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Abstract: Global ocean heat content (OHC) is generally estimated using gridded, model and reanal-
ysis data; its change is crucial to understanding climate anomalies and ocean warming phenomena. 
However, Argo gridded data have short temporal coverage (from 2005 to the present), inhibiting 
understanding of long-term OHC variabilities at decadal to multidecadal scales. In this study, we 
utilized multisource remote sensing and Argo gridded data based on the long short-term memory 
(LSTM) neural network method, which considers long temporal dependence to reconstruct a new 
long time-series OHC dataset (1993–2020) and fill the pre-Argo data gaps. Moreover, we adopted a 
new machine learning method, i.e., the Light Gradient Boosting Machine (LightGBM), and applied 
the well-known Random Forests (RFs) method for comparison. The model performance was meas-
ured using determination coefficients (R2) and root-mean-square error (RMSE). The results showed 
that LSTM can effectively improve the OHC prediction accuracy compared with the LightGBM and 
RFs methods, especially in long-term and deep-sea predictions. The LSTM-estimated result also 
outperformed the Ocean Projection and Extension neural Network (OPEN) dataset, with an R2 of 
0.9590 and an RMSE of 4.45 × 1019 in general in the upper 2000 m for 28 years (1993–2020). The new 
reconstructed dataset (named OPEN-LSTM) correlated reasonably well with other validated prod-
ucts, showing consistency with similar time-series trends and spatial patterns. The spatiotemporal 
error distribution between the OPEN-LSTM and IAP datasets was smaller on the global scale, espe-
cially in the Atlantic, Southern and Pacific Oceans. The relative error for OPEN-LSTM was the small-
est for all ocean basins compared with Argo gridded data. The average global warming trends are 
3.26 × 108 J/m2/decade for the pre-Argo (1993–2004) period and 2.67 × 108 J/m2/decade for the time-
series (1993–2020) period. This study demonstrates the advantages of LSTM in the time-series re-
construction of OHC, and provides a new dataset for a deeper understanding of ocean and climate 
events. 

Keywords: ocean heat content (OHC); long short-term memory (LSTM); OPEN-LSTM dataset; re-
mote sensing data; time-series reconstruction 
 

1. Introduction 
Recently, atmospheric greenhouse gases (GHGs) have caused imbalances in the top 

layers of the atmosphere, giving rise to the Earth’s energy imbalance (EEI) which is ulti-
mately driving the current warming trend [1–3]. Darrell et al. [4] found that global warm-
ing in the past 150 years has far exceeded what occurred in the last 6000 years. Increasing 
global warming has led to the destabilization of the climate system and caused more fre-
quent and severe extreme climate events. For example, the strong El Niños during 2014–
2016, 2017, 2018, and 2019 reached the highest warmth in the upper ocean in modern rec-
orded history [5–7], and upper ocean temperatures hit a record high in 2020 [8]. Behind 
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these anomalous incidents, the ocean plays an essential role in regulating the global cli-
mate system and redistributing regional and global-scale energy. 

Indeed, the ocean is constantly warming in its interior [9–11]. More and more studies 
have shown that the ocean absorbs most of the EEI (up to 93.4%) in the form of heat, which 
gradually warms the ocean (300–2000 m) [12–15]. Cheng et al. [16] found that the ocean 
absorbs energy at accelerating rates and that the deep ocean (700–2000 m) plays an in-
creasingly important role. Recent studies have also shown that warming signals have been 
detected in the ocean below 2000 m, especially in the Southern Ocean [17]. Therefore, 
studying ocean transfer at different depth ranges is essential because of the global warm-
ing crisis brought about by the EEI and the dominant heat capacity of the ocean. Thus, the 
ocean is an integral part of the heat cycle and an important regulator of the climate system. 

At the same time, ocean heat content (OHC) is an essential parameter characterizing 
the ocean thermal state and an efficient parameter by which to evaluate the EEI [18,19]. 
Many studies have shown that OHC is related to some climate events and natural internal 
climate variabilities (e.g., the South China Sea summer monsoon intensity, tropical cy-
clone intensity, Interdecadal Pacific Oscillation, Atlantic Multidecadal Oscillation, El 
Niño–Southern Oscillation (ENSO), and Indian Ocean Dipole [IOD]) [20–23]. Therefore, 
estimating OHC and monitoring its long-term change is greatly significant in analyzing 
air–sea interactions and natural variabilities on decadal to multidecadal scales. 

The modes of ocean observation have been improving for a long time [24]; for exam-
ple, the introduction of Argo buoys reduced the standard deviation caused by incomplete 
samples to the lowest value [25]. The Argo observation network was established in 2005, 
and although its floats number around 4000 globally, meeting the needs of long-term and 
large-scale research is still difficult. For the pre-Argo period, the ocean observation system 
was mainly based on expendable bathythermograph (XBT) and mechanical bathythermo-
graph (MBT) conventional floats, giving rise to uncertainties and discrepancies in meas-
urements. Boyer et al. [26] pointed out that the uncertainties in OHC estimates are due to 
instrument biases (especially for XBT bias), mapping methods, and definitions of baseline 
climatology. The uncertainty in the measured data in the pre-Argo period and the short 
temporal coverage in the Argo period bring certain difficulties with regard to global heat 
estimations. 

However, space-to-Earth observation systems have, in the meantime, become the 
most important source of observational data, and play an irreplaceable role in marine sci-
entific research. Large-scale remote sensing data with high temporal and spatial resolu-
tions can be used to obtain sea surface information. As sea surface features can reflect the 
dynamic phenomena within the ocean, these systems may be used to derive internal in-
formation represented on the sea surface [27]. Therefore, combining Argo gridded data 
and remote sensing data is an effective way of determining long-term and large-scale 
three-dimensional thermohaline structures in the ocean. 

