area
continues to show a significant improvement 10 h after the assimilation ends [33].

WRF-FDDA is a four-dimensional data assimilation scheme [34,35] based on the
Newtonian relaxation principle. This scheme introduces artificial tendency terms into
the model and gradually “nudge” the model towards the observations. Each observation
has an influence radius, a time window, and a relaxation coefficient specified by the user.
These determine where, when, and what extent the observation affects the model state,
and generates an effective model analysis. On this basis, NCAR has developed a real-
time four-dimensional data assimilation and short-term forecasting system RTFDDA that
assimilates diverse observations into WRF for real-time rapid-update weather prediction
on multi-scale mesoscale grids. The system adds the ability to assimilate radar reflectivity,
that is, nudge hydrometeors and the latent heat (HLHN) retrieved from the reflectivity
to the WRF hydrometeor and temperature prognostic equations for 4D continuous data
assimilation. The system has been evaluated [36,37], and has proven a consistent positive
impact in forecasting convection up to 9–12 h ahead.

One limitation of the nudging approach is that it relies on the empirical relationship be-
tween hydrometeor variables and radar reflectivity and a number of empirical assimilation
parameters which requires careful evaluation and adjustments. In addition, hydrometeor
nudging requires modifying the latent heat and/or water vapor to account for the diabatic
effect and the dynamical and physical consistency among different model state variables.
Despite these limitations, nudging based on diabatic initialization is, at present, still the
most effective, efficient, and practical method for radar reflectivity and precipitation data
assimilation for local short-term convective storm forecasting.

This paper aims at understanding and addressing several issues that have long been
controversial with respect to the diabatic initialization method for radar data assimilation
to maximize the performance of the process of assimilation. In particular, we quantitatively
investigated the impact of the control parameters on HLHN, including the influence
of relaxation coefficient on “ramp-down” issue, and the influence of radar data update
intervals and continuous assimilation time duration for the forcing tendency. By selecting
a typical Meiyu front precipitation event in Eastern China occurred in the summer of 2020,
the forecast sensitivity and the model thermodynamic and dynamic response of these
parameters were studied by conducting three sets of extensive sensitivity experiments.
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For the purpose of isolating the contribution of the individual factors, a large number of
“observing system simulation experiments” (OSSEs) were also designed. Thereafter, the
experiment obtained the highest forecast scores from the sensitivity experiments studied,
was run to evaluate the ability of HLHN in improving the model convective storm clouds
as well as temperatures, water vapor and winds.

In Section 2, we introduce the HLHN scheme, experimental configuration and some
improvements to the radar reflectivity inversion for the hydrometeors and the calculation
of forcing tendency terms. Section 3 briefly reports the assimilation effect in a simulation of
the convective precipitation process using actual radar data. In Section 4, the results of the
three sets of sensitivity experiments with different relaxation coefficients, radar data update
intervals and continuous assimilation duration are analyzed and use the experiment with
the highest forecast score to evaluate the assimilation effect. The conclusions and outlook
are presented in Section 5.

2. Methodology and Experiment Design
2.1. Deriving Hydrometeors from Radar Reflectance Factor

WRF-FDDA uses the hydrometeor and latent heat nudging (HLHN) scheme to as-
similate the radar reflectivity. HLHN is grid-based nudging scheme implemented in
four-dimensional model state space along the model time integrations. In the process of
observational nudging, the tendency term is first calculated from the difference between
the observation and the model at the grid point (i.e., observation innovation), and then
applied to the model equations during a time window around the observation time. The
official WRF-FDDA HLHN scheme only retrieves two categories of precipitation particles,
either rain or snow at a grid point, from radar reflectivity. Since most of the microphysical
schemes available in WRF contain explicit predictions of ice crystals, snow, graupel, rain
drops and cloud-droplets, it is beneficial to refine the radar reflectivity retrieving algorithm
to obtain hydrometeor composition on the grid.

In HLHN, the radar data are interpolated on the model grids of each domain. In this
study, regions with reflectivity less than 5 dBZ is judged as no-weather echo. The radar
reflectivity is the logarithmic form of the equivalent radar reflectivity factor:

Z = 10log10

(
Ze

1 mm6m−3

)
(1)

The equivalent reflectivity factor Ze, is made up of four components:

Ze = Zer + Zes + Zeh + Zeg (2)

where Zer, Zes, Zeh and Zeg are the contributions from rain, snow, hail and graupel. In
the present research, we made improvements to the radar-based hydrometeor retrieval
scheme according to Tong and Pan [17,38]. Firstly, the method of Albers et al. (1996) [39] is
used to diagnose rain, snow and hail particles on the model three-dimensional grids with
some modifications. Briefly, the reflectivity factor in each vertical grid column is inspected
from the top grid point downwards and precipitate begins as snow if the echo top is in air
colder than 0 ◦C, otherwise it starts as rain. As we track down the precipitate through radar
echoes, if the ambient temperature is between 0 and 1.3 ◦C and there is already precipitate
above this checking point diagnosed as rain, the precipitate will be diagnosed as rain,
otherwise it will be diagnosed as wet snow. The reason for the melting threshold that is
set to be slightly higher than 0 ◦C is to consider of the time lag for the snow to completely
melt. If the precipitate once again falls into a layer below 0 ◦C, it becomes freezing rain.
To diagnose hail, a simple threshold of >45 dBZ radar reflectivity is used. After that, we
added the diagnosis of graupel based on the research of Lerach et al. (2010) [40]. When
the previous diagnosis result satisfies one of the following conditions, the grid point
precipitate is diagnosed as graupel: (i) The type of hydrometeor is pre-determined as snow,
the reflectivity is between 32 and 41 dBZ, and the ambient temperature is below 0 ◦C;
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(ii) The type of hydrometeor is pre-determined as freezing rain, the reflectivity is between
41 and 54 dBZ, and the ambient temperature is below 0 ◦C; or (iii) The type of hydrometeor
is pre-determined as hail if the reflectivity is between 41 and 54 dBZ, and the ambient
temperature is below 0 ◦C. Accordingly, the reflectivity threshold to be used to identify hail
is now set to 54 dBZ instead of 45 dBZ. After completing the classification of hydrometeor
on the three-dimensional grid, the mixing ratio of the different hydrometeors detected by
the 10 cm wavelength Doppler radar can be obtained by the formula showed in Table 1.

