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Abstract: The Advanced Himawari Imager (AHI) onboard the Himawari-8 geostationary satellite
provides continuous observations every 10 min. This study investigates the assimilation of every-10-
min radiance from the AHI with the POD-4DEnVar method. Cloud detection is conducted in the
AHI quality control procedure to remove cloudy and precipitation-affected observations. Historical
samples and physical ensembles are combined to construct four-dimensional ensembles according
to the observed frequency of the Himawari-8 satellite. The purpose of this study was to test the
potential impacts of assimilating high temporal resolution observations with POD-4DEnVar in a
numerical weather prediction (NWP) system. Two parallel experiments were performed with and
without Himawari-8 radiance assimilation during the entire month of July 2020. The results of the
experiment with radiance assimilation show that it improves the analysis and forecast accuracy
of geopotential, horizontal wind field and relative humidity compared to the experiment without
radiance assimilation. Moreover, the equitable threat score (ETS) of 24-h accumulated precipitation
shows that assimilating Himawari-8 radiance improves the rainfall forecast accuracy. Improvements
were found in the structure, amplitude and location of the precipitation. In addition, the ETS of
hourly accumulated precipitation indicates that assimilating high temporal resolution Himawari-8
radiance can improve the prediction of rapidly developed rainfall. Overall, assimilating every-10-min
AHI radiance from Himawari-8 with POD-4DEnVar has positive impacts on NWP.

Keywords: data assimilation; Himawari-8 satellite radiance; POD-4DEnVar; numerical weather prediction

1. Introduction

The accuracy of weather forecasts has been greatly improved in recent decades, which
can be credited mostly to the development of numerical weather prediction (NWP) [1].
With the development of numerical models, the accuracy of the initial conditions is ex-
tremely critical for the quality of NWP. With the growing number of observations, data
assimilation has become an effective way to provide accurate initial conditions by com-
bining the information between a numerical model and observations [2,3]. Currently,
variational data assimilation and ensemble Kalman filter (EnKF) are the most widely used
assimilation methods. Three-dimensional variational assimilation (3DVar) has been devel-
oped for many years, which has been used in many operational NWP centers [4]. However,
3DVar can only assimilate observations at a single analysis time, with static background
error covariance [5,6]. Thus, advanced four-dimensional variational assimilation (4DVar)
is proposed with strong constraint in a forecast model. The 4DVar can assimilate obser-
vations at multiple analysis times with the background error covariance evolving over
the assimilation window with the tangent linear and adjoint model [7–10]. However, the
background error covariance at the beginning of the assimilation window is still static,
and the coding, maintenance and updating of the tangent linear and adjoint model are
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extremely difficult. Thus, some other methods such as EnKF have been proposed and
applied for atmospheric and oceanic data assimilation [11]. In comparison, EnKF estimates
the background error covariance by ensemble forecasts, so it is flow-dependent [12,13].
In addition, EnKF is much easier to implement if not developing a tangent linear and
adjoint model [14], which has been applied in German and Canadian daily operational
forecast systems [15]. However, EnKF also has disadvantages. EnKF lacks the strong
constraint of the 4DVar model. What is more, the accuracy of EnKF is dependent on limited
ensemble members. Thus, both variational (3/4DVar) and ensemble assimilation (EnKF)
methods have their own advantages and disadvantages. To overcome their weaknesses
and combine their strengths, ensemble variational assimilation methods are proposed,
which can construct flow-dependent background error covariance with the constraint
model and at low computational cost [16]. Great efforts have been made to make use of
the ensemble variational assimilation methods, showing positive effects on NWP [9,17–21].
To simplify the implementation of four-dimensional ensemble variational assimilation
methods (4DEnVar), some researchers put forward advanced methods, such as the Sin-
gular Value Decomposition (SVD)-based En4DVar method [22] and Dimension-Reduced
Projection 4DVar (DPR-4DVar) [23], which avoid the development of a tangent linear and
adjoint model. In 2008, Tian et al. [24] developed the Proper Orthogonal Decomposition
(POD)-based four-dimensional ensemble variational assimilation method (POD-4DEnVar).
POD-4DEnVar solves the final analysis by applying the POD technique to four-dimensional
ensembles in the assimilation window, thus avoiding the tangent linear and adjoint model.
The POD-4DEnVar method has been evaluated by the Lorenz96 model, observing system
simulation experiments (OSSEs) and shallow water wave equation, and the results show
that this method outperforms the 4DVar and EnKF methods with lower computational
costs [25–27].