Various thermohaline structure reconstruction methods using satellite data are pro-
posed: the dynamic, empirical methods, numerical assimilation, and statistical methods. 
First, in the dynamic method, some complex dynamic processes are ignored because of 
theoretical simplifications. Therefore, block modeling is applied, that is, the internal plus 
surface quasi-geostrophic method (iSQG), when applied on a global scale [28]. Second, 
the empirical method uses ocean hydroacoustic data to expand the scope of available ob-
servational data [29]. Thus, it is more suitable for areas with sufficient observations. Third, 
numerical assimilation is an essential tool for generating reanalysis datasets. For example, 
current, well-known datasets such as the European Centre for Medium-Range Weather 
Forecasts (ECWMF) Ocean Reanalysis System 5 (ORAS5) and Simple Ocean Data Assim-
ilation (SODA) datasets are derived using this method [30,31]. Finally, statistical methods 
are the most widely used, especially with the development of high-efficiency neural net-
works, and they usually achieve good performance. 



Remote Sens. 2021, 13, 3799 3 of 22 
 

 

Crucial thermohaline information retrieval methods based on artificial intelligence 
(AI)/machine learning have been developed using support vector machines, random for-
ests (RFs), and extreme gradient boosting (XGBoost) [32–34]. It is worth noting that a ge-
ographically weighted regression model considering spatial nonstationary features in the 
ocean has a low root-mean-square error (RMSE) [35]. Lu et al. [36] proposed a new method 
which combines a preclustering process and an artificial neural network (ANN); its results 
were better than those of traditional methods and the clustering or ANN method exclu-
sively. However, with global warming, these methods must not be limited to monitoring 
sea surface temperature (SST) and other thermohaline information. 

Chacko et al. and Jagadeesh et al. [37,38] used an ANN to retrieve OHC in the north 
Indian Ocean. Irrgang et al. [39] estimated global OHC from 1990–2015 from tidal mag-
netic satellite observations using an ANN algorithm. Su et al. [40] used an ANN to con-
struct a long-term OHC dataset, known as the Ocean Projection and Extension neural Net-
work (OPEN), which shows a comparative advantage with the IAP dataset. However, 
these methods lack temporal dependence considerations. Some scholars have used recur-
rent neural networks (RNNs) and long short-term memory (LSTM) to inverse SST, sea 
surface height anomaly (SSHA) [41–44], and so on. However, these have not been fully 
applied to OHC retrieval, especially for long-term reconstruction. 

Thus, this study used LSTM to improve the accuracy of OHC prediction by consid-
ering the temporal dependence of oceanic variables. Based on satellite data with space-
time parameters (longitude [LON], latitude [LAT], day of year [DOY]) and Argo data, we 
reconstructed the OHC dataset for an extended period (1993–2020), filling in gaps in the 
pre-Argo period. This study compared the advantages of LSTM over Light Gradient 
Boosting Machine (LightGBM) and RFs for OHC time-series estimation, and then evalu-
ated the accuracy of the constructed OHC datasets. Finally, the new datasets were em-
ployed in a global ocean warming study. 

2. Study Area and Data 
In this study, we selected the global ocean (180°W to 180°E, 78.375°S to 77.625°N) as 

our study area. The multisource satellite and Argo gridded data used in this study are as 
follows (Table 1): 
(1) sea surface temperature (SST), acquired from the Optimum Interpolation Sea Surface 

Temperature (OISST) product, constructed by combining data from the Advanced 
Very High-Resolution Radiometer satellite and other observations datasets since 
1981, with a spatial resolution of 0.25° × 0.25°; 

(2) sea surface height (SSH), observed from the Absolute Dynamic Topography products 
of Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) al-
timetry project since 1993, with a spatial resolution of 0.25° × 0.25°; 

(3) sea surface wind (SSW), provided by the Cross-Calibrated Multi-Platform (CCMP) 
wind velocity data from the National Center for Atmospheric Research since 1987, 
with a spatial resolution of 0.25° × 0.25°; 

(4) Argo, gridded data including 27 standard horizons in the upper 2000 m since 2005, 
with a spatial resolution of 1° × 1°. 

Table 1. Data used in this study. 

Data Sources Time Spatial Resolution 
SST https://www.ncdc.noaa.gov/oisst (accessed on 3 March 2020) 1981– 0.25° × 0.25° 
SSH http://www.aviso.altimetry.fr (accessed on 3 March 2020) 1993– 0.25° × 0.25° 

SSW 
https://rda.ucar.edu/datasets/ds745.1/ (accessed on 3 March 

2020) 
1987– 0.25° × 0.25° 

Argo 
http://apdrc.soest.hawaii.edu/projects/Argo/data/gridded/On_s

tandard_levels/index-1.html (accessed on 3 March 2020) 
2005– 1° × 1° 
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EN4 
https://www.metoffifice.gov.uk/hadobs/en4/download-en4-1-

1.html (accessed on 1 June 2020) 
1900– 1° × 1° 

IAP http://159.226.119.60/cheng/ (accessed on 1 June 2020) 1940– 1° × 1° 

ORAS5 
http://icdc.cen.unihamburg.de/thredds/fileServer/ftpthredds/E

ASYInit/oras5/ORCA025/votemper/opa0/ (accessed on 15 
March 2021) 

1979– 1° × 1° 

OPEN 
https://github.com/scenty/OPEN-OHC (accessed on 3 January 

2021) 
1993– 1° × 1° 

The comparison and verification datasets used in this study are as follows (Table 1): 
(1) EN4, version 4.2.1 from the Hadley Met Office of the United Kingdom, which applied 

objective analysis from observation datasets (e.g., WOD and Argo) since 1900, 1° × 1° 
[45]; 

(2) IAP, from the Institute of Atmospheric Physics of China, which used Ensemble Op-
timal Interpolation (En-OI) mapping, combined with Coupled Model Intercompari-
son Project Phase 5 (CMIP5) multimodel datasets since 1940, 1° × 1° [16]; 

(3) ORAS5, from the ECMWF, which assimilated various observational data in an ocean 
model since 1979, 1° × 1° [30]; 

(4) OPEN, from Fuzhou University, which used remote sensing data and an ANN ma-
chine learning method to achieve temporal hindcast and provided a continuous rec-
ord of the global ocean since 1993, 1° × 1° [40]. 
Based on previous studies, this study used seven independent variables to estimate 

OHC, including remote sensing data and space–time parameters (i.e., SST, SSH, USSW, 
VSSW [u and v components of SSW], LON, LAT, and DOY). It is likely not necessary to 
consider sea surface salinity in large-scale and time series variations [40,46]. The spatial 
resolution of sea surface data was unified to 1° × 1° by the nearest neighbor interpolation 
method, and the temporal resolution was unified monthly. The dataset range was nor-
malized to [−1, 1]. Data normalization can avoid errors and further improve the perfor-
mance of the model. 