Table 1. The hydrometer water mixing ratio diagnosed from radar reflectivity.

Hydrometeor Mixing Ratio Intercept Parameter N0(m−4) Density ρ(kg m−3)

Rain qr =
(

Zerπ1.75 N0.75
0r ρ1.75

r
1018×720ρ1.75

)4/7
8.6 × 106 1000

Snow qs =
(

Zesπ1.75K2
r N0.75

0s ρ2
i

1018×720K2
i ρ1.75ρ0.25

s

)4/7
3.8 × 106 100

Hail
qh =[

Zeh
ρ1.6625

(
π1.75 N0.75

0h ρ1.75
h

1018×720

)0.95]0.6163 8.0 × 104 913

Graupel
qg =[

Zeg

ρ1.6625

(
π1.75 N0.75

0g ρ1.75
g

1018×720

)0.95
]0.6163 8.6 × 105 400

ρ(kg m−3) is the density of air calculated by ρ = P/RT, where P(pa) is pressure, T(K) is ambient temperature and R is specific gas constant
for dry air as 287.05 J/(kg K). K2

i = 0.176 is the dielectric factor for ice while K2
r = 0.93 is the dielectric factor for water.

In the current radar data assimilation scheme, dry snow versus wet snow, and drain
versus freezing rain are not distinguished when calculating the mixing ratio. Since the
Thompson microphysical parameterization scheme was used in this study, which does not
contain the hail variable, the diagnosed hail was classified as graupel or rain according to
the ambient temperature. It is noted that the current algorithm only identifies one kind of
hydrometeor types at each three-dimensional grid points. We will extend the algorithm to
take account of the mixing existence of different hydrometeor types in future.

2.2. Hydrometeor and Latent Heat Nudging (HLHN)

Newtonian-Relaxation or nudging method adds artificial tendency terms based on
difference between a model and an observation state to one or more model prediction
equations, which relaxes the model state toward the observation state [41].

In WRF-FDDA, the hydrometeor mixing ratio Qx calculated from radar reflectivity
factor is used to calculate the nudging tendency terms, and the corresponding latent
heat change term is also added to the thermal equation. The simplified equations for the
nudging scheme can be written as follows:

∂Qx

∂t
= SQx + G·wxy·wz·Qanls

x

(
wt, Qobsold

x , Qobsnew
x , Qmod

x

)
(3)

∂T
∂t

= ST + w·∑ Lx∆Qx

Cp
(4)

∆Qx = G·wxy·wz·Qanls
x

(
wt, Qobsold

x , Qobsnew
x , Qmod

x

)
(5)

where Qx

(
Qanls

x , Qobsold
x , Qobsnew

x , Qmod
x

)
is the mixing ratios of rainwater, snow, hail and

graupel. Qanls
x is the analysis value of Qx, Qobsold

x and Qobsnew
x are the close observations

before and after the current moment, Qmod
x is the model state variable. SQx is the source of

mixing ratio from physical processes (microphysical conversion processes, land surface
moisture flux, mixing, diffusion, etc.), ST is the source of air temperature from physical
processes (latent heating, sensible heating, etc.). The relaxation coefficient G determines
the relative magnitude of the nudging tendency terms. It is noted that on one hand, one
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wishes to apply a relatively large G to effectively force the model state toward the observed.
On the other hand, one must avoid of introducing excessive disturbances to the model.
Thus, the value of G should be properly examined and determined. wxy, wz and w are the
nudging weighting coefficients of horizontal and vertical space, and latent heat tendency
term, respectively. Since the radar reflectivity is interpolated on to the model grids, the
spatial influence radius is limited to the action model grid, i.e., wxy, wz are set to 1 at
the assimilation grid points and 0 for all others. Lx is the specific latent heat, and Cp is
the specific heat of air at constant pressure. wt is the temporal weighting, accounting
for the time inconsistency between the observation and the model integration time. The
observations before and after the current time are used to calculate the tendency terms.

It should be noted that when a radar detects the echo, the precipitation cloud associ-
ated with it has been developed and the latent heat has already been released. Therefore,
the temporal weighting coefficient is designed to reach a maximum at the moment of
radar detection and decreases immediately thereafter. The temporal weighting coefficient
changes in the assimilation window as shown in the Figure 1.

Figure 1. Temporal weighting coefficient for assimilation of radar observations. t1OBS, t2OBS, and
t3OBS mark the observation time and the color shades are temporal weighting corresponding to the
observation in the same color.

