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Abstract: Feature description is a necessary process for implementing feature-based remote sensing
applications. Due to the limited resources in satellite platforms and the considerable amount of
image data, feature description—which is a process before feature matching—has to be fast and
reliable. Currently, the state-of-the-art feature description methods are time-consuming as they need
to quantitatively describe the detected features according to the surrounding gradients or pixels. Here,
we propose a novel feature descriptor called Inter-Feature Relative Azimuth and Distance (IFRAD),
which will describe a feature according to its relation to other features in an image. The IFRAD will
be utilized after detecting some FAST-alike features: it first selects some stable features according to
criteria, then calculates their relationships, such as their relative distances and azimuths, followed
by describing the relationships according to some regulations, making them distinguishable while
keeping affine-invariance to some extent. Finally, a special feature-similarity evaluator is designed to
match features in two images. Compared with other state-of-the-art algorithms, the proposed method
has significant improvements in computational efficiency at the expense of reasonable reductions in
scale invariance.

Keywords: feature descriptor; feature matching; feature extraction; relative azimuth and distance;
Image registration

1. Introduction

Feature-based registration is a method for matching some similar local regions in
preparation for aligning images, which is widely employed by many remote sensing
applications [1–3] such as image stitching [4–6], multi-spectral image fusing and PAN-
sharpening [7,8], and so forth. Despite the diversity of applications, feature extraction
is the crucial step prior to feature matching. It consists of feature detection and feature
description. Feature detection finds some salient local regions, such as blobs, edges and
corners, which are called features, and then quantitatively describes them as feature vectors
in the feature description process. Subsequently, some similar feature pairs from two
images will be further determined by comparing the similarity of these feature vectors,
and the local image shifts are then determined in preparation for alignment.

At present, various methods of feature extraction have been proposed and have shown
outstanding performance in different aspects. References [9,10] proposed the Features from
Accelerated Segment Test (FAST), which is used to detect blob- or corner-like features according
to intensity changes, showing promising performance in speed. Later, reference [11] refined
the FAST with a machine learning approach, the performance of which was improved both
in repeatability and efficiency. Though the family of FAST was expanded for various usages,
it can only detect a series of features in images. To discriminate features, some feature
detectors were proposed with their corresponding descriptors, such as SIFT [12], SURF [13],
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GLOH [14], and so forth. The descriptors exploit the gradient changes to measure orientation
and scale-space, and then form feature descriptor vectors to quantitatively describe these
detected features. In the feature matching stage, a similarity measure, such as sum of
absolute differences (SAD) or sum of squared differences (SSD), is usually applied to determine
some feature-pairs between two images; finally, the relative shift between two images can
be estimated.

Other types of registration algorithms include area-based registration methods, which
estimate the translational shifts by directly exploiting the intensity information to calculate
some similarity measurements such as normalized cross-correlation, mutual informa-
tion [15,16], and so forth. Some variants are also proposed to expand its application range:
Reference [17] enabled an area-based method to estimate relative rotations and scales by
introducing the Fourier–Mellin transform (FMT); Reference [18] introduced a noise-robust
FMT-based registration method by introducing a special filter called the weighted column
standard deviation filter. Although they have advantages in stability and precision, their
applications in remote sensing are rare due to their time-consuming calculation of similarity
measures for large-scale images; moreover, they cannot estimate more general affine or
projective distortions, which is more common in remote sensing images.

Nowadays, some registration frameworks that employ optical flow or neural net-
works have also been proposed. Since optical flow methods can estimate view-difference
at the pixel-level [19], they are usually used in video-tracking or motion-estimation. In
its application, it is usually combined with feature-based or area-based methods, and
some alternatives have also been developed from various aspects [20]. Reference [21] pro-
posed a framework combining feature-based and optical flow to achieve region-by-region
alignment. Neural networks-based frameworks are essentially methods of supervised
learning, therefore considerable expert knowledge and manpower are needed to prepare
handcrafted training data. Besides, neural networks are usually used as tools to boost the
performance of feature-based registration methods.

In this work, we propose a novel feature descriptor that can quickly describe each
feature point, but also reflect the spatial relationship of each feature, therefore providing
the potential for on-orbit applications. Our contribution can be summarized as follows:

1. Explain a concept for Inter-Feature Relative Azimuth and Distance (IFRAD);
2. Propose a novel feature descriptor base on IFRAD;
3. Design a special similarity measure suitable for the proposed descriptor;
4. Refine the proposed descriptor to improve the scale-invariance and matching accuracy.

The remaining sections are organized as follows: Section 2 reviews the principle of
some state-of-the-art methods, wherein the main differences of our proposed method from
others are described; in Section 3, we propose the IFRAD descriptor, where its principles are
explained. Experiments are conducted in Section 4 for finding the optimized parameters, as
well as the comparison between our descriptor and others; then, some drawbacks of IFRAD
and their causes are discussed in Section 5; finally, we draw conclusions in Section 6.

2. Background

The state-of-the-art feature extraction methods can detect features and describe them
discriminatively while keeping affine-invariant to some extent, such as SIFT [12], SURF [13],
GLOH [14], BRISK [22], ORB [23], FREAK [24], and their alternatives [25,26]. However,
they need to describe the features according to their surrounding pixels or gradient changes,
which will limit the computational efficiency. With SIFT as an example, for a given image
I(x, y), it first generates scale space images L(I)(x, y, σ) by convoluting I(x, y) with different
standard deviations σ of Gaussian function G(x, y, σ):

L(I)(x, y, σ) = G(x, y, σ) ∗ I(x, y), (1)
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where G(x, y, σ) = 1/(2πσ2) exp
[
−(x2 + y2)/2σ2]. Then, a difference of Gaussian (DoG)

of k-scale can be computed by:

D(I)(x, y, kσ) = L(I)(x, y, kσ)− L(I)(x, y, σ), (2)

where k is a constant difference of two nearby scales. By stacking these DoG, an octave
of a scale-space image block is formed. Meanwhile, with a smaller size of images down-
sampled from I(x, y), scale-space image blocks of various octaves are also formed to build a
DoG pyramid, from which the scale space local extrema and their locations can be roughly
estimated. These extrema are called feature point candidates. To improve the stability:
(1) accurate feature point localization is performed by interpolating locations of these
extrema with a 3D quadratic function; and (2) the edge response is eliminated according to
a 2× 2 Hessian matrix. In the feature description step, for each L(I)(x, y, kσ) in the pyramid,
the gradient magnitude and orientation of each pixel are precomputed according to:

m(xi, yi, σi) =

√[
L(I)(xi + 1, yi, σi)− L(I)(xi − 1, yi, σi)

]2
+
[
L(I)(xi, yi + 1, σi)− L(I)(xi, yi − 1, σi)

]2 (3)

θ(xi, yi, σi) = tan−1

[
L(I)(xi, yi + 1, σi)− L(I)(xi, yi − 1, σi)

L(I)(xi + 1, yi, σi)− L(I)(xi − 1, yi, σi)

]
. (4)

Subsequently, for each previously determined feature point f (I)
i , its local orientation

histogram is formed, the peak of which is assigned to f (I)
i as a dominant orientation. Finally,

the histogram is remapped according to the peak, and is then formed as a feature vector to
describe the feature.