Satellite radiance has become an important component of data assimilation systems
in NWP models. Satellite observations have better spatiotemporal coverage, especially
where conventional observations such as surface station and radiosonde are rare [28]. A
polar-orbit satellite can provide observations with global coverage in high spatial reso-
lution, but it cannot generate continuous observations for a fixed regional area. Many
studies have demonstrated that the assimilation of polar-orbit satellite radiance apparently
improves NWP [29–36]. In comparison, a geostationary satellite can provide high temporal
resolution observations, with continuous images for a fixed area. High temporal resolution
observation is much more appropriately utilized with four-dimensional assimilation meth-
ods. In recent years, many works on the assimilation of geostationary satellite radiance
have been conducted. For example, Zou et al. (2011) [37], Zhang et al. (2016) [38] and
Qin et al. (2018) [39] assimilated radiance from Geostationary Operation Environmen-
tal Satellite (GOES) series, showing its positive impacts on weather forecasts. Szyndel
et al. (2005) [40] and Stegel et al. (2009) [41] investigated the assimilation of the Spin-
ning Enhanced Visible and InfraRed Imager (SEVIRI) from Meteosat-8. Wang et al. [42]
demonstrated that the assimilation of future geostationary microwave sounder (GEOMS)
radiances can improve typhoon forecasts. Furthermore, Himawari-8 is seen as the new
generation of geostationary satellites of Japan. The Advanced Himawari Imager (AHI) can
provide images for a fixed area every 10 min [43]. Recently, many researchers have carried
out assimilation experiments on the AHI of Himawari-8. Ma et al. [44] investigated the
preliminary impact of assimilating Himawari-8 AHI radiance in the Gridpoint Statistical
Interpolation (GSI) analysis system, indicating that assimilation reduces forecast errors of
upper-tropospheric water vapor. Kazumori et al. [45] assimilated hourly Himawari-8 radi-
ance with the 4DVar method, showing positive impacts on rainfall forecast. Wang et al. [46]
assimilated Himawari-8 radiance by 3DVar cycling in the Weather Research and Fore-
casting (WRF) model data assimilation system (WRFDA), finding improvements in NWP.
Sawada et al. (2019) [47] and Honda et al. (2018) [48] assimilated all-sky Himawari-8
radiances into mesoscale models to improve the prediction of heavy rainfall and tropical
cyclones, respectively. However, past studies on Himawari-8 radiance assimilation were



Remote Sens. 2021, 13, 3765 3 of 24

mainly based on traditional assimilation methods. As mentioned above, the advanced
POD-4DEnVar method has been proven to have great potential to improve NWP. Moreover,
it has been demonstrated that assimilating polar-orbit satellite radiance with the POD-
4DEnVar method is beneficial for weather forecasts [49,50]. Thus, the purpose of this study
was to assimilate every-10-min AHI radiance from the Himawari-8 geostationary satellite
with the POD-4DEnVar method. The potential impacts of assimilating high temporal
resolution Himawari-8 radiance were evaluated through a one-month experiment. The
paper is structured as follows. First, the methodology used in this paper is described in
Section 2, including the POD-4DEnVar algorithm, methods to construct four-dimensional
ensemble samples and quality control procedures for Himawari-8 AHI. Second, the ex-
periment design is shown in Section 3. Section 4 presents the main results of assimilating
Himawari-8 AHI radiance and discussions on its impacts on analysis and forecasts. Finally,
conclusions are given in Section 5.

2. Methodology
2.1. POD-4DEnVar Algorithm

The POD-4DEnVar method originates from the traditional 4DVar methodology. The
cost function of the 4DVar is as follows:

J(x) =
1
2
(x− xb)

TB−1(x− xb) +
1
2

s−1

∑
k=0

[
yobs

k −Hk(Mt0→tk (x))
]T

R−1
k

[
yobs

k −Hk(Mt0→tk (x))
]

(1)

where x and xb represent the analysis and background field, respectively; B and R are the
error covariances of background and observations, respectively. s is the total number of
observations in the assimilation window. yobs

k represents the observations at the analysis
time k, Hk is the observation operator and Mt0→tk is the integration of the forecast model
from time t0 to tk.

xtk = Mt0→tk (xt0) (2)

The incremental format of the 4DVar cost function is as follows:

J(x′) =
1
2
(x′)TB−1(x′) +

1
2

s−1

∑
k=0

[
y′k(x

′)−
(

yobs
k

)′]T
R−1

k

[
y′k(x

′)−
(

yobs
k

)′]
(3)

where, x′ = x− xb represents the analysis increments; y′k(x
′) and (yobs

k )
′

are the observation
increment and observation innovation at analysis time k, respectively. The POD-4DEnVar
method applies the POD technique to an ensemble sample, so the background error
covariance can also be estimated by ensemble forecasts. Firstly, N ensemble members
(x1, x2, . . . , xN) are obtained by ensemble forecast at time k, which generate N ensemble
perturbations (x′1, x′2, . . . , x′N) to the background field xb. The ensemble perturbations
xi
′ = xi − xb (i = 1, 2, . . . , N) make up the model perturbations (MPs) matrix Xp. In the

meantime, N observation perturbations (y′1, y′2, . . . , y′N) are constructed by the observation
operator Hk, constructing the observation perturbation (OPs) matrix Yp.

Since the dimension of the observed variable space is much smaller than that of the
model space [23], the POD decomposition is performed on the observation perturbation
matrix Yp.

(Yp)T(Yp) = VΛ2VT (4)

where V and Λ are the decomposed eigenvector and eigenvalue, respectively. The OPs
matrix Yp and MPs matrix Xp are transformed as follows:

Py = YpV (5)

Px = XpV, (6)
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As a result, the POD transformed OPs and MPs are orthogonal and thus indepen-
dent. At the same time, the error covariances of background B can be represented by the
transformed MPs

B = PxPx
T/(N − 1), (7)

The optimal solutions x’ and y’ can be expressed by the linear combinations of the
POD-transformed MPs and OPs, where β represents a set of coefficient vectors:

x′ = Pxβ, (8)

y′ = Pyβ, (9)

Thus, substituting (7)-(9) into the incremental format of 4DVar (3), the control variable
x’ is replaced by β:

J(β) =
1
2
(N − 1) ·βTPT

x

(
PT

x

)−1
(Px)

−1Pxβ+
1
2

(
Pyβ−

(
yobs

)′)T
R−1

(
Pyβ−

(
yobs

)′)
, (10)

After solving the optimal problem of (10) and substituting β in (8), the optimal solution
x’ can be simplified into the following form, in which I is the identity matrix.

x′ = Px

[
(N − 1)I + PT

y R−1Py

]−1
PT

y R−1
(

yobs
)′

, (11)

2.2. Four-Dimensional Ensemble Sample Construction

As is shown in the algorithm of the POD-4DEnVar method, the final optimal solution
is represented by the POD-transformed model perturbation and observation perturbation
matrix. Thus, the construction of ensemble samples plays an important role in the assimila-
tion process. Theoretically, the ensemble size should be sufficiently large to represent the
real uncertainty of the atmosphere. However, considering the computational cost and effi-
ciency, limited ensembles have been widely used in assimilation [51]. Historical forecasts
can well represent the uncertainty in forecast models with low computational cost [23]. Fur-
thermore, the development of weather systems is directly related with physical processes.
Thus, numerical simulations are extremely sensitive to the parameterization schemes in
numerical models [52–55]. In this study, historical forecasts and physical ensembles are
combined to construct the four-dimensional ensemble samples.

Since the real every-10-min Himawari-8 radiance is assimilated, the assimilation win-
dow was set to 1 h, with the analysis time at the beginning in the assimilation window.
Himawari-8 makes 7 observations every 10 min within 1 h, so the assimilation window was
divided into 7 sub-windows (slot 1 to 7). Figure 1 shows an example of the assimilation
window at 1200 UTC, 1 July 2020. The central times of the 7 sub-windows are 1200, 1210,
1220, 1230, 1240, 1250 and 1300 UTC. The process of four-dimensional ensemble construc-
tion is shown in Figure 2. In order to combine a physical ensemble with historical forecasts,
two integrations were made from the same initial time, but with different microphysics
and cumulus parameterization schemes. First, using the Kessler scheme (microphysics,
hereafter “mp6” as it is the 6th parameterization scheme in the WRF model) and the Kain–
Fritsch scheme (cumulus parameterization, hereafter “cu1”), a 3-h integration was made
from 0600 to 0900 UTC. Then, the output at 0900 UTC was used as the initial condition to
make a 6-h integration to 1500 UTC, during which the model output interval was set to
10 min according to Himawari-8 observations. Here, a 4D sliding sampling strategy was
applied into the model output. According to the assimilation window, every 7 results made
up a sample, corresponding to 7 sub-windows. For example, ensemble 1 was (0900, 0910,
0920, 0930, 0940, 0950, 1000 UTC). Thus, 31 ensemble samples were obtained through the
first integration. In the meantime, the same procedure was carried out but with the New
Thompson scheme (microphysics, hereafter “mp8”) and the Betts–Miller–Janjic scheme
(cumulus parameterization, hereafter “cu2”). Therefore, a total of 62 ensemble members
were formed.
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2.3. Himawari-8 Observations Quality Control