The goal of radar data assimilation is to promote precipitation clouds that the model
has failed to produce, and also to suppress factitious echoes and excessive water vapor
developed in the model. To contain the factitious convection, ∆Qx is processed separately.
First of all, cleanly separating zero-echo and missing-data areas is crucial. Thus, during the
process of interpolating radar data onto the model grid points, the position information for
each grid point is marked. If the grid point is within the radar detection range, it is marked
as 1, otherwise it is 0. The value of Qanls

x is specified according to the following rules:

(i) A grid is marked as 0:

Qanls
x

(
wt, Qobsold

x , Qobsnew
x , Qmod

x

)
= 0 (6)

(ii) A grid is marked as 1, both Qobsold
x and Qobsnew

x are 0:

Qanls
x

(
wt, Qobsold

x , Qobsnew
x , Qmod

x

)
= 0 − Qmod

x (7)

(iii) A grid is marked as 1, One of Qobsold
x or Qobsnew

x is 0:

Qanls
x

(
wt, Qobsold

x , Qobsnew
x , Qmod

x

)
=

Qobsold
x

(
or Qobsnew

x

)
2

− Qmod
x (8)

(iv) A grid marked as 1, both Qobsold
x and Qobsnew

x are not 0:

Qanls
x

(
wt, Qobsold

x , Qobsnew
x , Qmod

x

)
= Qobsold

x ·(1 − wt) + Qobsnew
x ·wt − Qmod

x (9)
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2.3. Model Configuration and Weather Case Description

The FDDA version used in this study is based on the Weather Research and Forecasting
model (WRF), version 4.1.3. The model is configured with two nested-grid domains at 15-
and 3-km horizontal grid spacings, respectively. The model domains and terrain height
are shown in Figure 2. The Thompson microphysical parameterization scheme [42] is
used in the two domains, and the Grell-Freitas cumulus parameterization scheme [43] is
used in the 15-km coarse-grid domain and no cumulus scheme is activated in the 3-km
fine-grid domain. The other physical parameterization schemes are the same in the two
domains, including Yonsei University PBL physics scheme [44], RRTMG longwave and
shortwave radiation scheme [45], Unified Noah land surface scheme, and revised MM5
Monin-Obukhov surface layer scheme [46]. The model initial and boundary conditions are
driven from the NCEP-GFS data.

Figure 2. Configuration of the model parent domain (D01: 15-km) and the nested domain
(D02: 3-km) for the case study. Terrain heights (units: m) are shown in colored shades.

A Meiyu-front precipitation event occurred in the Eastern China on 27–28 June 2020,
was selected for the modeling study. From 2000 UTC 27 June to 0600 UTC 28 June,
the precipitation process was characterized by a mesoscale convective rainband with a
large number of embedded convective cells. Such convection poses challenges for model
assimilation and prediction. For the modeling study, firstly, an experiment with real radar
reflectivity assimilation was conducted for four consecutive hours from 2000–0000 UTC
in domain 2 with a horizontal spatial resolution of 3 km. The model predictions with
and without radar data assimilation were compared with observation with a purpose of
assessing the effectiveness of the radar data assimilation scheme.

2.4. Experiment Design

For the convenience of evaluating the impact of individual data assimilation param-
eters, an observing system simulation experiments (OSSEs) framework that assumes a
“perfect model and perfect observation” is configured. Many previous studies have shown
that OSSEs are a very helpful approach to understanding the behaviors and impacts of data
assimilation methods and/or new observation data [17,47,48]. OSSEs include a natural run
that mimics the real-world truth state (TRUE) and is used to extract observations, a baseline
control forecast experiment (CTRL). Both were cold-started 20 h before the assimilation
experiment (that is, 0000 UTC 27 June). Disturbances were artificially added during the
start-up phase of CTRL to ensure sufficient difference from TRUE. The two have been
integrated for 20 h to ensure the physical balance of the model and sufficient details of
mesoscale and microscale clouds and hydrometeors. In addition, OSSEs contain three sets
of sensitivity experiments, which are used to analyze the influence of relaxation coefficient
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G, radar data update intervals, and continuous assimilation duration. The three sets of
experiments use the forecast of CTRL as the experimental background field, and use TRUE
as the real observation for assimilation. The time schedule of the three experimental groups
is illustrated in Figure 3, and more details of the experimental design are described in
Table 2.

Figure 3. The time schedule of observing system simulation experiments (OSSEs).

Table 2. Specific grouping and configuration information of observing system simulation experi-
ments (OSSEs).

Group Experiment Da Duration Da Interval Relaxation Coefficient G

Group A

G2E-3 2000–0000UTC 6 min G = 2E-3
G1E-3 2000–0000UTC 6 min G = 1E-3
G5E-4 2000–0000UTC 6 min G = 5E-4
G2E-4 2000–0000UTC 6 min G = 2E-4

Group B

INT6min 2000–0000UTC 6 min G = 1E-3
INT12min 2000–0000UTC 12 min G = 1E-3
INT30min 2000–0000UTC 30 min G = 1E-3
INT60min 2000–0000UTC 60 min G = 1E-3

Group C

DUR 4 h 2000–0000UTC 6 min G = 1E-3
DUR 3 h 2100–0000UTC 6 min G = 1E-3
DUR 2 h 2200–0000UTC 6 min G = 1E-3
DUR 1 h 2100–0000UTC 6 min G = 1E-3