SIFT shows outstanding performance in scale- and rotation-invariance, and other
algorithms that adopt a similar strategy have been proposed. Compared with SIFT, SURF
adopts several operations to speed up the algorithm, such as integral image and approxi-
mation of second order Gaussian derivatives, and so forth. Recently, extensive literature
has proposed some feature descriptors with improvements in affine invariance, compu-
tational efficiency and accuracy [1,2,27–29]. Despite their robustness in affine-invariance,
their heavy dependency on exploiting gradient changes and image pyramids results in
the complexity of these algorithms, which limits the applications in hardware platforms,
therefore many proposed methods for remote sensing applications have been used only
in off-line or post-processing applications [2,30–32]. In pursuing real-time applications,
some GPU-accelerated algorithms were proposed to reduce the time consumption. Refer-
ence [33] proposed GPU-accelerated KAZE, which is about 10× faster than the CPU-version
of KAZE; reference [34] implemented a GPU version of SIFT, with an accelerated factor
of 2.5×. However, GPU is merely a tool for acceleration; it does not reduce the com-
plexity of these algorithms. Moreover, spaceborne cameras are usually boarded with
field-programmable gate arrays (FPGA), in which only simpler algorithms can be imple-
mented, and few real-time remote sensing applications that utilize feature-based methods
have been reported [35]. Therefore, a simpler algorithm for feature extraction has become
an urgent need for on-orbit applications.

Unlike those aforementioned methods, IFRAD does not need to form any image
pyramid, and the gradient change is only precomputed in the feature detection stage before
IFRAD, which greatly alleviates the burden of computation. With a series of detected
features in an image beforehand, IFRAD describes each feature according to its relations
(relative azimuths and distances) to other features. Its robustness in scale invariance is
assured by cosine similarity in the feature matching stage.

3. Methology

In this section, we will implement the IFRAD descriptor, its corresponding similarity
measure and its application in image registration. The overall flowchart is shown in
Figure 1. As mentioned in the last section, feature detection should be performed before
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IFRAD; for the sake of computational efficiency, we use FAST to detect a series of features.
We assume that we have two images: Figure 2a shows a reference image R(x, y), and
Figure 2b shows a sensed image S(x, y). Compared with Figure 2a, Figure 2b has a parallax
caused by about 20◦ yaw, and about 30◦ pitch; their parallax difference is shown in
Figure 2c.
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Figure 1. Flowchart of IFRAD-based Registration: In this paper, we use the classical FAST detector [10] in the Feature
Detection module.

(a) (b) (c)

Figure 2. Reference and Sensed Images: (a) Reference image R(x, y); (b) Sensed image S(x, y); (c) Parallax difference; In
(c), red channel shows R(x, y), while S(x, y) is shown in cyan channel, the parallax is caused by about 20◦ yaw, and about
30◦ pitch.

However, some feature detection methods with low computational complexity, such
as FAST, are prone to interference from some random factors, such as noise and image
distortion. Therefore, not all detected features are stable enough to ensure the repeatability
of our IRFAD descriptor since it will describe the inter-feature spatial relationship of each
feature. Therefore, it is necessary to select some stable features according to criteria.

3.1. Criterion for Selecting Secondary and Primary Features

Before obtaining FAST features, Gaussian smoothing is utilized to reduce the effect
of noise. When detecting features in the reference image R(x, y), the FAST detector will
return a set of N f features F(R) = { f (R)

i |i ∈ [1 . . . N f ]}, as well as their locations Loc( f (R)
i )

and response magnitudes Mag( f (R)
i ), where F(R) represents a set of detected features in R,

and f (R)
i denotes the ith feature. Since IFRAD will describe features according to spatial

relationships, the features near to the image center are more likely to be properly described,
as they can be described according to other features from all directions, which is impossible
for the features near to the edges or corners. Therefore, we should modulate the response
magnitude of a feature according to its distance from the image center, that is:
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Magm

(
f (R)
i

)
= Mag

(
f (R)
i

)
· exp

[
− (xi −M/2)2 + (yi − N/2)2

2 ·min(M, N)

]
, (5)

where Magm

(
f (R)
i

)
represents the modulated response magnitude of f (R)

i , and M and
N denote the width and height of image R. Intuitively, a stable feature has a stronger
response Magm( f (R)

i ). With this assumption, the f (R)
i in F(R) are sorted in descending

order of Magm( f (R)
i ); then we obtain a secondary-feature set F(R,SF) that contains the

strongest half of these features. This operation can be expressed by:

F(R,SF) =
{

f (R)
i

∣∣∣ f (R)
i ∈ F(R), i ∈ [1 . . . N f /2].

}
(6)

For simplicity, in the remainder of the paper, we use f (R,SF)
i to denote f (R)

i ∈ F(R,SF).
The process of selecting secondary features is illustrated in Figure 3.

(a) (b)

Figure 3. Illustration of Secondary Features: (a) All detected FAST-features in the reference image R(x, y) shown in Figure 2a;
(b) Secondary features marked with * in yellow; Both of these images are Gaussian smoothed before the feature detection
process; In (a), all the features are marked with blobs in different colors; the size of each blob represents the modulated
response strength of the corresponding feature.