Himawari-8 was successfully launched by the Japan Meteorological Agency (JMA) on
7 October 2014 and settled in geostationary orbit on 15 October 2015. It is located at 140.7◦E,
covering the area from 80◦E to 160◦W and 60◦N to 60◦S. The Advanced Himawari Imager
(AHI) onboard Himawari-8 is comparable to the Advanced Baseline Imager (ABI) onboard
GOES-R. The AHI has high spatial resolution, with the highest resolution of 0.5 km and
others of 1, 2 and 5 km. The AHI provides scans of the Full Disk (every 10 min), Japan
Area (every 2.5 min), Target Area (every 2.5 min), and two Landmark Areas (every 30 s).
The AHI has 16 observation bands, of which 3 are visible, 3 are near-infrared and 10 are
infrared. Among the 16 bands, 8–10 are water vapor absorption bands (with wavelengths
of 6.2, 6.9 and 7.3 µm), which are sensitive to middle-to-upper tropospheric humidity [43].
Thus, bands 8-10 from Himawari-8 are assimilated in this study.

Quality control is the key element in satellite radiance assimilation in order to reduce
the random error and systematic bias of radiance. The quality control procedures of AHI
observations are as follows [46]: (1) gross check: removing those observations with a
brightness temperature higher than 550 K or lower than 50 K; (2) mixture surface type check:
rejecting all channels over mixture surface type; (3) cloud liquid water check path check:
rejecting those with cloud liquid water check path ≥0.2 kg/m2; (4) relative departure check:
removing observations whose bias-corrected innovation exceeds 3 times the observation
error standard deviation; (5) absolute departure check: rejecting those whose bias-corrected
innovation exceeds 8 K. In addition, only clear-sky radiance is assimilated in this study; thus,
cloud detection was required to discard cloud-affected pixels. The AHI level 2 cloud product
was used to carry out cloud detection [56]. All the observations were classified into 11 types
according to the cloud type, namely clear, cirrus (Ci), cirrostratus (Cs), deep convection,
altocumulus (Ac), altostratus (As), nimbostratus (Ns), cumulus (Cu), stratocumulus (Sc),
stratus (St) and others. Here, only “clear” observations were assimilated.
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Figure 3 presents the spatial distribution of observations and observations minus
simulations before and after quality control of AHI channel 9 at 0000 UTC 20 July 2020. The
simulated brightness temperature was calculated using Community Radiative Transfer
Model (CRTM)-v2.2.3. The coverage of all observations before quality control is shown in
Figure 3a, which includes both “good” and “bad” data. After quality control, the difference
between the observed and simulated brightness temperature from background fields (OMB)
is shown in Figure 3b. It can be seen that not all the observations pass the quality control,
with “bad” data (about 65.5%) rejected in this step. However, the differences between
background and observations still reach up to ±4 K, with some OMBs being apparently
larger than others. Figure 3c shows the difference between the observed and simulated
brightness temperature from analysis fields (OMAs). The OMA is clearly reduced for those
with larger OMB values, especially those above 32◦N. To correct the systematic bias of
radiance observations, the variational bias correction (VarBC) embedded in the WRFDA
was applied in the POD-4DEnVar assimilation [57]. Figure 4 shows the scatter plots of the
observations (OBS) and simulated brightness temperature from background (BAK) and
analysis (ANA) fields. Figure 4a,b compares the scatter plots when bias correction (BC) is
carried out or not. Apparently, after the bias correction, the mean bias clearly reduced from
0.961 to 0.061 (by almost 93%), and the root mean square error (RMSE) reduced from 1.589
to 1.268 (by almost 20%). In comparison, ANA was in better agreement with OBS, with
a reduction in mean bias to 0.051 (by almost 16%), in standard deviation (STDV) to 0.832
(by almost 34%) and in RMSE to 0.833 (by almost 34%). The results indicate that quality
control and bias correction are effective when assimilating Himawari-8 radiance.
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3. Experiment Design