In this study, the OHC calculated depths were 100, 300, 700, 1000, 1500, and 2000 m, 
denoted as OHC100 m, OHC300 m, and so on. The climatology used in this study for OHC 
anomaly (OHCA) was a common baseline period from 2005 to 2014. All OHCA time-se-
ries used a 12-month running mean. 

The calculation formula for the OHC (unit: J/m2) of each grid point is as follows: 

OHC =  � 𝐶𝐶𝑝𝑝𝜌𝜌Td𝑧𝑧
0

𝑧𝑧
 (1) 

where 𝐶𝐶𝑝𝑝 is the thermal capacity, which is constant at 3850 J kg−10 C−1; 𝜌𝜌 is the constant 
density equal to 1025 kg m−3; T is the temperature; and z is the current calculated ocean 
depth. 

3. Methods 
3.1. LSTM 

LSTM is a special type of RNN proposed by Hochreiter and Schmidhuber in 1997 
[47,48]. RNN can only learn short-term time dependence, essentially because it is prone 
to gradient decay or eventual degradation of the values passed from layer to layer. How-
ever, LSTM uses gating algorithms, i.e., an input gate, forget gate, and output gate, which 
can resolve the vanishing and exploding gradient problem of RNN by controlling long-
distance dependence and selectively forgetting data to prevent information overload. To 
date, LSTM has achieved remarkable results in translation, recognition, video, and marine 
applications (e.g., predicting El Niño changes) [49]. 
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LSTM adds the cell state 𝐶𝐶𝑡𝑡 to the hidden state ℎ𝑡𝑡 based on the RNN; 𝐶𝐶𝑡𝑡 controls 
information that selectively passes through the gates. The LSTM network can be formu-
lated as follows: 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑈𝑈𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓�  (2) 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑈𝑈𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)  (3) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑈𝑈𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)  (4) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡′  (5) 

𝐶𝐶𝑡𝑡′ = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑈𝑈𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑡𝑡−1 + 𝑏𝑏)  (6) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡)  (7) 

where 𝑓𝑓𝑡𝑡, 𝑖𝑖𝑡𝑡 and 𝑜𝑜𝑡𝑡 are the outputs of the nonlinear activation function sigmoid func-
tions σ, whose values (0 and 1) indicate whether information should be passed or not (0 
means not allowed to pass; 1 means completely passed); 𝑈𝑈 and 𝑊𝑊 are the weight matri-
ces of the current time; 𝑥𝑥𝑡𝑡 is the original input; ℎ𝑡𝑡−1 is the output value at the last time; 
𝑏𝑏 is the bias vector; 𝐶𝐶𝑡𝑡 and 𝐶𝐶𝑡𝑡′ represent the internal status update; ℎ𝑡𝑡 is the output of 
the LSTM cell at the current moment; and ⊙ represents the multiplication of the corre-
sponding elements of the matrix. 

The ocean data presents inherent spatial nonlinearity and temporal dependence fea-
tures, and the OHC is a temporally autocorrelated variable. Hence, the LSTM model, 
which has the ability to grasp these features, was used to reconstruct the dataset. 

3.2. LightGBM 
The Light Gradient Boosting Machine (LightGBM) was proposed by Microsoft Re-

search Asia in 2017 on the basis of the gradient-boosted decision tree (GBDT) model [50]. 
It introduces a leaf-wise strategy with depth constraint rather than a level-wise strategy 
for GBDT in decision tree growth. In addition, LightGBM adopts a histogram algorithm 
which transforms traversal histograms, as opposed to traversal samples, in order to re-
duce complexity. Moreover, the strategy of gradient-based, one-side sampling and exclu-
sive feature bundling can efficiently reduce the number of required calculations. The 
model supports parallel learning, which can optimize training speed and economize stor-
age space. 

LightGBM is an advanced ensemble learning algorithm which has the characteristics 
of less training time and high accuracy, and can provide better solutions than other classic 
machine learning methods. As such, this study used it as a comparison of LSTM to esti-
mate OHC. 

3.3. RFs 
RFs is a well-known ensemble learning algorithm based on the bagging strategy, 

which takes a decision tree as the base learner [51]. A decision tree is constructed using 
the samples taken each time, with each decision tree having the same weight. This study 
used this widely-used, classic method as a comparison for OHC reconstruction. 

3.4. Experimental Design 
The experimental design for three models mainly includes model training, remote 

sensing inversion, and time-series reconstruction. We selected remote sensing data and 
Argo gridded data from 2005 to 2014 (120 months) as the training dataset and from 2016 
to 2018 (36 months) as the validation dataset. We established the relationship model be-
tween the sea surface and subsurface after tuning the hyperparameters. Then, we recon-
structed longtime-series OHC datasets. The Argo, EN4, IAP, ORAS5, and OPEN datasets 
were used to evaluate the accuracy (determination coefficient (R2), the root-mean-square 
error (RMSE), and relative error in the results in this study. 
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This study expects that LSTM will achieve good reconstruction performance. So, the 
model requires that the hyperparameters be determined, i.e., the number of layers, hidden 
units, iterations, and time steps. The mean absolute error (MAE) is used as the loss func-
tion, the adaptive moment estimation (Adam) is used as the optimizer, and the rectified 
linear unit (ReLU) is used as the activation function of all layers. The MAE changes of the 
experimental hyperparameters are partly shown in Figures 1 and 2. When there is only 
one LSTM layer, the MAE first decreases and then increases as the number of hidden neu-
rons increases. When the number of hidden neurons is set to 120, the model error is the 
lowest, and the average value is 0.2407. Upon adding another layer, the MAE changes 
within a small range but gradually stabilizes. Considering the model performance and 
fitting effect, the number of hidden neurons of the two layers is set to 120, and the average 
error of the model is the lowest (0.2235). This study tests the time step in the range of 1–
12 months. The results show that when the time step is 3, the model error, i.e., RMSE, is 
the lowest, followed by those at time steps 9, 10, and 4. The worst accuracy is that for time 
step 8. The model has the best performance and greatest robustness when the time step is 
3. 