However, in some circumstances, some patterns (such as corners or blobs) may have
an uncertain number of secondary features (as shown in Figure 4), which may vary to
different parallax, or the random distribution of noise. This will cause errors in the feature
matching process. To reduce this effect, we further determine primary features from these
secondary features according to the following steps:

1. Initial F(R,PF) as an empty primary-feature set, that is, F(R,PF) = ∅;

2. For each secondary-feature f (R,SF)
i , define its feature domain D( f (R,SF)

i ) with a radius

of R, centered by (xi, yi) = Loc( f (R,SF)
i ):

D( f (R,SF)
i ) =

{
(x, y)

∣∣∣(x− xi)
2 + (y− yi)

2 6 R2.
}

(7)

The radius R is an adjustable parameter, and will be further determined in experiments.
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3. If there exists no other secondary-feature f (R,SF)
j within D( f (R,SF)

i ) that has a response

Mag( f (R,SF)
j ) stronger than Mag( f (R,SF)

i ), then f (R,SF)
i ∈ F(R,PF). This criterion can be

expressed by:

f (R,SF)
i ∈ F(R,PF) s.t.

{
f (R,SF)
j

∣∣∣Loc( f (R,SF)
j ) ∈ D( f (R,SF)

i ), Mag( f (R,SF)
j ) > Mag( f (R,SF)

i ), i 6= j.
}

= ∅ (8)

The criterion is clarified in Figure 5; under this criterion, Features A,B,C,F,J,K,M,N will
be determined as primary features. In the remainder of the paper, we also use f (R,PF)

i to

denote f (R,SF)
i ∈ F(R,PF) for simplicity. The primary feature selection results of the reference

image are shown in Figure 6.

(a) (b)

Figure 4. The difference of the detected secondary features in the similar pattern but in different
parallax: (a,b) are local areas from Figure 2a,b, respectively. All the blobs are the secondary features;
the size and the color of the blobs both vary by the magnitude of responses. Note that some features
are shown as secondary features in one image, but do not appear in the other.

A:100

D:100

H:60

E:40

B:100

C:100

G:90
I:50

F:110

J:40

L:70
K:120

M:80

R

N:85

Figure 5. Determination of Primary Features: Assuming that there exist 14 secondary features
(presented as bold points A–N) in an image, the number represents the response intensity of each
feature. The circles (only four are shown for clarity) represent the domains of the corresponding
features. With the determined domain radius R, under criterion (8), features A, B, C, F, J, K, M, N are
determined as primary features. Under criterion (21), features D and G are also primary features.
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Figure 6. Result of determining primary features from secondary features: in this figure, only
secondary features are labeled with a star in red or yellow, and the primary features are marked with
a red star.

According to these criteria, the relation of these feature sets are as follows:

F(R,PF) ⊆ F(R,SF) ⊆ F(R). (9)

3.2. The Relationships among Features

The relations of one feature to the others include relative azimuth and distance (RAD).
Assuming that we have a primary feature f (R,PF)

i , its relative azimuth and distance to a

secondary feature f (R,SF)
j can be obtained by:

Azim
(

f (R,SF)
j

∣∣∣ f (R,PF)
i

)
= arctan

yj − yi

xj − xi
+ sπ, s =

{
0, xj − xi < 0
1 xj − xi > 0

(10)

Dist
(

f (R,SF)
j

∣∣∣ f (R,PF)
i

)
=
(

xj − xi
)2

+
(
yj − yi

)2, (11)

where (xi, yi) = Loc( f (R,PF)
i ) and (xj, yj) = Loc( f (R,SF)

j ). The term sπ in (10) is used to

distinguish the quadrant of f (R,SF)
j relative to f (R,PF)

i . When the image has a certain degree

of distortion, those secondary features that are farther away from f (R,PF)
i will have greater

changes in the spatial relationship. Thus, the strength of the relationship is expressed by:

S
(

f (R,SF)
j

∣∣∣ f (R,PF)
i

)
=

1

Dist
(

f (R,SF)
j

∣∣∣ f (R,PF)
i

) . (12)

3.3. The IFRAD Descriptor: Orientation Intensity Histogram

To make our method rotation-invariant, we determine the dominant orientation of
each primary feature. For that purpose, we calculate the RADs of all secondary features
relative to the primary feature, then collect them into a list, followed by sorting them in
descending order of relation strength (ascending order of relative distance), as shown in
Figure 7b.

Then, the dominant orientation of the primary feature is the relative azimuth of its
nearest secondary feature (also have the strongest relation), that is:

Ori
(

f (R,PF)
i

)
= Azim

(
f (R,SF)
k

∣∣∣ f (R,PF)
i

)
, (13)
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where f (R,SF)
k satisfies:

S
(

f (R,SF)
k

∣∣∣ f (R,PF)
i

)
= max

j

[
S
(

f (R,SF)
j

∣∣∣ f (R,PF)
i

)]
. (14)

With this orientation as the reference (set to 0), the relative azimuths of remaining
secondary features are remapped to the range of [0, 2π), the remapped azimuths are

denoted as Azimrm

(
f (R,SF)
j

∣∣∣ f (R,PF)
i

)
, as illustrated in Figure 8.
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Figure 7. Calculation of Azimuth, Distance and Relation-strength: (a) Illustration of RADs calculation,
only four are presented; (b) List of these RADs, they are sorted in ascending order of azimuth.
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Figure 8. Demonstration of Feature Relations: (a) shows one of the primary features to all other secondary features, the
reference and dominant orientations are also shown; (b) A bar graph of Azimuth vs. Relation strength; (c) A bar graph of
remapped azimuth vs. relation strength, with the dominant orientation set as 0.

On this basis, we can obtain an n-bin-orientation intensity histogram (OIH) by the
following steps:

1. Divide the image into n fan-shaped regions according to the orientation of the feature,
where n is an adjustable parameter and needs to be optimized in experiments, as
shown in Figure 9a, in this example, n = 10;

2. Estimate the orientation intensity by calculating the sum of all relation-strengths
within each fan-shaped region. This operation can be expressed by:

Ok

(
f (R,PF)
i

∣∣∣F(R,SF)
)

= ∑
j

S
(

f (R,SF)
j

∣∣∣ f (R,PF)
i

)
· Ik

(
f (R,SF)
j

∣∣∣ f (R,PF)
i

)
, (15)
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where Ik

(
f (R,SF)
j

∣∣∣ f (R,PF)
i

)
is an indicator function:

Ik

(
f (R,SF)
j

∣∣∣ f (R,PF)
i

)
=

1, 2(k−1)π
n ≤ Azimrm

(
f (R,SF)
j

∣∣∣ f (R,PF)
i

)
< 2kπ

n

0, otherwise
. (16)

With the above steps, an OIH of each primary feature is formed (shown in Figure 9b),
and can be presented as a vector, which will be used as our IFRAD descriptor vector:

V
(

f (R,PF)
i

∣∣∣F(R,SF)
)

=
[
O1

(
f (R,PF)
i

∣∣∣F(R,SF)
)

, · · · , On

(
f (R,PF)
i

∣∣∣F(R,SF)
)]T

. (17)
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Figure 9. Illustration of OIH: (a) An image is divided into 10 fan-shaped regions with a start of
dominant orientation; (b) A 10-bin-OIH calculated from (a) according to Formula (15).