2.5. Evaluation Method

In order to quantitatively and objectively evaluate the results of sensitivity exper-
iments, Fractions Skill Score (FSS) [49] were calculated for different thresholds with a
diameter of 15 km for hourly accumulated precipitation and radar reflectivity factor. In
the WRF model, the calculation of reflectivity depends on the details of the microphysical
scheme used, especially the treatment of liquid water and ice. The equivalent reflectivity
factor Ze is calculated under the assumption of Rayleigh scattering by using the particle
number concentration and equivalent particle radius of different hydrometeors [50,51].
Then calculate the reflectivity factor Z by Formula (1). FSS is one of the neighborhood veri-
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fication methods, which is appropriate for the evaluation of the precipitation simulations
with fine resolution grids. The formulation of FSS is:

FSS = 1 −
1

Nx Ny
∑Nx

i=1 ∑
Ny
j=1

[
Oi,j − Mi,j

]2
1

Nx Ny
[∑Nx

i=1 ∑
Ny
j=1 O2

i,j + ∑Nx
i=1 ∑

Ny
j=1 M2

i,j]
(10)

where Nx, Ny is the number of grid points in the x and y directions of the domain, Oi,j and
Mi,j are the observed fractions and model forecast fractions under the given threshold by
each grid.

3. Baseline Radar Reflectivity Data Assimilation

This section reports the assimilation experiment using the mosaic radar reflectivity
from the Severe Weather Automatic Nowcasting system (SWAN) of the China Meteorologi-
cal Administration. The SWAN system collects observation data from the national radar
network in real time, and integrates radar data quality control, data mapping, real-time
monitoring and nowcasting. It began construction in 2008 and has undergone multiple
version changes. It continues to be used in the Chinese Meteorological Center and most
provincial weather forecasting offices.

The national radar network have a good coverage over the land and the shore ar-
eas in the studying domain. The mosaic radar data are updated every 6 min. Radar
data assimilation is performed continuously for 4 h, continuously from 2000 UTC 27 to
0000 UTC 28.

The composite reflectivity from multiple radar observations and model forecast
with/without radar DA are shown in Figure 4. It should be noted that the settings of
WRF-FDDA parameters in this experiment are the default ones derived from previous
experience. The results show that the radar DA produced an encouraging positive ef-
fect. It effectively shortened the spin-up time and improve the initialization of the model
convection. After four hours of continuous radar assimilation, at 0000 UTC 28, the radar
assimilation experiment simulated radar reflectivity with a good consistency with the
observation. The rainband morphology, size, and the location of the convective cores were
all simulated accurately, including the convective precipitation over the sea. However,
the strength of the convective core is slightly underestimated. At 0300 UTC, (three-hour
free forecast), the width of the rainband in the east of the domain rapidly strengthened,
but the forecast of heavy rainfall is not good. It is caused by a variety of reasons, namely,
radar observation error, errors in converting reflectivity to the nudging tendency terms,
and errors caused by inappropriate nudging parameters. For the purpose of isolating the
contribution of different factors and achieving the optimal effect of WRF-FDDA, we study
the sensitivity of different HLHN parameters by building observing system simulation
experiments (OSSEs).
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Figure 4. Composite radar reflectivity (units: dBZ) of multiple radar observations (OBS), model forecasts without DA
(NoDA) and with radar DA (RadarDA) at 0000 and 0300 UTC 28 June 2020.

4. Observing System Simulation Experiments (OSSEs)
4.1. The Correlation between Relaxation Coefficient and “Ramp-Down” Issue

In HLHN, the relaxation coefficient G determines the rate at which the model state
is adjusted toward the observation state. Thus, G plays a key role in the HLHN-based
radar data assimilation. The inverse of G is the e-folding time of the difference between
the model and the observations assuming the model physical tendency terms are zero. For
observational data available at different time intervals, G needs to be adjusted to maximize
the nudging effect. In general, a larger G value will drive the model precipitation clouds
towards the actual observations more rapidly. But meanwhile, it will also introduce a
larger imbalance (“shock”) to the model dynamics and thermodynamics, which may cause
unnecessary disturbances and development of factitious convection in the model. This may
result in either assimilation divergence (i.e., oscillations with over-correction) or a rapid
decline in the quality of model forecasts within a short period after the free forecasting
starts. This phenomenon is known as the “ramp-down” issue in non-adiabatic initialization.
Conversely, if G is too small, the radar data assimilation effect is small too.

For this reason, we conducted a large number of radar data assimilation experiments
with an extensive variation of G to determine the optimal G value. Here, four sets of exper-
iments with G values as 2E-3, 1E-3, 5E-4 and 2E-4, corresponding to very large, reasonable,
small and weak G values respectively, were presented for analysis of the sensitivity.

Figure 5 shows the FSS of radar composite reflectivity and hourly accumulated precip-
itation of the modeling experiments throughout the data assimilation and forecast periods.
The thresholds of 15 dBZ/2 mm and 40 dBZ/10 mm selected correspond to stratiform
precipitation and convective precipitation, respectively. It can be seen that the FSS of the
composite reflectivity and precipitation are in good agreement, and the decline rate of
the convective precipitation FSS is much greater than the stratiform precipitation. Since
radar reflectivity is computed directly from precipitation particles, the higher relaxation
coefficient, the quicker the model hydrometeors are nudged to the actual observation.
Again, the highest FSS score at the assimilation stage does not necessarily result in the
best forecast effect. It is worth noting that G2E-3 gains the highest FSS at the assimilation
stage, but it caused obvious “ramp-down” issues after the forecast starts, the FSS of the
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composite reflectivity and hourly accumulated precipitation both continued to decline and
was lower than the FSS of G1E-3 within the first 3 h of free forecast. The FSS time series of
G1E-3, G5E-4 and G2E-4 are relatively parallel, which indicates that the forcing tendency
of the three G values does not cause an unbalanced disturbance of the mode state.