 
Figure 1. LSTM performance according to the number of layers and hidden units measured with loss function MAE in 
OHC300 m retrieval. The different colored lines denote the MAE with different hidden units (20, 60, 100, 120, 140, 160) in 
the LSTM layer. (a) Denotes the MAE with only one layer, (b) denotes the MAE with two layers based on the previous 
layer as the epoch increases. Line 20 means that there are 20 hidden units in the current layer; line 60 means there are 60 
hidden units in the current layer, and so on. The lines in the figure have been smoothed by a running mean filter. 

 
Figure 2. LSTM performance for the time step measured with the RMSE in OHC300 m retrieval. The histogram represents 
the RMSE with different time steps (1–12 months) in the LSTM model. Unit: J. 

After a series of experiments, we determined that the model in this study must have 
four layers: the input layer, two LSTM layers, and a dense layer. The two LSTM layers 
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both contain 120 hidden neurons; the epoch parameter is set to 40, and the time step for 
predicting OHC300 m is set to 3. The dropout rate used in each layer is set to 0.3 to prevent 
overfitting. The optimal model parameters are shown in Table 2. 

Table 2. Parameters of the LSTM model and optimal values after tuning for OHC300 m. 

Hyperparameters 
Meaning 
(Default) 

Optimal Values 

num_layers The layer of the LSTM model (1) 2 
num_units The number of neurons in the first layer 120 

dropout 
The probability of randomly discarding the number 

of neurons in the first layer (0) 
0.3 

num_units The number of neurons in the second layer 120 

dropout 
The probability of randomly discarding the number 

of neurons in the second layer (0) 
0.3 

time_step The number of moments in each sample (1) 3 

batch_size 
The number of sample input into the model each 

time 
6 

The values of the above parameters may not be optimal, but considering the loss 
function and accuracy evaluation, the model’s prediction result is within an acceptable 
range. For predictions at different depth ranges, the parameters were adjusted appropri-
ately; that is, for LSTM, the time steps were set to 2 for 0–100 m, 3 for 0–300 m, 6 for 0–700 
m, 4 for 0–1000 m, 5 for 0–1500 m, and 5 for 0–2000 m. 

For LightGBM, there are three important parameters: n_estimators (the number of 
residual trees), learning_rate, num_leaves (control the number of leaf nodes). The perfor-
mance is well optimized with n_estimators = 1200; learning_rate = 0.1; and num_leaves = 
80. Currently, the model’s error is the lowest, and its prediction ability is stable (RMSE = 
6.01 × 1018 J). For RFs, there are two important parameters: ntree (the number of decision 
trees in the model), and mtry (the number of features contained in each decision tree). The 
performance of the RFs model is well optimized with ntree = 300 and mtry = 6 (RMSE = 
5.97 × 1018 J). 

4. Results and Discussion 
4.1. Monotemporal Prediction 

Figure 3 shows the spatial distribution of OHC300 m in the monotemporal prediction 
in July 2015, retrieved by the LSTM and LightGBM models, compared with Argo and IAP 
validation data. Overall, the accuracy of the two models relative to the Argo gridded data 
is as follows: RMSE = 5.85 × 1018 and R2 = 0.9964 for LSTM and RMSE = 6.31 × 1018, and R2 
= 0.9959 for LightGBM. The spatial distribution of bias (“LSTM & Argo” refers to LSTM-
estimated OHC minus the Argo gridded data, “LSTM & IAP” refers to LSTM-estimated 
OHC minus the IAP data, and so on) between our models and validation datasets is 
shown in Figure 4. The bias is not significant in the Indian Ocean, but it is distinctive in 
the equatorial Pacific Ocean, the Southern Ocean and the Northern Atlantic Ocean. This 
may be related to complex ocean–atmosphere interactions and the large-scale ocean cir-
culation in these areas (i.e., El Niño and the Antarctic Circumpolar Current) [34,52]. These 
natural internal climate variabilities and ocean circulations influence heat redistribution. 
On the whole, most of the bias show green with small values close to zero. The pattern of 
bias from the LSTM model exhibits more even and continuous output than that of 
LightGBM (Figure 4). 
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Figure 3. OHC spatial distribution in the upper 300 m in July 2015 from the (a) LSTM and (b) 
LightGBM model predictions and the (c) Argo and (d) IAP validation datasets. Unit: J. 

 
Figure 4. Spatial distribution of bias between our model-estimated results and validation dataset for OHC300 m in July 
2015. (a) is the bias between LSTM and Argo gridded data, (b) is the bias between LightGBM and Argo gridded data, (c) 
is the bias between LSTM and IAP data, and (d) is the bias between LightGBM and IAP data. Unit: J. 