3.4. Feature-Matching

In the feature matching process, a proper similarity metric is a critical factor for a higher
matching correctness rate. For gradient-based feature descriptors, such as SIFT, SURF, and so
forth, SSD or SAD is often used as a similarity measure. Another similarity measure, called
Hamming distance, is also used for binary feature descriptors [36]. The rotation-invariance
of the proposed descriptor is implemented by remapping the relative azimuth to a fixed
range, with the dominant orientation set as 0. Moreover, the IFRAD descriptor vector also
has the potential for scale-invariance, for the variations in scale will simultaneously and
proportionally change the inter-feature distances, which implies that the “shape” of OIH will
not change. However, the potential cannot be exploited by the aforementioned measures.
Therefore, we adopt cosine similarity as the similarity metric of OIH.

Assuming that we have two similar features—one is in the reference image, its OIH is

denoted as V(R)
i = V

(
f (R,PF)
i

∣∣∣F(R,SF)
)

for simplicity. Similarly, V(S)
j = V

(
f (S,PF)
j

∣∣∣F(S,SF)
)

represents the other feature in the sensed image, then the cosine distance (the smaller the
better) of these two features is expressed by:

dcos

(
f (R,PF)
i , f (S,PF)

j

)
= 1−

V(R)
i ·V(S)

j∥∥∥V(R)
i

∥∥∥ · ∥∥∥V(S)
j

∥∥∥ = 1− ∑n
k=1 akbk√

∑n
k=1 a2

k

√
∑n

k=1 b2
k

, (18)

where ak = Ok

(
f (R,PF)
i

∣∣∣F(R,SF)
)

, and bk = Ok

(
f (S,PF)
j

∣∣∣F(S,SF)
)

. By cosine similarity, the
scale-invariance can be improved.

While matching feature pairs, it is inevitable to mismatch some features due to the
difference in the description of the same feature caused by different views. This will pro-
duce a larger portion of outliers (mismatched feature pairs) for estimating view-differences.
To mitigate the influences, we need to restrict the matched conditions, that is, the two
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features f (R,PF)
i and f (S,PF)

j are matched when dcos

(
f (R,PF)
i , f (S,PF)

j

)
is the smallest of all

dcos

(
·, f (S,PF)

j

)
and dcos

(
f (R,PF)
i , ·

)
.

3.5. Refinements

OIHs determine the distinguishability of the features, and can be improved by increas-
ing the number of bins in OIH. This can be interpreted by analogy with the bit-depth of an
image; the higher the bit-depth (which results in a higher number of bins in the intensity
histogram), the more distinguishable are the details in computer processing. However, this
comes with the cost of reducing the stability. There exist some circumstances where a pri-
mary feature to be matched is surrounded by a series of secondary features, and the nearest
of them have similar distances; however, the inter-feature distances often vary in different
parallaxes, which may greatly affect the determination of the dominant orientation, and
can further reduce the replicability. As shown in Figure 10, with another feature-pair as an
example, they have similar bar graphs (Figure 10a,d) with differences in relation strength
and azimuth offset. However, since the dominant orientation is determined according to
Equation (13), the changes in relation strength caused by different parallaxes have a great
effect on determining the dominant orientation, making it so that their OIHs do not match
(Figure 10c,f. According to (18), the cosine distance between them is 0.3293.
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Figure 10. An Example of Unstable Feature Description: With another primary-feature-pair as an example, (a,d) is the
bar graphs of azimuth-vs-relation strength of the same primary feature in reference and sensed images, respectively, and
the dominant orientation is determined according to Equation (13); (b,e) are the remapped bar graphs according to (a,d);
(c,f) are 30-bin-OIHs obtained from (b,e), according to (18), the cosine distance between them is 0.3293.
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To smooth the issue, we determine the dominant orientation with the average of the
azimuth of secondary features which have a relation strength that is comparable with the
strongest one, which means we replace Equation (13) with:

Ori
(

f (R,PF)
i

)
=

1
q ∑

k
Azim

(
f (R,SF)
k

∣∣∣ f (R,PF)
i

)
, (19)

where f (R,SF)
k satisfies

S
(

f (R,SF)
k

∣∣∣ f (R,PF)
i

)
> α max

j

[
S
(

f (R,SF)
j

∣∣∣ f (R,PF)
i

)]
, (20)

where α ∈ [0, 1] is the coefficient for selecting f (R,SF)
k with a stronger relation, and the q

in (19) is the number of f (R,SF)
k that satisfy the constraint (20). In this way, the issue can be

handled, as shown in Figure 11; in this example, α = 0.7, note that three peaks (marked
with red