This study employed the WRF-v3.9.1.1 model [58] to make ensemble forecasts and
deterministic forecasts. The WRF model is configured with a two-nested domain, as shown
in Figure 5. Clearly, the outer domain is in the coverage of Himawari-8 observations mostly,
and the inner domain is in full coverage of observations. The horizontal resolution of the
outer domain is 15 km, with 281 × 281 model grid points. The inner domain is of 5-km
horizontal grid spacing, with 322× 298 model grid points mainly covering seven provinces
of China. Both domains are configured with the model top of 50 hPa and 35 vertical levels.
The main physical parameterization schemes used in the WRF model are listed in Table 1.
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Figure 5. Two-nested domain design and observations covered in the domains. Color dots represent
the brightness temperature from AHI channel 2 (units: K) at 0000 UTC 20 July 2020. The numbers
represent the main provinces covered in domain 2 (1: Henan; 2: Hubei; 3: Anhui; 4: Jiangsu; 5: Hunan;
6: Jiangxi; 7: Zhejiang; 8: Fujian).

Table 1. Parameterization schemes.

Physics Schemes

Microphysics Ensembles 1-31: Kessler scheme
Ensembles 32-62: New Thompson scheme

Cumulus parameterization
(not used in inner domain)

Ensembles 1-31: Kain–Fritsch scheme
Ensembles 32-62: Betts–Miller–Janjic scheme

Planetary boundary layer Yonsei University scheme
Surface layer Revised MM5 Monin–Obukhov scheme

Longwave radiation RRTM scheme
Shortwave radiation Dudhia scheme

In order to investigate the impacts of assimilating Himawari-8 radiance, two parallel
experiments were designed, denoted as CTRL and HIM8. The CTRL experiment assimi-
lated conventional observations in the inner domain [59], including radiosonde, synoptic
observations, ships, airport reports, etc. The HIM8 experiment assimilated all the observa-
tions in CTRL plus every-10-min clear-sky radiance from Himawari-8 AHI channels 8, 9
and 10 in the inner domain. All the observations were thinned to 30 km in order to reduce
the correlations [44–46]. The CRTM was used as the observation operator [60,61]. The
WRF model utilizes National Centers for Environmental Prediction (NCEP) Final (FNL)
Operational Model Global Tropospheric Analyses as the initial and lateral condition.

To evaluate the results statistically, a one-month analysis and forecast were conducted
from 1 July to 31 July 2020. Figure 6 shows the schematic of the analysis and forecast
configuration. Assimilation was performed at 0000 UTC each day. The assimilation window
was set to 1 h, with the analysis time at the beginning of the window. As mentioned above,
the window was divided into seven sub-windows, corresponding to seven observations
in an hour; Figure 6 shows an example from 0000 UTC 15 July. Ensemble forecasts were
carried out before assimilation to provide ensemble samples. Furthermore, 24-h forecasts
were made at 0000 UTC each day to evaluate the quality of forecasts. The evaluation was
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based on the average results, which is more valid statistically than just one single analysis
and forecast.
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Figure 6. Schematic configuration of data assimilation and forecast experiments.

4. Results and Discussion
4.1. RMSE Verification against ERA-5 Data

In order to evaluate the impacts of assimilating Himawari-8 radiance, the fifth genera-
tion of the European Center for Medium Range Weather Forecasts (ECMWF) reanalysis
(ERA-5) data was used as the “truth” [42,44,62–64].

Figure 7 displays the vertical profiles of average bias (dashed lines) and RMSE for
geopotential, horizontal wind, temperature, water vapor mixing ratio and relative humidity
from the analysis fields. The blue and red lines represent the CTRL and HIM8 experiments
against ERA5, respectively. For geopotential (Figure 7a), the bias between CTRL and HIM8
is close under 850 hPa. HIM8 yields relatively lower bias from 850 hPa to the top. The
results of RMSE are similar to those of bias. The RMSE of HIM8 is clearly reduced above
850 hPa. For the U component of horizontal wind (Figure 7b), lower bias is found in
HIM8 at upper levels. However, the RMSE is clearly improved from almost 900 hPa to
the top. Compared to U, the improvement of the V component is much clearer (Figure
7c) when assimilating radiance. Lower bias in HIM8 was found, except at levels under
800 hPa. Especially for RMSE, an overall improvement in HIM8 was found from 900 hPa.
For temperature (Figure 7d), small but positive impacts were found in HIM8 compared
to the CTRL experiment, especially in middle and lower levels of RMSE. For the water
vapor mixing ratio (Figure 7e), the impact of assimilation is smaller in the analysis field, and
bias and RMSE are reduced in the middle and upper levels. However, the assimilation of
Himawari-8 radiance has noticeable impacts on the relative humidity (Figure 7f). HIM8 shows
little reduction in bias and RMSE in the middle and lower levels. The difference between the
two experiments becomes clear above 500 hPa. It demonstrates that the relative humidity
field of HIM8 is more favorable to ERA-5 data in the upper levels. In order to quantitively
determine the difference between CTRL and HIM8, Table 2 displays the specific bias and
RMSE values at different vertical levels of geopotential as an example. Statistically, the average
improvement in bias is 6.44%, with the largest improvement of 14.0% at 400 hPa. The average
improvement in RMSE is 2.69%, with the largest improvement of 5.84% at 100 hPa.
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Figure 7. The vertical profiles of average bias (dash lines) and RMSE (solid lines) in CTRL (blue line) and HIM8 (red line)
experiments for (a) geopotential, (b) U, (c) V, (d) temperature, (e) water vapor mixing ratio and (f) relative humidity from
analysis fields.