Figure 5 shows the prediction accuracy change in two years (2015 and 2018) in dif-
ferent seasons. The accuracy of the LSTM is higher than LightGBM for each season in 2015 
and 2018 thanks to the combined use of R2 and RMSE, suggesting that LSTM outperforms 
LightGBM for OHC estimations. However, for different seasons, the accuracy changes of 
the two models are consistent; this may be related to the seasonal variability of the oceanic 
environment. In 2015, the prediction accuracy decreased with the seasons. In fact, El Niño 
experienced a rapid development in this year. In 2018, the prediction accuracy of the two 
models fluctuated with the seasons; RMSE in July was the highest, and in April was the 
lowest. In this year, the ENSO phase transformed from negative into positive, i.e., from 
La Niña to El Niño. Furthermore, intensive circulation processes may also affect the pre-
diction performance of the model [46]. We found that the accuracy of the two models 
decreased when complex ocean–atmosphere interactions were considered, which would 
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interfere with the model training. During the experiment, we found that the warming sig-
nal intensities detected by the two models were lower than the warming intensity of IAP, 
and that the model predicted OHC was underestimated compared with that of the IAP 
data (Figure 4c, d). However, regardless of the temporal predictions, LSTM was slightly 
better than LightGBM. With increasing depths, the prediction ability of LightGBM was 
significantly lower than that of LSTM (Tables 3 and 4), reflecting the advantages of LSTM 
in deep-sea OHC retrieval. 

 
Figure 5. Accuracy of OHC300 m in (a) 2015 and (b) 2018 in different seasons from the LSTM and LightGBM models 
compared with the Argo data. Lines and histograms with different colors are the R2 and RMSE from different models. 
RMSE Unit: J. 

Table 3. Accuracy of OHC from the LSTM and LightGBM models compared with the Argo data at 
different depths in July 2015. 

 
LSTM LightGBM 

R2 RMSE R2 RMSE 
0–100 m 0.9970 2.47 × 1018 0.9967 2.59 × 1018 
0–300 m 0.9964 5.88 × 1018 0.9955 6.62 × 1018 
0–700 m 0.9963 8.93 × 1018 0.9934 1.23 × 1019 

0–1000 m 0.9967 1.02 × 1019 0.9927 1.50 × 1019 
0–1500 m 0.9970 1.12 × 1019 0.9932 1.68 × 1019 
0–2000 m 0.9970 1.21 × 1019 0.9934 1.80 × 1019 

Table 4. Accuracy of OHC from the LSTM and LightGBM models compared with the Argo data at 
different depths in July 2018. 

 
LSTM LightGBM 

R2 RMSE R2 RMSE 
0–100 m 0.9976 2.20 × 1018 0.9973 2.29 × 1018 
0–300 m 0.9969 5.48 × 1018 0.9961 6.09 × 1018 
0–700 m 0.9955 1.02 × 1019 0.9944 1.13 × 1019 

0–1000 m 0.9958 1.15 × 1019 0.9940 1.36 × 1019 
0–1500 m 0.9963 1.23 × 1019 0.9945 1.51 × 1019 
0–2000 m 0.9967 1.31 × 1019 0.9951 1.55 × 1019 

4.2. Long-Term Reconstruction 
Finally, the LSTM and LightGBM model was executed to reconstruct the long time-

series OHC from 1993–2020 and fill the pre-Argo data gaps. Here, a classic RFs was sup-
plemented as a comparison to validate the reliability of the LSTM model. We adopted 
different algorithms and datasets for comparison and validation. Figure 6 shows the long-
term OHCA prediction results (2005–2014 baseline period) in the upper 2000 m based on 
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the LSTM, LightGBM and RFs models, which were simultaneously compared with those 
from existing well-known datasets (IAP, EN4, ORAS5 and OPEN). In the upper 100 m, 
the heat content varied greatly with the time-series and reached high values during 1997–
1998 and 2015–2016 for all datasets. The heat content increased steadily from 2000 to 2010 
and 2012 to 2015, showing that the ocean kept storing heat during the period. More spe-
cifically, a similar increase in 2017–2020 was revealed in all datasets, which consistently 
demonstrated significant and large-scale warming. In the upper 300 m, the inversion re-
sults show that all products experienced an increase at each OHC depth starting in 1993, 
revealing a robust warming signal in the ocean. However, the warming rate was not iden-
tical in all datasets. The black line represents the LSTM prediction result in this study 
(called OPEN-LSTM). The gray range is the uncertainty, i.e., twice the standard deviation 
of the five different ensembles of training datasets sliding back one year at a time. The 
purple and green lines represent the results of the machine learning method LightGBM 
and RFs (called OPEN-LightGBM and OPEN-RFs). The red, green, and yellow lines rep-
resent IAP, EN4, and ORAS5 data, respectively. The blue line denotes the OPEN dataset. 
It can be seen that the OPEN-LSTM is more consistent with the IAP and EN4 datasets than 
the OPEN-LightGBM and OPEN-RFs, as well as the OPEN data. 
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Figure 6. Monthly OHCA time-series in the upper 300 m, 700 m, 2000 m in the global ocean from 
different model-estimated results and validation datasets from 1993 to 2020. Different lines repre-
sent different datasets. The black line represents the LSTM model-estimated results (named OPEN-
LSTM). The green line represents the RFs model-estimated results (named OPEN-RFs). The purple 
line represents the LightGBM model-estimated results (named OPEN-LightGBM). The red, green, 
yellow lines represent three validation datasets, IAP, EN4, ORAS5. The blue line represents the 
compared ANN-based OPEN dataset. Gray shading is the uncertainty for twice the standard devi-
ation (±2σ) of the training dataset sliding back five ensembles per one-year stride. Twelve-month 
running means were used to filter high-frequency signals. The baseline of the time series is 2005–
2014. Unit: J. 

In the upper 700 m and 2000 m, the OPEN-LightGBM and OPEN-RFs datasets were 
significantly different in 1997–1998, and appeared higher after 2015, the same tendency as 
the OPEN dataset (compared with IAP and EN4 datasets). The deviation and abnormality 
of the reconstruction of the two models in 1997–1998 and 2015–2016 may have been caused 
by strong El Niño, resulting in poor model training in the sea subsurface. However, LSTM 
can deal with long time-series data reconstruction using its gate control structure to better 
predict results. The OPEN data may have been affected by the structure of the ANN 
model, and the parameters were not tuned appropriately for time-series prediction. The 
uncertainty decreases below 1000 m, which may be caused by the weakened predictive 
ability in the ocean’s interior and the stability of the physical, dynamic factors inside the 
ocean. Generally, a high level of consistency for monthly OHCA change between the 
OPEN-LSTM and well-known datasets (IAP, EN4) shows that LSTM is robust and per-
forms best in long-term OHC predictions. 