Table 256: bbding Stars, Flowers, and Similar Shapes

N \Asterisk P \FiveFlowerPetal 2 \JackStar

A \AsteriskBold 8 \FiveStar 3 \JackStarBold

B \AsteriskCenterOpen ; \FiveStarCenterOpen O \SixFlowerAlternate

X \AsteriskRoundedEnds ? \FiveStarConvex U \SixFlowerAltPetal

C \AsteriskThin 7 \FiveStarLines M \SixFlowerOpenCenter

D \AsteriskThinCenterOpen 9 \FiveStarOpen Q \SixFlowerPetalDotted

0 \DavidStar : \FiveStarOpenCircled L \SixFlowerPetalRemoved

/ \DavidStarSolid < \FiveStarOpenDotted [ \SixFlowerRemovedOpenPetal

Z \EightAsterisk = \FiveStarOutline G \SixStar

S \EightFlowerPetal > \FiveStarOutlineHeavy K \SixteenStarLight

Y \EightFlowerPetalRemoved @ \FiveStarShadow ` \Snowflake

H \EightStar 1 \FourAsterisk ^ \SnowflakeChevron

I \EightStarBold V \FourClowerOpen _ \SnowflakeChevronBold

F \EightStarConvex W \FourClowerSolid ] \Sparkle

E \EightStarTaper 5 \FourStar \ \SparkleBold

R \FiveFlowerOpen 6 \FourStarOpen J \TwelweStar

Table 257: pifont Stars, Flowers, and Similar Shapes

A \ding{65} J \ding{74} S \ding{83} \ \ding{92} e \ding{101}

B \ding{66} K \ding{75} T \ding{84} ] \ding{93} f \ding{102}

C \ding{67} L \ding{76} U \ding{85} ^ \ding{94} g \ding{103}

D \ding{68} M \ding{77} V \ding{86} _ \ding{95} h \ding{104}

E \ding{69} N \ding{78} W \ding{87} ` \ding{96} i \ding{105}

F \ding{70} O \ding{79} X \ding{88} a \ding{97} j \ding{106}

G \ding{71} P \ding{80} Y \ding{89} b \ding{98} k \ding{107}

H \ding{72} Q \ding{81} Z \ding{90} c \ding{99}

I \ding{73} R \ding{82} [ \ding{91} d \ding{100}

Table 258: fourier Ornaments

o \aldine X \decoone c \floweroneright

m \aldineleft ] \decosix g \leafleft

n \aldineright Y \decothreeleft f \leafNE

j \aldinesmall Z \decothreeright h \leafright

[ \decofourleft a \decotwo d \starredbullet

\ \decofourright b \floweroneleft

Table 259: wasysym Geometric Shapes

7 \hexagon 8 \octagon D \pentagon 9 \varhexagon

78

) in the bar graph satisfy the constraint (20), and are counted for determining
the dominant orientation. The dominant orientations are stably determined, and thus the
cosine distance is decreased to 0.0254.
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Figure 11. An Example of Solving the Unstable Issue: (a,d) are the same bar graphs shown in Figure 10a,d, but different in
dominant orientations, and are determined according to Equation (19). In this example, α = 0.7; (b,e) are the remapped bar
graphs according to (a,d); (c,f) are 30-bin-OIHs obtained from (b,e), according to (18) the cosine distance between them is 0.0254.

For the same reason, to improve the replicability of the determination of primary
features, we modify the criterion (8) by applying tolerance t:

f (R,SF)
i ∈ F(R,PF) s.t.

{
f (R,SF)
j

∣∣∣Loc( f (R,SF)
j ) ∈ D( f (R,SF)

i ), Mag( f (R,SF)
j ) > t ·Mag( f (R,SF)

i ), i 6= j
}

= ∅, (21)

where t 6 1 is the tolerance for allowing some features with a competent response in
a determined feature domain. Under this criterion, with t = 0.8, in Figure 5, features
A,B,C,D,F,G,J,K,M,N will be determined as primary features.
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3.6. Geometric Transform Estimation and Correctness of Matching

In the registration process, we estimate a 3-by-3 transform matrix MT from these
matched IFRAD-descriptor-vector-pairs using the method of MLESAC [37], which can also
tell correctly matched feature pairs (inliers) apart from mismatched feature pairs (outliers),
and the correctly matched rate (CMR) can be further obtained by:

CMR =
NIn

NIn + NOut
× 100%, (22)

where NIn denotes the count of correctly matched feature pairs, and NOut denotes the count
of the mismatched feature pairs. Since MLESAC is a generalization of the Random sample
consensus (RANSAC) estimator, its randomness of initial feature-pairs selection can result
in some fluctuation of the values in the estimated geometric transform matrixes. However,
the following experiments proved that the diversity can be reduced to an acceptable range
by selecting proper values of parameters. Figure 12 shows an example of IFRAD-based
registration with parameters of α = 0.7, n = 30, t = 0.8 and R = 1/100 ·min(M, N).
Figure 12a shows correctly matched feature-pairs; Figure 12b shows the registration result;
and some magnified views of local images are shown in Figure 12c. In this example, the
estimated geometric transform matrix is:

MT =

 0.8852 0.4008 −9.0906× 10−6

−0.4716 0.8417 −1.3280× 10−4

206.0882 −120.1737 1



(a)

A

B
C

D

(b)

BA

DC
(c)

Figure 12. Image Registration Result: With parameters of α = 0.7, n = 30, t = 0.8 and R = 1/100 ·min(M, N). (a) shows
correctly matched feature-pairs; (b) shows registered image; (c) shows some magnified views of local images.

4. Experiments

As mentioned above, we have four parameters to be optimized: (a) the tolerance t;
(b) the coefficient α; (c) n, the number of bins in OIH; (d) the radius of feature domain R.
Different parameter settings will affect the correctness of geometric transform estimation.
In our experiments, we use five groups of larger-scale remote sensing images; each has two
images with different parallaxes (Figure 13). We first define some assessments to find the
optimized values for each parameter, then the optimized IFRAD descriptor is compared
with other state-of-the-art algorithms. Finally, the limitations and range of applications are
discussed in Section 5.
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(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4 (e) Group 5

Figure 13. Five Groups of Experiments on Remote Sensing Images: For each group, the ones on the top are reference
images, and the ones on the bottom are the corresponding sensed images; (a–c) The two images in each group are captured
by the same sensor but in different views; (d,e) Color images captured by the same sensor but in different views; Image
Dimensions: (a,b) 3042-by-2048; (c) 3072-by-2304; (d) 3644-by-3644; (e) 3366-by-1936. Image Sources: (a,b) captured from
our laboratory image boards; (c) captured by the Zhuhai-1 satellite; (d,e) obtained from Google Earth.

4.1. Assessments Defination

As mentioned in Section 3.6, due to the randomness of initial feature-pairs selection,
the MT may vary for each time of estimation under the same parameters. However, the
diversity can be reduced by selecting proper values for parameters, as it will increase the
proportion of inliers (correctly matched feature-pairs). Therefore, we quantify the diversity
by stability of transform estimation (STE): For each group of parameters with determined
values, after estimating the transform matrix for k times, the STE can be quantified by:

STE =

 3

∑
i=1

3

∑
j=1

STD
(

c(1)
ij , · · · , c(k)

ij

)
Mean

(
c(1)

ij , · · · , c(k)
ij

)
−1

, (23)

where c(k)
ij represents the ith row, jth column element in the kth time estimated trans-

form matrix M(k)
T , STD(·) denotes the standard deviation, Mean(·) denotes the average.