Table 2. The geopotential analysis average bias and RMSE values at different heights.

Pressure (hPa) 1000 950 900 850 800 700 600 500 400 300 200 100

Bias
CRTL −2.151 −10.83 −16.43 −19.07 −20.32 −21.98 −24.60 −27.64 −30.51 −36.18 −65.74 −69.98
HIM8 −2.198 −10.87 −16.26 −18.57 −19.48 −20.41 −22.23 −24.21 −26.24 −31.96 −60.59 −64.28

Improvement (%) −2.14 −0.35 1.02 2.61 4.16 7.13 9.65 12.39 14.00 11.67 7.83 8.16

RMSE
CRTL 2.864 16.32 26.34 33.16 38.48 46.91 53.43 57.86 61.76 69.36 92.69 103.8
HIM8 2.914 16.38 26.22 32.79 37.83 45.59 51.31 54.94 58.66 66.75 88.53 97.79

Improvement (%) −1.74 −0.33 0.45 1.13 1.69 2.81 3.97 5.06 5.01 3.76 4.49 5.84

Figure 8 displays the vertical profiles of average bias and RMSE from 24-h forecasts.
The improvement of geopotential (Figure 8a) is much clearer when a 24-h forecast is
conducted. The bias decreased from 700 to 100 hPa in HIM8. The same improvement
can also be found in RMSE, which decreased from 800 to 100 hPa. A relatively slight
reduction was found for the U and V components of wind (Figure 8b,c). The bias from
CTRL and HIM8 was close for U and V, with little improvement in the middle levels.
Positive impacts were found in RMSE for U and V. The RMSE in HIM8 is reduced from 900
to almost 100 hPa for U, and the reduction is much more apparent than V. For temperature
(Figure 8d), lower bias appears between 800 and 600 hPa in HIM8 compared to CTRL. A
similar reduction was found in RMSE, with lower RMSE in the middle and lower levels.
The impact of assimilation on water vapor mixing ratio forecast (Figure 8e) is slight and
mainly in the middle levels. For relative humidity (Figure 8f), the difference between the
two experiments is not as clear as in the analysis field. The main improvements were
found between 800 and 600 hPa. The specific bias and RMSE values of 24-h geopotential
forecasts are taken as an example to be analyzed quantitatively in Table 3. Compared
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to CTRL, the average of forecast bias is reduced by 7.57%, with the largest reduction of
68.71% at 300 hPa. Meanwhile, the average forecast RMSE is reduced by 4.23%, with the
largest reduction by 7.03% at 400 hPa. Overall, Himawari-8 radiance assimilation with
the POD-4DEnVar method shows a positive impact on the main meteorological elements’
analysis and forecasts.
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Figure 8. The vertical profiles of average bias (dash lines) and RMSE (solid lines) in CTRL (blue line) and HIM8 (red line)
experiments for (a) geopotential, (b) U, (c) V, (d) temperature, (e) water vapor mixing ratio and (f) relative humidity from
24-h forecast fields.

Table 3. The geopotential 24-h forecast average bias and RMSE values at different heights.