Figure 5. Time series of forecast skill scores (FSS) of composite reflectivity with thresholds of 15 dBZ
(a) and 40 dBZ (b), and FSS for hourly accumulated precipitation with thresholds of 2 mm (c), 10 mm
(d) of Group A. The horizontal scale (diameter) used for FSS is 15-km.

To further study this procedure, the domain average of the rainwater content (Qrain)
and the domain sum of the latent heat tendency terms for the four experiments were
analyzed. Ideally, during the initialization phase of the radar data assimilation, the model
state gradually approaches the observations, and the tendency terms shall gradually
stabilize and approach zero. As shown in Figure 6a, at the beginning of assimilation, TRUE
and CTRL’s averaged Qrain are similar. After 15 min, the precipitation of TRUE increased
significantly. In order to make up for the insufficient precipitation in CTRL, latent heat
cooling in G2E-3 was started at the same time (Figure 6b). To drive the change of the model
state, an excessive amount of latent heat cooling is added in a short time. The latent heat
tendency term in G1E-3 gradually decreases to −110 K/s, and G2E-3 to 280 K/s, resulting
large disturbances. After the excessive latent cooling being added, Qrain increases until
it exceeds TRUE, and reaches the maximum at 30 min. In subsequent nudging processes,
the excessive latent heat cooling is gradually corrected. But in the subsequent period of
assimilation, the latent heat tendency term of G2E-3 still kept significant fluctuations than
other experiments. This overshooting correction also led to a faster decline in forecasting
performance after the assimilation finished.

Figure 6. Time series of domain-averaged Qrain (a) and domain-integrated latent heat tendency terms (b) of Group A.
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Although G1E-3 was determined as the most reasonable G value in terms of modeling
radar reflectivity, it’s Qrain is not coincident with TRUE. In order to stimulate the convection
that did not existed in the model before, excessive latent heat needs to be nudged, excessive
latent heat promotes the updraft, condensation of water vapor, and surface rain, resulting
in a decrease in the rainwater mixing ratio in the clouds. The latent heat tendency term of
experiment G2E-4 stays between 0 and 30 K/s in the assimilation window. The nudging
forcing was insufficient to correct the Qrain deficit in the model and only 50% of the
Qrain difference was corrected. The time evolution of Qsnow and Qgraup show similar
performance (the figures were omitted).

4.2. Sensitivity on Data Update Intervals

It is known that high-frequency radar volume scans help capture the details of cloud
development. Therefore it is of great interest to study the impact of radar data update
intervals on HLHN on both cloud analysis and forecast. Hu & Xue (2003) used a 3D cloud
analysis method to assimilate radar data. Their results showed that an update interval of
10 min performed better than 5 or 15 min ones [52]. They found that the cloud analysis
scheme often takes at least 5 min to initialize the storm, and a 10-min analysis interval
is required for the model to complete the balance adjustment to establish a sustainable
convective storm. In a GSI (Grid Statistical Interpolation)-based Convection-Allowing
Ensemble-Based assimilation experiment, Johnson et al., (2017) showed that a 10-min
cycle of the radar DA provides more skillful short-term (0–6 h) forecasts than 5- or 15-min
cycling [53]. These results were based on 3D cloud analysis and adjustment approaches.
The impact of the assimilation intervals for 4D continuous nudging with HLHN has yet to
be understood.

In this section, four experiments are designed to study the impact of different radar
data update intervals. To mimic the current national radar network operations of 6-min
volume scan, the four experiments with assimilation of 6, 12, 30, and 60-min data update
intervals, named as INT6min, INT12min, INT30min and INT60min, respectively, were
conducted. In these experiments, the relaxation coefficient G is set to 1E-3.

Figure 7 shows the time series of the FSS of the composite reflectivity and the hourly
surface accumulated precipitation for the sets of experiments. It is noteworthy that
INT6min and INT12min achieved similar great performance although the 6min update is
slightly better than the 12 min update. Same as Figure 6, Figure 8 shows the domain aver-
age of Qrain and domain sum of latent heat tendency terms of this set of experiments. The
latent heat tendency terms varied dramatically among these experiments. With longer data
update intervals, a “sawtooth”-shaped latent heat tendency term becomes more obvious.
Such discontinuous shocks increased the noise of the model and caused the FSS fluctuated
with time. For INT60min, FSSs of both reflectivity and hourly precipitation have obvious
“sawtooth”-shaped issue, and their FSS is significantly lower than the other experiments
with shorter update intervals during the free forecast stage. The assimilation efficiency of
HLHN depends on the balance of nudging forcing speed, data update interval, and system
development speed. Therefore, for fast-developing and moving convection systems, a
higher data update interval will provide a gentle and continuous nudging tendency to
reduce the noise of the model system and improve the quality of the forecast.