Obviously, the higher the STE, the more stable the transform estimation.
Apart from STE, the CMR (see Equation (22)) and computational costs are also impor-

tant assessments for evaluating our methods.

4.2. Parameters Optimization

We first use the five groups of remote sensing images (Figure 13) to determine the
optimized parameters. Since they are noise-free images, the variety of determination of
secondary features will only be caused by different parallaxes, therefore we allow R to be a
fixed value relative to the size of the image, R = 1/50 ·min(M, N), where M and N are the
width and height of an image, respectively. Then we obtain the values of these assessments
under different n, α and t; the sample size for each parameter’s setting is 100. As shown in
Table 1, the optimized parameters are: n = 50, α = 0.6 and t = 0.8.

In reality, raw images short-captured at rapid motions may have stronger poisson
noise, which may increase the portion of outliers in estimating the relation of two views.
Therefore, with optimized n, α, t, we conduct some experiments to find the relations be-
tween R and relative noise level (RNL) by comparing the CMR, where RNL is quantified
by adjusting exposure time (ET); the shorter the ET, the higher the RNL. The experimental
results are shown in Table 2; the F in the left column represents the factor of radius of
feature domain:
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R =
F

100
·min(M, N). (24)

We can draw the conclusion from Table 2 that the optimized radius will get smaller
as ET increases (making RNL lower). It also indicated that the shorter the ET, the greater
the variation in CMR as F changes. Moreover, the higher the CMR, the more stable the
estimation of the transformation matrix. In fact, further experiments indicated that, when
CMR > 0.30, the risk of registration failure can be eliminated due to the ease of inlier/outlier
discrimination for the MLESAC algorithm. Considering CMR and the ease of tuning, we
determine R = 1/20 ·min(M, N), (F = 5) uniformly for any level of noise. The registration
results are shown in Figure 14.

Table 1. STEs Under different Parameters.

t t = 0.5 t = 0.6 t = 0.7

n/α 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

16 3.83 4.28 5.34 4.78 5.79 4.65 5.19 5.60 5.21 6.71 5.41 6.08 5.83 5.44 6.89
20 5.55 5.07 3.92 4.90 5.50 5.72 5.62 4.70 5.58 6.25 5.91 5.75 5.43 5.93 6.96
25 4.87 4.56 5.46 5.46 5.40 5.07 5.69 5.75 5.68 6.14 5.80 5.95 6.57 6.06 6.66
30 5.49 5.33 5.17 4.94 5.15 5.68 6.16 5.90 5.70 5.51 6.57 6.36 6.18 5.97 6.03
40 5.08 5.04 4.92 4.79 5.48 5.27 6.13 5.68 5.84 6.12 5.38 6.39 6.32 5.98 6.24
50 4.92 6.93 5.07 5.53 6.37 5.56 7.10 5.86 5.84 6.68 5.75 7.22 6.60 6.26 6.95
60 3.88 5.34 5.17 6.39 6.04 4.71 5.49 6.21 7.18 6.25 5.15 7.44 6.32 7.61 6.56
80 4.28 5.80 5.28 5.97 5.19 5.11 6.54 5.71 6.23 5.95 5.60 6.78 5.83 7.12 6.72
100 3.33 5.27 4.20 4.89 5.30 4.44 5.82 4.54 6.69 5.80 5.20 6.28 5.08 7.30 6.28
120 4.03 5.35 4.34 4.83 5.07 4.47 5.57 4.62 6.97 5.72 4.79 5.90 4.91 7.31 6.03

t t = 0.8 t = 0.9 t = 1.0

n/α 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

16 5.80 6.77 6.00 5.57 7.12 5.21 5.29 5.76 5.34 6.80 4.21 4.86 5.38 4.87 6.57
20 6.64 5.78 5.85 6.45 7.86 5.81 5.67 4.90 5.65 6.43 5.63 5.19 4.50 5.20 6.17
25 5.82 6.30 6.97 6.35 6.70 5.18 5.95 6.23 5.69 6.27 5.03 5.28 5.59 5.52 6.08
30 6.68 6.64 6.34 6.76 6.46 5.74 6.18 6.04 5.80 5.83 5.53 5.40 5.73 5.38 5.49
40 5.91 6.56 6.69 6.33 6.25 5.38 6.15 5.93 5.88 6.12 5.18 6.04 5.57 5.52 5.69
50 6.39 8.64 6.74 6.26 7.33 5.60 7.19 6.55 5.98 6.70 5.35 7.05 5.59 5.79 6.49
60 5.76 7.73 6.34 7.81 7.06 5.04 6.23 6.30 7.19 6.52 4.46 5.45 5.67 6.76 6.13
80 5.89 7.15 6.53 7.67 6.74 5.19 6.61 5.72 6.83 6.12 5.09 5.91 5.66 6.22 5.61
100 5.49 6.32 5.34 7.46 6.35 5.09 5.88 4.76 7.00 6.15 4.15 5.76 4.33 6.17 5.57
120 5.88 6.16 5.16 7.67 6.75 4.57 5.77 4.69 7.14 5.76 4.35 5.51 4.46 6.73 5.51

The numbers in red bold indicate the best STE under the current t.

Table 2. CMRs(%) Under Different Feature-domain Radius.