Since the time-series trends of OPEN-LightGBM and OPEN-RFs are close, and 
LightGBM has higher accuracy than RFs, here, we only chose OPEN-LightGBM to com-
pare with OPEN-LSTM. We calculated the correlation of the time-series results of the two 
models with IAP data. Overall, LSTM was better than LightGBM for different depth 
ranges, and the lowest R2 and maximum RMSE at different depths were both in 1997 and 
2015. In the long time-series (from 1993 to 2020), LSTM yielded superior results (the aver-
age RMSE values were 3.81 × 1018 for OHC100 m; 1.08 × 1019 for OHC300 m; 2.23 × 1019 for 
OHC700 m; 3.02 × 1019 for OHC1000 m; 3.72 × 1019 for OHC1500 m; and 4.45 × 1019 for 
OHC2000 m) than that of LightGBM (the average RMSE values were 3.90 × 1018 for 
OHC100 m; 1.12 × 1019 for OHC300 m; 2.31 × 1019 for OHC700 m; 3.27 × 1019 for OHC1000 
m; 3.87 × 1019 for OHC1500 m; and 4.56 × 1019 for OHC2000 m) (Table 5). Figure 7 shows 
the accuracy of LSTM and LightGBM for OHC300 m from 1993 to 2020. In general, the 
results show that OPEN-LSTM has the smallest degree of error and the highest accuracy. 
The accuracy of the LightGBM model is inferior to that of LSTM. 
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Figure 7. Accuracy R2 and RMSE of the OPEN-LSTM and OPEN-LightGBM results for the long 
time-series OHC300 m from 1993 to 2020 compared with those of IAP. RMSE Unit: J. 

Table 5. Accuracy of OHC from LSTM and LightGBM models compared with the IAP data in dif-
ferent depths in time-series 1993–2020. 

 LSTM LightGBM 
 R2 RMSE R2 RMSE 

0–100 m 0.9924 3.81 × 1018 0.9921 3.90 × 1018 
0–300 m 0.9877 1.08 × 1019 0.9870 1.12 × 1019 
0–700 m 0.9785 2.23 × 1019 0.9764 2.31 × 1019 

0–1000 m 0.9750 3.02 × 1019 0.9723 3.27 × 1019 
0–1500 m 0.9659 3.72 × 1019 0.9634 3.87 × 1019 
0–2000 m 0.9590 4.45 × 1019 0.9570 4.56 × 1019 

Figure 8 shows the spatial distributions of the spatiotemporal error for OHC300 m 
from 1993 to 2020 using OPEN-LSTM and OPEN-LightGBM with IAP data. The accuracy 
R2 of the two models is overall greater than 0.4. However, the spatial distributions of R2 
(greater than 0.6) between the two estimation datasets show differences. The high corre-
lation R2 for LSTM (greater than 0.6) implies a wider distribution than that of LightGBM 
in the equatorial Pacific, the north of the Pacific, the north of the Atlantic, the north of the 
Indian Ocean, and the Southern Ocean. The RMSE also shows that LSTM reduced the 
error significantly in data from the Southern and Pacific Oceans compared with 
LightGBM. These results may be due to the vast areas and abundant eddies in the Pacific 
and Southern Oceans, especially given the sparse floats observations from the Southern 
Ocean. In addition, the regions of the western boundary currents where many eddies oc-
cur, such as the Kuroshio (near 145°E, 42°N), the Gulf Stream (near 48°W, 45°N), and the 
Brazil–Malvinas Confluence Region (near 55°W, 46°S), including the region with the Ant-
arctic Circumpolar Current, have high RMSE. Further, the Argo network distribution is 
insufficient in high-latitude oceans and marginal seas, showing some differences in these 
areas in these two datasets. The spatiotemporal error indicates that LSTM has advantages 
in time-series and global-scale reconstruction. 
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Figure 8. Spatial error distributions of the OPEN-LSTM and OPEN-LightGBM datasets in each 1° × 1° grid of OHC300 m 
from 1993 to 2020 compared with those of IAP. RMSE Unit: J. 

4.3. The Relative Error in Different Basin Scales 
The choice of baseline climatology is essential in studying historical OHC change. 

The climatological standard selected in this paper was 2005–2014, but this happens to also 
be the model training period (Figure 6). The period for ORAS5 is from 1979 to 2018. So, 
we calculated the relative error (the average value for the Argo data subtracted from the 
average value of the estimated or validated datasets and divided by the former value) 
from 2005 to 2018. Figures 9 and 10 show the relative error of the models-estimated da-
tasets at different depths and ocean basins and compared with those of other datasets 
(IAP, EN4 and ORAS5). 