4.3. Sensitivity on Time Duration of Continuous Assimilation

HLHN is a 4D continuous data assimilation scheme. Ideally, to minimize the cold-
start “spin-up” effect, one would set up the model to continuously assimilate the data
without a “break”. But in reality, due to the incomplete observations and measurement
uncertainties, approximation of data assimilation schemes, and the non-linear model error
growth, one has to reset “cold-starts” in certain time intervals for the 4D data assimilation
cycles to get rid of the error accumulation in the system. For radar data assimilation,
missing times/frames of radar observations is inevitable. Therefore, one wants to know
how long an assimilation window is required to fully adjust the initial state of the model
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with HLHN radar data assimilation, and what is the maximum continuous assimilation
duration during which the error accumulation of the model and assimilation is acceptable.

Figure 7. Time series of forecast skill scores (FSS) of composite reflectivity with thresholds of 15 dBZ (a) and 40 dBZ (b),
and FSS for hourly accumulated precipitation with thresholds of 2 mm (c), 10 mm (d) of Group B. The horizontal scale
(diameter) used for FSS is 15-km.

Figure 8. Time series of domain-averaged Qrain (a) and domain-integrated latent heat tendency terms (b) of Group B.

Four experiments, assimilating radar data continuously for 4 (DUR4H), 3 (DUR3H),
2 (DUR2H), and 1 (DUR1H) -hour respectively were conducted. The radar data is assimi-
lated at 6-min update intervals. The time series of FSSs are shown in Figure 9. In general,
the forecast from DUR4H and DUR3H is better than the forecast from DUR2H and DUR1H,
although DUR1H has already effectively improved the forecast from CTRL. Figure 10
shows the domain average of Qrain and domain sum of latent heat tendency terms of
the four experiments. Due to the difference between the model states of CTRL and TRUE
(i.e., the error in the initial conditions) changes with time, the latent heat tendency terms in
the initial assimilation window of the four assimilation experiments are different, which
may affect the time required for the nudging tendency terms to spin up the cloud. Be-
tween 20:00 and 21:00 UTC, the difference in Qrain between TRUE and CTRL is relatively
small. Therefore, starting assimilation at this time only takes 1 h to stabilize the mode
state (DUR4H). As the difference between TRUE and CTRL model states increases, the
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radar assimilation duration needed to spin up the model is longer. This is why the FSS of
DUR1H is significantly lower than other experiments with longer assimilation durations.
The prediction skills of DUR2H increased significantly from DUR1H.

Figure 9. Time series of forecast skill scores (FSS) of composite reflectivity with thresholds of 15 dBZ (a) and 40 dBZ (b),
and FSS for hourly accumulated precipitation with thresholds of 2 mm (c), 10 mm (d) of Group C. The horizontal scale
(diameter) used for FSS is 15-km.

Figure 10. Time series of domain-averaged Qrain (a) and domain-integrated latent heat tendency terms (b) of Group C.

After an assimilation duration is found to be able to fully spin up the model state,
further increase of the assimilation duration only brings about some minor benefits. Since
the spin-up process of the model state with the radar data assimilation depends on the
size of the model error and the speed of convection development, the minimum duration
required for fully spin up the model states can be different for the model initiated at
different times. Fabry, F. & Sun, J. (2010) also found that different model variables should be
assimilated with different durations [50]. A complex and fast-changing convection system
desires a longer assimilation duration than a slowly evolving frontal stratiform cloud.
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4.4. Respone of the Model Temprature, Moisture and Winds

HLHN can effectively reduce the “spin-up” issue of precipitation and improve the
forecasting skills in the first few hours [21,54]. However, since the radar observed precipi-
tation is an outcome of complex multi-scale atmospheric thermodynamic and dynamical
processes, HLHN has an immediate direct positive impact on the model precipitate parti-
cles and temperature. The impact on all other weather variables were through the model
thermodynamic and dynamical adjustments. Therefore, it is important to analyze whether
HLHN reduces the errors of these other atmospheric state variables. In fact, the effect
of HLHN on the model forecast heavily depends on the consistency among all model
dynamic and thermodynamic fields. Hereby we look into this problem by analyzing the
results of the experiment that obtained the highest forecast scores (i.e., G1E-3 or INT6min
or DUR4H. Experiments with the same settings were used to participate in different groups
of sensitivity analysis).

Figure 11 shows the radar composite reflectivity at the end of assimilation windows
and the 3-h forecast. The precipitation system presents a typical Meiyu-season precipitation
structure, with a 1000 km long west-east oriented rainband and abundant β or γ-mesoscale
strong convection cores (of 20~50 km) embedded in. The strong convective system cores
are mainly distributed in the southern part of the rainband, and to the north is relatively
uniform stratiform precipitation. After 4 h of radar data assimilation, the experiment
has made good adjustments to the precipitation in the entire domain and the rainband is
very similar to TRUE. At this time, the FSS scores for strong convective precipitation and
stratiform precipitation both reached a high of 0.9. Although RadarDA and CTRL used
the same boundary conditions, in the first three hours of the free forecast, the rainband
developed by the HLHN initialization was well maintained. The 15 dBZ rainband boundary
of the forecast rainband is consistent with TRUE, and the FSS score of the 15 dBZ composite
reflectivity is still high (0.879). The forecast score for convective precipitation is lower.
The composite reflectivity FSS of 45 dBZ is 0.346, which is still about 1.5 higher than that
of CTRL. More error information can be seen from the Taylor diagram of the composite
reflectivity verification (Figure 15a). From 0000 to 0300 UTC, the correlation coefficients of
the composite reflectivity have increased by 0.8, 0.6, 0.36, and 0.2, respectively, from CTRL,
and RMSD (root-mean-square deviation) has also been significantly reduced (5.0, 10.2, 12.8,
and 14.5, respectively).