F/ET (ms) 0.2 0.25 0.3 0.4 0.5 0.6 0.8 1.0 1.2 1.6

0 20.81 28.22 55.99 33.36 58.14 59.17 65.95 56.21 62.76 64.34
1 24.58 35.10 57.12 37.63 58.74 62.45 66.37 58.98 62.83 65.69
2 27.08 37.51 57.50 39.28 59.46 63.46 66.71 59.69 64.00 66.23
3 27.41 40.27 57.64 39.94 59.79 63.88 67.20 59.97 64.03 65.82
4 30.90 40.46 58.55 41.24 60.18 63.85 66.93 59.74 63.81 65.27
5 31.61 40.56 58.62 40.39 59.59 63.42 66.38 59.69 62.81 64.29
6 31.30 40.35 58.13 39.88 59.28 60.97 65.96 58.03 62.45 64.04
7 27.93 38.28 57.64 38.56 58.36 56.47 61.98 54.96 60.92 64.03
8 27.09 35.90 57.34 34.06 58.10 55.35 60.44 54.14 57.13 62.62
9 24.75 31.96 56.68 27.15 54.47 53.04 58.68 53.61 54.22 62.22

10 21.10 28.14 55.40 23.26 52.46 50.65 54.62 52.82 53.64 61.92

The numbers in red bold indicate the best F under the current ET.
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(a) ET = 0.2 (b) ET = 0.3 (c) ET = 0.5

(d) ET = 0.8 (e) ET = 1.2 (f) ET = 1.6

Figure 14. Registration Results Under Different ET, the intensity of images are rescaled to 0–1 for visibility

4.3. Comparisons

We also compared the performance of our descriptor (with optimized parameters)
to other state-of-the-art methods in terms of computational cost, scale-invariance, CMR,
and so forth. The comparisons were all performed on a PC with Intel Core i7-7700 CPU @
3.6 GHz, and RAM of 32 GB. The results are given in Table 3–5. In those comparisons, the
experimental image groups in Figure 13 were used.

According to Table 3, we can conclude that, for small scale changes (1.00∼1.25×), the
CMR of our descriptor is comparable with that of other methods, but will drop rapidly
when the scale change is higher than 1.30×. However, the MLESAC can still discriminate a
group of inliers to correctly estimate the transform matrix until the scale change reaches
1.50×. Moreover, IFRAD has the highest time-efficiency compared with others (according
to Table 4); this is achieved by the many fewer matched-pairs counts (Table 5) due to the
strict selection of primary features and the determination of matched feature pairs.

Table 3. CMRs (%) of Various Methods Under Different Scale Changes.

Method/Scale 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60

SURF 76.9 76.6 73.8 73.2 70.5 70.4 71.0 70.5 68.4 70.3 68.5 68.3 63.2
KAZE 96.7 96.7 96.2 94.2 89.6 88.1 92.8 95.1 96.1 96.8 96.9 96.4 95.6
BRISK 95.9 95.7 96.2 95.3 95.4 94.6 93.9 94.8 94.3 95.2 95.0 95.8 94.9
IFRAD 87.8 87.1 88.4 83.0 71.8 70.3 55.5 53.3 35.9 41.1 23.3 8.1 11.8

Table 4. Time Elapsed (s) of Various Methods Under Different Scale Changes.

Method/Scale 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60

SURF 1.788 1.774 1.776 1.736 1.716 1.727 1.717 1.673 1.694 1.662 1.651 1.668 1.627
KAZE 27.6 27.7 29.0 27.7 27.6 27.7 27.6 27.2 27.8 27.1 26.7 27.5 26.7
BRISK 7.648 7.096 7.086 6.599 6.256 5.909 5.617 5.232 5.032 4.673 4.394 4.235 4.028
IFRAD 1.014 0.948 0.910 0.848 0.826 0.784 0.741 0.697 0.680 0.652 0.633 0.628 0.605

The numbers in red bold indicate the best results.
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Table 5. Matched-pairs Counts of Various Methods Under Different Scale Changes.

Method/Scale 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60

SURF 1834 1715 1463 1290 1117 1015 1008 942 924 882 748 690 618
KAZE 32,398 29,941 23,977 14,521 7003 4737 6023 7904 8857 8407 7238 5698 4089
BRISK 6309 5713 4747 3655 2905 2625 2403 2395 2341 2122 1912 1735 1483
IFRAD 896 832 785 702 645 587 518 396 175 84 32 7 4

The numbers in red bold indicate the least number of matched pairs under the current scale.

Since IFRAD describes features according to their relations to other features, the trans-
lational shift between two images may move some features outside the image boundary
and will alter the feature description. As shown in Figure 15, the second column shows that,
as a feature moves to a border or corner of the image, it will tend to be partially described
in relation to other features from one side or quadrant, which will reduce the reliability of
the description. Since the translational shifts change the percentages of overlapping areas
between two images, the experiments comparing the CMRs of different methods under
various percentages of overlap area are also conducted, and the results are tabulated in
Table 6, and indicate that our method is reliable when the overlap area is greater than 50%.
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Figure 15. Changes of OIH of a Feature Caused By Translational Shift: First column: original images with different scales
(they are cropped from the image shown in Figure 13b by altering the translational shift. Compared to the first row,
the percentages of overlap area of the second and the third row are: 64.75% and 37.13% respectively). Second column:
The relation graph of the same primary feature to the other secondary features. Third column: bar graph of remapped
azimuth-vs-relation strength according to the second column. Last column: 50-bin-OIHs according to the third column; the
distance of the second and the last OIH to the first OIH are 0.2099 and 0.1653, respectively.
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Table 6. CMRs(%) of Various Methods Under Different Overlap Areas.

Methods/Overlap Area (%) 100 80 60 50 40 30 25 20

SURF 100.00 96.63 95.80 95.65 96.09 95.19 93.50 93.36
KAZE 100.00 99.33 99.29 99.28 99.34 99.04 98.99 98.95
BRISK 100.00 96.10 96.03 96.20 97.04 96.61 96.59 96.54
IFRAD 100.00 97.06 96.35 85.42 34.17 10.25 5.49 5.24

The numbers in red bold indicate the best results.

5. Discussion

In the last section, we compared our IFRAD to other methods in several ways—scale
invariance, time consumption, and CMR. The experiments showed that, with a scale change
below 1.45× and an overlap area of over 50%, the proposed method has superiority in
time efficiency while keeping correctness in estimating the transform matrix. However,
several drawbacks limit its application range. While other methods such as SURF—which
exploits the scale information by forming a scale-space with several spatial-octaves—have
a wider range of scale-invariance up to 8×, the IFRAD descriptor has a narrower range
of scale-invariance. Although the cosine distance is adopted as a similarity distance in
the feature-matching process, the range of scale-invariance is increased by only up to
1.4×. The limitations are mainly brought by Equation (12), which neglects the fact that the
response magnitude of a FAST-feature always varies with different parallaxes, and will
greatly reduce the scale-invariance of OIHs. Figure 16 depicts the causes of the limitation.
For two images with larger scale differences, some features in the small-scale-image may
appear as low-frequency information in the large-scale-image, and some features in the
large-scale-image may disappear in the small-scale-image. Further experiments show that
this drawback can be manipulated by replacing the FAST-feature with more stable features
that utilize the information about the scale-space; however, this brings with it the cost of
increased time-consumption.