Pressure (hPa) 1000 950 900 850 800 700 600 500 400 300 200 100

Bias
CRTL −2.589 −1.662 2.733 6.759 6.765 −7.836 −14.138 −16.09 −11.04 −6.797 −19.67 −36.02
HIM8 −2.554 −1.169 4.118 9.224 10.14 −3.353 −9.498 −11.57 −6.490 −2.126 −15.68 −30.50

Improvement (%) 1.36 29.65 −50.64 −36.45 −49.93 57.20 32.82 28.07 41.26 68.71 20.29 15.34

RMSE
CRTL 2.967 14.20 25.98 36.38 44.44 59.85 73.97 82.83 84.51 87.76 99.80 82.58
HIM8 2.913 14.06 25.82 36.06 43.68 57.18 68.93 77.27 78.57 81.87 93.81 77.09

Improvement (%) 1.84 0.94 0.59 0.87 1.72 4.46 6.81 6.72 7.03 6.71 6.00 6.65

4.2. Impacts on Rainfall Forecasts

Rainfall events usually have a great influence on people’s daily life, even causing
meteorological disasters. Thus, it is important that rainfall should be skillfully predicted
by the numerical model. Thus, rainfall forecasting was used to further evaluate the
performance of Himawari-8 radiance assimilation with the POD-4DEnVar method. The
China Hourly Ground Station Precipitation merged with the Climate Prediction Center
morphing precipitation products (CMORPH) was used for evaluation. During the one-
month experiments, three concentrated precipitation events in the inner domain were
found, taking place on 5 July 6 July and 18 July 2020. The domain-averaged precipitation
amount and its every-3-h growth are displayed in Figure 9. On 5 July (Figure 9a), the
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domain-averaged precipitation amount decreased until 1200 UTC, with a rapid decrease
from 0400 to 0600 UTC. After 1200 UTC, the rainfall began to strengthen, especially at
2000 UTC when a quick intensification of rainfall was found. On 6 July (Figure 9b),
there were two periods of negative 3-h growth from 0400 to 0700 UTC and from 1100
to 1900 UTC. The precipitation weakened quickly after 1200 UTC, reaching the weakest
intensity at 1800 UTC. After that, the rainfall rapidly strengthened. On 18 July (Figure 9c),
the precipitation was continuously strengthening after 0500 UTC. The largest increases were
found at 1000 and 1800 UTC. After 2200 UTC, the amount of precipitation decreased slightly.
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Figure 9. The evolution of hourly precipitation (box, left Y-axis with unit of mm) and growth rate of
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(c) 18 July 2020.