Jones and Macpherson [19] proposed a diabatic latent heat assimilation scheme that is
based on the relationship between precipitation and latent heat release. They modified the
model dynamics in a way that the model will respond by producing a rain rate close to the
observed precipitation. This scheme was originally applied to the COSMO-DE model [21].
They found the scheme to be heavily dependent on microphysical parameterization. When
the parameterization of evaporation and snowfall formation was improved, it unfortunately
resulted in a significant overestimation of ground precipitation [31]. In order to investigate
the impact of the HLHN radar data assimilation on the water vapor and total hydrometeors,
vertical cross-sections of water mixing ratio of different hydrometeors for the experiments
at 0000 UTC 28 June were plotted (Figure 12). The locations of the cross sections were
marked as the thick solid lines in Figure 11.

The cross-section A–B cuts through the main precipitation rainband, with heavy
convective precipitation located mostly on the A side, and the stratiform precipitation on
the B side. The positive impact of HLHN on the precipitation system is fabulous except
for factitious convection stimulated on the B side of the main precipitation area, with a
maximum Qrain of 0.8 g/kg, and a maximum Qgraup of 0.5 g/kg in the middle layer.

Cross-section C–D passes through the center of the convective precipitation rainband.
It can be seen that the hydrometeor distribution of the convection in the truth run was
reproduced precisely by HLHN RadarDA, including the locations, morphology and mag-
nitudes of all precipitate particle categories. The impact of HLHN on the wind field is
also evident. The RadarDA resulted in more accurate winds and stronger updrafts in the
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convection clouds. The inflow, outflow, and ascending and descending airflows associated
with all convective cells were also well improved from CTRL.

Figure 11. Composite reflectivity (units: dBZ) at 0000–0300 UTC 28 June 2020. 1st row for simulated
observations TRUE; 2nd row for control forecast CTRL; 3rd for radar assimilation forecast RadarDA.
Thick solid lines in the panels of 0000 UTC (A–B, C–D) denote the location of cross section in Figure 12.

Figure 12. Vertical cross-sections of the Qrain (green shading; units: g/kg), Qsnow (blue shading; units: g/kg), Qgraup
(red contour; units: g/kg) overlaid with vertical wind (wind arrows; units: m/s) at 0000 UTC 28 June 2020. 1st row for
cross-sections A–B; 2nd row for cross-sections C–D.
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It is worth noting that the cloud top heights of some convective cells simulated with
RadarDA were higher than the truth run. The upper boundary of Qsnow at 1.5 g/kg
was increased by about 1.5 km by RadarDA. This error is associated with an issue of the
latent-heat nudging scheme. During the nudging process, the latent heat was added into
the model where the observed convection was missing. To drive the model toward the
amount of the hydrometeors derived from observed radar reflectivity, excessive latent
heat might have been added. As the latent heat source is continuously added in, it keeps
promoting the updrafts and condensation of the water vapor, resulting in an accumulation
of heat and water vapor in the upper layers. This is an example indicating that we should
take into account of the convection precipitation development stages for the design of
HLHN, and properly reduce the rate of latent heat nudging in HLHN during the later
development of convection.

The hourly precipitation accumulation of model forecasts is consistent with the ob-
served (Figure 13), featured a heavy rainband in the center of the domain. The maximum
1-h accumulated precipitation of the truth run exceeded 40 mm. At the end of the DA
window, the radar data assimilation accurately captured the rainband and the heavy precip-
itation core successfully. The FSS score for the 2 mm threshold of the hourly accumulated
precipitation reaches 0.956, and that of 10mm reaches 0.923. Until the second hour of the
forecast, the simulation of the precipitation center of the RadarDA was equally accurate.
At 0300 UTC, the simulated precipitation center is shifted slightly northward, and the
hourly accumulated precipitation FSS of 2 mm and 10 mm is 0.616 and 0.207, respectively.
Figure 15c shows the Taylor diagram of relative humidity. Comparing with CTRL, the
correlation coefficient increased by approximately 0.2 at 0000–0300 UTC, and the RMSD
decreased from 13 to 10.5. For 1-h accumulated precipitation verification, the correlation
coefficient and RMSD have been significantly improved from CTRL. The correlation coeffi-
cient at the end of assimilation increased from 0.13 to 0.92, and the RMSD decreased from
9.2 to 3.1 and by the end of three-hour forecasting, the correlation coefficient for RadarDA
is still 0.25 higher than CTRL (Figure 15d).

The vertical velocities averaged between 850 hPa and 500 hPa (contour of 1 m/s shown
in black in Figure 13) indicated that the latent heat nudging obviously promotes updrafts
in the convection and precipitation development. As the forecast progresses, the model
precipitation gradually decreases, and the updraft also gradually weakens. HLHN is able
to adjust the convection updraft and maintain consistent the precipitation development.

A Meiyu front is typically characterized by a temperature field with a “sandwich”
structure over the land [55,56]. That is, the air masses temperature of the north and south
sides of the Meiyu front is higher than that in the front zone, which featured a frontal cold
pool. Figure 14 shows that model that successfully reproduced such a structure. HLHN not
only improved the vertical updraft, but also the temperature in the cold pool. During the
free-forecasting phase, the area of the warm zone on the south side of the system has also
been reduced, bringing it closer to TRUE. From 0000–0300 UTC, the correlation coefficient
of 2-m perturbation potential temperature has been dramatically improved with the radar
data assimilation (Figure 15b).