 
Figure 9. The relative error of several datasets compared with Argo gridded data at the Global 
Ocean (GO) scale at different depth ranges in the period of 2005 to 2018. The different color histo-
grams represent different ocean depths. 
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Figure 10. The relative error of several datasets compared with that of the Argo gridded data for the 
four ocean basins (Indian Ocean (IO), Atlantic Ocean (AO), Pacific Ocean (PO), Southern Ocean (SO) 
in the upper 300 m, 700 m, 2000 m from 2005 to 2018. The different colored histograms represent 
different ocean basins. 
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For different depths in the global ocean, the value of the relative error for LSTM was 
the smallest in these datasets (Figure 9). The value between EN4 and ORAS5 was similar 
for different depths, and the error was larger in 0–700 and 0–1000 m. The value for IAP 
changed significantly, and the error was larger at 0–100 m and 0–700 m. For different 
ocean basins, the value of the estimated dataset OPEN-LSTM was slightly lower than that 
of OPEN-LightGBM at different depth ranges and basins (Figure 10). For OHC100 m and 
300 m, the value for EN4 in the Southern Ocean was higher than those of other basins and 
datasets; this may have been due to the XBT instrument bias, and the fact that the instru-
ment detect depth was above 700 m. As the depth increased, the value for validation da-
tasets was large in the Pacific Ocean and the Southern Ocean. For OPEN-LSTM, the error 
was mainly in the Southern Ocean. But for OPEN-LightGBM, the error was mainly dis-
tributed in the Indian Ocean, the Pacific Ocean, and the Southern Ocean below 700 m. In 
summary, the relative error of LSTM was less than that of LightGBM and those of IAP, 
EN4, and ORAS5 over the four ocean basins, while the accuracy of OPEN-LSTM was the 
closest to that of the Argo gridded data. 

4.4. OHC Changes in Different Periods and Depths 
This study calculated the average global warming trend for OHC in different periods 

(pre-Argo period, 1993–2004; long time-series, 1993–2020) and depths for several datasets 
to quantitatively evaluate the global warming variability of OHC (Tables 6). As the depth 
increased, the difference for the model-estimated datasets and validation datasets became 
more significant. However, the OPEN-LSTM dataset was more consistent with IAP, EN4 
and ORAS5 than OPEN-LightGBM and OPEN-RFs at different periods and depth ranges. 
Moreover, the OPEN-RFs dataset contained significant underestimations compared to the 
other datasets. It is worth noting that the average global warming trend for OHC in 1993–
2020 was very close in the OPEN-LSTM and IAP datasets. 

Figure 11 shows the linear trends of OHC changes from three datasets (OPEN-LSTM, 
OPEN-LightGBM and IAP) during the 1993 to 2004 and 1993 to 2020 periods. From 1993 
to 2004, the signals from three datasets were generally consistent. Warming signals were 
evident in the western Pacific Ocean, Southern Ocean, North Atlantic Ocean and eastern 
Indian Ocean. Cooling signals were observed in the eastern Pacific Ocean, Southern 
Ocean, and Western Indian Ocean. From 1993 to 2020, the significant difference was that 
the IAP dataset exhibited more distinctive warmer signals in the Atlantic, Indian and 
Southern Oceans compared to the other datasets. In addition, the OPEN-LightGBM da-
taset showed two cooling signals in the Southern Ocean, while the IAP and OPEN-LSTM 
did not. However, the signal intensities for the OPEN-LSTM dataset were weaker in some 
regions than those of IAP in both the pre-Argo and long time-series. 
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Figure 11. Linear trends of OHC change for different datasets in each 1° × 1° grid for two periods, i.e., 1993–2004 (the left 
panels for the pre-Argo period; the legend range is between −1.5 and 1.5 × 109) and 1993–2020 (the right panels for the long 
time series; the legend range is between −1 and 1 × 109), in the upper 2000 m for the (a,b) OPEN-LSTM, (c,d) OPEN-
LightGBM, and (e,f) IAP datasets. Unit: J/m2/decade. 

Additionally, for the EN4 and ORAS5 datasets, the trends of OHC changes from 1993 
to 2020 were slightly higher than those of OPEN-LSTM, and presented more significant 
spatial heterogeneity on a global scale. The ocean warming rate during different periods 
for different datasets exhibited some differences, but the OPEN-LSTM dataset was most 
consistent with IAP in terms of the general trend of OHC change. 

Table 6. Average global warming trend for OHC at different periods and depths for several datasets (× 108 J/m2/decade). 

Depths OPEN-LSTM OPEN-LightGBM OPEN-RFs IAP EN4 ORAS5 
 1993–2004/1993–2020 

0–100 m 0.68/0.60 0.67/0.61 0.63/0.57 0.87/0.55 0.79/0.45 0.76/0.54 
0–300 m 1.56/1.31 1.64/1.43 1.42/1.19 1.82/1.70 2.03/1.18 1.96/1.34 
0–700 m 2.39/1.94 2.25/2.00 1.83/1.60 2.94/1.83 3.13/1.86 3.05/2.22 
0–1000 m 2.71/2.15 2.44/2.21 1.95/1.76 3.33/2.11 3.47/2.19 3.34/2.60 
0–1500 m 3.08/2.47 2.63/2.36 2.01/1.86 4.03/2.64 4.10/2.71 3.95/3.28 
0–2000 m 3.26/2.67 2.67/2.41 2.12/1.92 4.15/2.93 4.20/3.08 4.36/3.78 

Figure 12 shows the OHC anomaly for different years (1995, 2000, 2005, 2010, 2015, 
and 2020) from two datasets (OPEN-LSTM and IAP) in the upper 2000 m. The OPEN-
LSTM was much weaker than the IAP product in the time-series. Generally, the two da-
tasets showed consistent OHC anomaly patterns in each year. From 1995 to 2020, the 
ocean warmed in the eastern Pacific, Southern, western Atlantic and North Indian Oceans. 
The anomaly patterns in OPEN-LSTM were less significant than those in the EN4 and 
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ORAS5 datasets on a global scale, but more similar to those in the IAP dataset. The OHC 
anomaly patterns for the validation datasets presented more significant spatial heteroge-
neity (with distinct warming or cooling signals) than OPEN-LSTM on a global scale, while 
the OPEN-LSTM dataset, based on remote sensing, exhibited more distinctive spatial con-
sistency in the OHC patterns than the validation datasets. 

 
Figure 12. OHC anomaly for six years (1995, 2000, 2005, 2010, 2015, and 2020) in the upper 2000 m, (left panels) OPEN-
LSTM dataset; (right panels) IAP dataset. Figures (a), (c), (e), (g), (i), (k) represent the OHC anomaly for OPEN-LSTM 
dataset in 1995, 2000, 2005, 2010, 2015, 2020 respectively; (b), (d), (f), (h), (j), (l) represent the OHC anomaly for IAP dataset 
in 1995, 2000, 2005, 2010, 2015, 2020 respectively; The baseline period was 2005–2014. Unit: J/m2. 