Feature responses are sensitive to illuminance changes, thus the selection of sec-
ondary features or the determination of primary features may differ due to the changes
in feature response magnitude, making IFRAD unable to stably describe the features as
illuminance changes. This will cause failure in registering images from different sensors or
different spectrums.

In summary, the drawbacks of our proposed methods are listed as follows, compared
with other state-of-the-art methods:

• the scale-invariance of our method is limited within 1.45×;
• the range of applicable overlap area is narrowed to 50∼100%;
• more sensitive to illuminance changes.

Despite these drawbacks, in reality, for CMOS-based push-broom remote sensing
images, the altitude of the airborne camera is stable while scanning along the track and
the range of scale change is narrow enough for IFRAD to perform a quick and reliable
feature description and matching process. Therefore, our method still has the potential
for implementing some applications, such as on-orbit image stitching, registration-based
TDI-CMOS [18,38], and so forth.
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Figure 16. Demonstration of the Limitation Caused by Scale Changes: First column: original images with different scales
(they are cropped from the image shown in Figure 13d by altering the scale; from top to bottom are: 0.8×, 1.1×, 1.4×,
respectively). Second column: The relation graph of the same primary feature to other secondary features—note that the
number of secondary features may be increased or reduced by changing the scale. Third column: bar graph of remapped
azimuth-vs.-relation strength according to the second column; it can be seen that the relation strengths are also affected by
altering scales. Last column: 50-bin-OIHs according to the third column.

6. Conclusions

In this paper, we proposed a feature description called IFRAD. We first introduce
some criteria for selecting secondary and primary features to improve the robustness of
our IFRAD descriptor. Then concepts about inter-feature relative azimuth and distance
are provided, based on which we further explain the algorithms for obtaining the IFRAD
descriptor vector called n-bin-OIH. In feature matching, the cosine distance is introduced
to improve the scale-invariance. To improve the replicability, we made some refinements
by introducing two parameters: coefficient α in Equation (20) and the tolerance t in (21). In
estimating geometric transform with MLESAC, we defined an assessment called CMR. Due
to the randomness of MLESAC in selecting the initial matched-feature-pairs, the estimated
geometric transform matrix varies in each time estimation. However, the diversity can
be reduced as the portion of inliers increase. Therefore, STE is introduced to quantify the
diversity, and is further used to optimize three parameters: the coefficient α, the tolerance
t and the number of bins in OIH n. Table 1 shows that the optimized parameters are
n = 50, α = 0.6, t = 0.8. The radius of feature domains R is optimized by comparing
CMRs under different R and Poisson noise, which are quantified by adjusting exposure
time. The experiments have proven that IFRAD can alleviate the effects of denoising.
Table 2 shows that the optimized R decreases as the exposure time increases. However,
adjusting R produced a negligible change to CMR; therefore, R is set to be 1/20 ·min(M, N)
uniformly for simplicity. The comparisons to other methods are also conducted, and the
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results are tabulated in Table 3–5, indicating that IFRAD has the highest time efficiency
with reasonably reduced scale-invariance (up to 1.45×). Table 6 indicates that the proposed
method is reliable when the overlap area is above 50%.

The proposed method IFRAD is only a feature descriptor. It is designed to simplify
the process of feature description and then to speed up the feature matching step. As
an alternative to other descriptors such as SURF, IFRAD has several aspects that can
be improved. For instance, Equation (12) limits the scale-invariance up to around 1.4×,
because it neglects the fact that the response magnitude of a FAST-feature always varies
with different parallaxes; the R in (24) is set as constant, which also contributes to the
limitation. Before applying IFRAD, in this work, Gaussian smoothing is applied to alleviate
the influences of noise. While smoothing, some critical details may be lost. Although
some denoising methods that can retain detail were proposed [39], they add to the time-
consumption. Therefore, further improvement of the noise-robustness of our method is
critical for low-light remote sensing applications. The solution to these issues, as well as
the GPU version of our method, will be focused on in our future work.
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Mathematical Notations
R(x, y) or R Reference image
S(x, y) or S Sensed image

f (R)
i ith feature in image R

Loc(·) Location of a feature
Mag(·) Response magnitude of a feature
F(R,SF) Secondary feature set in image R

f (R,SF)
i ith secondary feature in image R, f (R)

i ∈ F(R,SF)

F(R,PF) Primary feature set in image R

f (R,PF)
i ith primary feature in image R, f (R)

i ∈ F(R,PF)

F(R) Feature set in image R

Azim
(

f (R,SF)
j

∣∣∣ f (R,PF)
i

)
Azimuth of f (R,SF)

j relative to f (R,PF)
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j

∣∣∣ f (R,PF)
i

)
Distance between f (R,SF)

j and f (R,PF)
i

S
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f (R,SF)
j

∣∣∣ f (R,PF)
i
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Strength of relationship between f (R,SF)

j and f (R,PF)
i

Ori
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f (R,PF)
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)
The dominant orientation of f (R,PF)
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∣∣∣F(R,SF)
)

kth orientation intensity of f (R,PF)
i

I(·) Indicator function

V
(

f (R,PF)
i

∣∣∣F(R,SF)
)

IFRAD descriptor vector of f (R,PF)
i
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dcos Cosine distance
α Coefficient for selecting features with stronger relation
t Tolerance for allowing some features with competent response
M Width of a image
N Height of a image
n the number of bins in OIH
R radius of a feature domain
NCM count of correctly matched feature-pairs
NTM Total count of matched feature-pairs
Abbreviations
BRISK Binary Robust invariant scalable keypoints
CMR correctly matched rate
ET Exposure time
FAST Features from Accelerated Segment Test
FMT Fourier-Mellin transform
FREAK Fast Retina Keypoint
GLOH Gradient location and orientation histogram
IFRAD Inter-feature relative azimuth and distance
MLESAC Maximum Likelihood Estimation Sample Consensus
OIH Orientation intensity histogram
ORB Oriented FAST and Rotated BRISK
RANSAC Random sample consensus
RNL Relative noise level
SAD Sum of absolute distance
SIFT Scale Invariant Feature Transform
SSD Sum of squared distance
STE Stability of transform estimation
SURF Speed Up Robust Features
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