The 850 hpa winds presents the characteristics of monsoon activity in the Meiyu
season, and radarDA experiments simulated the wind field reasonably well. It captures the
warm and humid air flowing northward above the cold pool, along with the shift in wind
direction to the southeast. The radarDA experiment removed the excessive wind speed
in CTRL. Figure 15e,f show the Taylor diagrams of the horizontal wind field at 10-m. The
improvement of HLHN to the wind field reached the best effect at 1 h of free forecasting,
with RMSD reduced by about 30% from CTRL. The improvement was still obvious at three
hours of free forecasting.
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Figure 13. 1-h accumulated total precipitation (shading; units: mm) overlaid with the averaged vertical velocities between
850 hPa and 500 hPa (black contour; units: 1 m/s) at 0000–0300 UTC 28 June 2020. 1st row for simulated observations TRUE;
2nd row for control forecast CTRL; 3rd for radar assimilation forecast RadarDA.

Figure 14. 2-m potential temperature (shading; units: K) overlaid with 850 hPa horizontal wind
(wind arrows; units: m/s) at 0000–0300 UTC 28 June 2020. 1st row for simulated observations TRUE;
2nd row for control forecast CTRL; 3rd for radar assimilation forecast RadarDA.
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Figure 15. Taylor Diagrams of (a) composite reflectivity (dBZ), (b) 2 m perturbation potential temperature (K), (c) relative
humidity (%), (d) 1-h accumulated precipitation (mm), (e) U-component of 10 m wind (m s−1), and (f) V-component of 10 m
wind (m s−1) at 0000–0300 UTC 28 June 2020. Each model variable is verified against TRUE.

5. Discussion and Conclusions

In this study, the NCAR WRF-based four-dimensional data assimilation system, WRF-
FDDA, was used to evaluate the key control parameters of hydrometeor and latent-heat
nudging (HLHN) for radar data assimilation and study the response of the model clouds,
temperature, moisture, and winds to HLHN during the assimilation and forecast processes.

First, we improved the algorithm to suppress the excessive clouds in the model and
classified the tendency term of the mixing ratio of hydrometeor into four cases. By selecting
a typical Meiyu front precipitation process in eastern China, a radar data assimilation
experiment and a series of observation system simulation experiments were carried out to
test the impact of the key control parameters. The model result showed that:

(1) The nudging relaxation coefficient G plays a key role in HLHN. For the summer
Meiyu precipitation in China, 1E-3 was found as an appropriate value for G. Analysis
shows that for more complex and rapidly changing weather systems, a larger G may
be desired. In contrast, for relatively stable small and medium-scale weather, G should
be set to a smaller value. Note that in general the nudging tendency term should not
dominate the change of model variables in order for the adjustment not to damage
the dynamic consistency. The imbalanced model states caused by overly strong
HLHN forcing can lead to serious “ramp-down” issues right after the assimilation
period ends.

(2) The efficiency of HLHN depends on the balance between nudging coefficients, assim-
ilation intervals, and the convection system’s evolving speed. For fast-developing
and moving convection systems, a higher assimilation interval provides a gentle and
smooth nudging effect.

(3) HLHN requires a minimum assimilation duration to spin up the model clouds with
dynamical and thermodynamical consistency. For the summer Meiyu precipitation
studied, this time is ~1 h. When the assimilation duration is extended to 2 h, both
analysis and forecasting gain proper assimilation effects. With a further increase of
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the assimilation duration, more improvement is seen but the improvement effect is
gradually slowed down. It should be noted that the minimum duration depends on
the initial model error and the development speed of the weather system.

(4) In the first three hours of free forecasting, HLHN effectively improves the model
clouds as well as temperatures, moisture, and winds of the model. Although HLHN
does not directly adjust these model parameters, the spatiotemporal adjustment of
the hydrometeors makes a positive effect on the overall model states. However,
in order to spin up convection that was missed in the model, HLHN tends to add
excessive latent heat into the model, resulting in an increase in upper-level updraft
and snow content.

This study helps gain valuable insights about the model dynamical and thermody-
namical adjustments with HLHN radar data assimilation. Nevertheless, we noticed that
there are still several issues deserving further study. The performance of HLHN depends
on nudging relaxation coefficients, data update intervals, and the convection development
speed. For fast-developing and moving convection systems, a higher update interval may
be desired to produce gentle nudging tendency and a smooth nudging effect. An adaptive
nudging coefficient which varies with weather situations should be developed in the future.
Unlike OSSEs, for real radar data assimilation, the observation errors can significantly
affect the performance of HLHN. Furthermore, we point out that besides radar observa-
tions, there are several other platforms observing clouds, winds and other variables. Thus,
joint assimilation of multiple platform observations, including convectional temperature,
moisture, wind observations as well as lightning data and satellite cloud measurements,
should be studied to achieve an optimal effect. In particular, the operational geostationary
satellites detect clouds at spatial resolutions similar to the operational weather model
grid (kilometers) and have a temporal resolution of 15 min or higher. Using satellite
cloud observation data to complement radar observations has become a major direction of
nowcasting research [57–59]. Finally, in the next few years, phased array weather radars,
multi-wavelength cloud radars, lidars, satellite cloud observations and other new cloud
instruments will be fielded for operation. Methods to assimilate these diverse, very high
spatiotemporal resolution and rich information data shall be developed.
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