Figures 13 and 14 show the OHC anomaly for different depths (100, 300, 700, 1000, 
1500, and 2000 m) from two datasets (OPEN-LSTM and IAP) in 2015 and 2020. For 2015, 
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it appeared that there were consistent patterns between the two datasets at each layer. The 
OHC anomaly showed an eastern cold tongue and western warm pool patterns with 
strong variability. As the depth increased, the anomaly signals in Gulf Stream and subpo-
lar gyre became more significant in the IAP dataset than in the OPEN-LSTM. From the 
upper 700 m to upper 2000 m, the IAP dataset showed that the Southern Ocean had expe-
rienced a gradually warming, while the same signal in the OPEN-LSTM dataset was 
somewhat weaker. These differences may be attributed to the different production meth-
ods of the two datasets. The IAP dataset was reconstructed by temperature products 
based on the En-OI interpolation mapping method, while the OPEN-LSTM OHC dataset 
is directly predicted by a deep learning model based on satellite remote sensing combined 
with Argo gridded data. For 2020, the spatial distribution of the OHC anomaly for the 
OPEN-LSTM and IAP datasets exhibited a certain degree of inconsistency. The IAP da-
taset presented more significant spatial heterogeneity for the OHC pattern, but our OPEN-
LSTM dataset showed a more consistent spatial pattern over a global scale, and demon-
strated a stronger warming signal in the deeper layers (from 700 m to 2000 m); this is 
consistent with the previous studies indicating that warming in the subsurface and deeper 
ocean is more significant than in the upper ocean [9,10,13]. 

 
Figure 13. OHC anomaly in 2015 for different depths (100, 300, 700, 1000, 1500, and 2000 m) (left 
panels) OPEN-LSTM dataset; (right panels) IAP dataset. Figures (a), (c), (e), (g), (i), (k) represent 
the OHC anomaly in 2015 for OPEN-LSTM dataset in 100 m, 300 m, 700 m, 1000 m, 1500 m, 2000 m 
respectively; (b), (d), (f), (h), (j), (l) represent the OHC anomaly in 2015 for IAP dataset in 100 m, 300 
m, 700 m, 1000 m, 1500 m, 2000 m respectively; The baseline period was 2005–2014. Unit: J/m2. 
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Figure 14. OHC anomaly in 2020 for different depths (100, 300, 700, 1000, 1500, and 2000 m): (left 
panels) OPEN-LSTM dataset; (right panels) IAP dataset. Figures (a), (c), (e), (g), (i), (k) represent 
the OHC anomaly in 2020 for OPEN-LSTM dataset in 100 m, 300 m, 700 m, 1000 m, 1500 m, 2000 m 
respectively; (b), (d), (f), (h), (j), (l) represent the OHC anomaly in 2020 for IAP dataset in 100 m, 300 
m, 700 m, 1000 m, 1500 m, 2000 m respectively; The baseline period was 2005–2014. Unit: J/m2. 

5. Conclusions 
This study aimed to establish a robust and efficient model to improve the inversion 

accuracy of OHC based on the OPEN dataset. In this study, we proposed a deep learning 
method that considers temporal dependence, known as LSTM, to estimate OHC by com-
bining remote sensing and Argo gridded data with spatial and temporal information. The 
parameters of the LSTM model needed to be tuned, especially the time step, which could 
influence the accuracy of the predictions. Additionally, the optimal time step of the model 
in different depth ranges was not the same. The main conclusions of this paper are as 
follows: (1) this study demonstrated that the performance of the LSTM model is superior 
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compared to the LightGBM and RFs algorithms. The reconstructed OPEN-LSTM dataset 
showed a high level of consistency for monthly OHCA time-series change compared with 
the IAP and EN4 datasets; (2) the spatiotemporal error distribution of the OPEN-LSTM 
dataset was also lower than those of OPEN-LightGBM and OPEN-RFs on a global scale. 
The relative error showed that the OPEN-LSTM was more reliable than OPEN-LightGBM 
and OPEN-RFs compared with Argo data in different depths and basins; (3) the average 
global warming trend for OHC from 1993 to 2020 was similar to those in the OPEN-LSTM 
and IAP datasets, although there were some inconsistent patterns between the two da-
tasets for the trends of OHC change during the 1993–2004 and 1993–2020 periods. The 
warming and cooling signals for OPEN-LSTM dataset were a little weaker than those of 
IAP, EN4 and ORAS5; (4) the OHC anomaly for the OPEN-LSTM dataset in different years 
and depth ranges was generally consistent with IAP. In 2020, the IAP dataset presented 
significant spatial heterogeneity for OHC pattern, while OPEN-LSTM showed a more con-
sistent spatial pattern over a global scale, and exhibited a stronger warming signal in the 
deeper layers. 

This study reconstructed the OPEN-LSTM dataset based on remote sensing and Argo 
data, in order to fill in gaps from the pre-Argo period and provide a new perspective for 
the study of global ocean warming in the upper 2000 m. For deep learning techniques, 
adjusting the model parameters is crucial for accurate model predictions. With the devel-
opment of artificial intelligence technology, automatic parameter optimization will be-
come essential in future studies. Additionally, considering relevant oceanic physical fac-
tors in order to more accurately determine OHC is likely to prove useful. Using model 
and reanalysis data will extend the time-series range, thereby facilitating the study of de-
cadal and multidecadal periods, and will provide a deeper understanding of ocean and 
climate variabilities. At present, the Argo float observations only cover the global ocean 
for the upper 2000 m, so the prediction depth for OHC was limited in this study. In future, 
with the implementation of the deep-Argo plan, OHC predictions at greater depths, which 
are more meaningful for global climate change studies, will be possible by combining sat-
ellite remote sensing data with Argo observations. 
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