Figure 10 shows the equitable threat score (ETS) of different thresholds for 24-h
accumulated precipitation from 0000 to 2400 UTC. The ETS ranges between –1/3 and 1,
with negative or zero values indicating no skill and 1 indicating a perfect score [65]. It is
seen that the ETS values generally decrease as the precipitation strengthens, indicating that
the prediction skill of weaker rainfall is better than that of heavier rainfall, no matter for
CTRL or HIM8. On 5 July (Figure 10a), positive impacts were found in HIM8 compared
to CTRL, except for the 100 mm threshold. On average, the ETS of HIM8 increased by
1.74% compared to CTRL. On 6 July (Figure 10b), the ETS of HIM8 increased compared to
CTRL, except for the 0.1 and 100 mm thresholds. The ETS of HIM8 relatively improved
by 2.58% on average. On 18 July (Figure 10c), HIM8 yielded a higher ETS than CTRL
generally, demonstrating that the assimilation of Himawari-8 radiance further enhanced
the performance for the rainfall prediction on 18 July. The ETS of HIM8 improved by 3.68%
on 18 July. On average, the ETS of 24-h accumulated precipitation improved by 2.67% over
the three cases, demonstrating the positive impact of Himawari-8 radiance assimilation on
rainfall forecasts.
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To objectively and quantitatively verify the precipitation forecast, the Structure, Am-
plitude and Location (SAL) assessment method was adopted as the second verification
method [66]. The A component measures the relative deviation of the domain-averaged
quantitative precipitation forecasts. The L component is related to the location of precipita-
tion, such as the displacement of the precipitation field’s center of mass. The S component
measures the predicted precipitation objects with observations, such as whether the objects
are too large or too small. Perfect predictions are characterized by 0 for the S, A and L
components, indicating that smaller absolute values yield better forecasts [66]. Figure 11
displays the SAL results of 24-h accumulated precipitation from the two experiments. On
5 July (Figure 11a,d,f), the S value in HIM8 was clearly closer to zero compared to CTRL,
showing better precipitation structure prediction, especially for the 100 mm threshold.
All the A values were negative for the three thresholds, indicating that the model under-
estimates the area-integrated precipitation. However, with radiance assimilation, lower
absolute A values were obtained for all the thresholds, showing improvements in the
amplitude prediction. For L, both experiments yielded small values for 0 mm, indicating
excellent performance in predicting the precipitation location. HIM8 yielded a slightly
higher L value for 0 mm and a lower L value for 50 and 100 mm. On 6 July (Figure 11b,e,h),
HIM8 showed slightly larger structure errors than CRTL did for 0 mm but a clearly smaller
structure error for 100 mm. For amplitude, all the experiments overestimated the 24-h
accumulated precipitation, but HIM8 had smaller errors in terms of amplitude. For location,
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smaller errors were found for HIM8 at 0 and 50 mm. With the 100 mm threshold, HIM8
slightly overestimated the location more than CTRL did. For 18 July (Figure 11c,f,i), the
structure of rainfall was better predicted in HIM8 for all thresholds. For amplitude, both
experiments underestimated the precipitation intensity, with HIM8 showing smaller errors
for all the thresholds. For location, similar to the results on 5 July the L values from both
experiments for 0 mm were almost zero, indicating that the rainfall location was nearly
perfectly predicted in both experiments. At the 50 mm threshold, the location error was
clearly reduced in HIM8 compared to CTRL. The location errors of the two experiments
were close at 100 mm, showing little impact of radiance assimilation on location prediction.
Overall, the SAL evaluation indicates that assimilating Himawari-8 radiance can improve
the rainfall prediction from different aspects.
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From the verification scores above, overall positive effects were found with the
Himawari-8 radiance assimilation. To further investigate the impacts, Figure 12 presents
the spatial distribution of 24-h accumulated precipitation from observations (OBS) and the
two experiments (CTRL and HIM8), initialized at 0000 UTC on 5 July 6 July and 18 July. On
5 July, the observed rainfall (Figure 12a) was mainly distributed from west to east across
Hubei Province, Anhui Province and Jiangsu Province. Heavy rainfall occurred in Hubei
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Province. The precipitation patterns in both CRTL (Figure 12d) and HIM8 (Figure 12g)
are separated into two areas. Both experiments overestimated the precipitation in north
Hunan and south Anhui but underestimated the precipitation in south Hubei. However,
compared with CTRL, HIM8 simulated relatively weaker rainfall in south Anhui and
Hubei, which reduced forecast errors against the observations. On 6 July the observed
precipitation pattern (Figure 12b) moved to the east. The simulated rainfall area of CRTL
(Figure 12e) slightly smaller than the observations, whereas HIM8 agreed more with the
observations. Both experiments overestimated the intensity of heavy rainfall, especially for
heavier rainfall (>100 mm). There was clear heavy rainfall in the northwest of Zhejiang
Province according to CTRL, which was not found in observations. However, HIM8 cor-
rected the overestimation in Zhejiang Province with radiance assimilation. On 18 July the
area of precipitation became clearly larger than that on the first two days, covering most
of the domain in the middle and north. Heavy rainfall occurred in Anhui Province. The
CTRL and HIM8 experiments (Figure 12f,i) both clearly underestimated the heavy rainfall
in Anhui Province. In Hunan Province, both experiments overestimated the precipitation
compared with observations, and HIM8 showed relatively weaker rainfall intensity. Thus,
the distribution of precipitation shows that simulated precipitation with radiance assimila-
tion is more favorable with observations on the whole. However, it was also found that
after assimilation, there was still some overestimation of precipitation, which should be
further improved in the future.
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Observations with higher temporal frequency are supposed to improve the prediction
of rapidly changing systems, such as rapidly developing rainfall. Figure 13 shows the ETS
for hourly accumulated precipitation with thresholds of 0.1, 5 and 10 mm. The hourly
ETS was calculated from 0000 to 2400 UTC on 5, 6 and 18 July. For 5 July the ETS results
between the two experiments are quite close for the 0.1 mm threshold (Figure 13a), with
a slightly higher ETS for HIM8 than for CTRL. For 5 mm (Figure 13d), higher ETS was
found in HIM8 between 08Z and 14Z. For 10 mm (Figure 13g), the ETS clearly improved
after 14Z in HIM8 compared to CTRL, with the largest improvement at 20Z. As shown
in Figure 9a, the precipitation strengthened between 14Z and 20Z. The higher ETS at the
10 mm threshold indicates that HIM8 better predicted the rapid intensification of rainfall
on 5 July. For 0.1 mm on 6 July (Figure 13b), the ETS values between the two experiments
are close until 12Z, after which the ETS for HIM8 clearly increases hourly. For 5 mm
(Figure 13e), HIM8 also clearly increases the ETS of CTRL, especially between 08Z and 17Z.
For 10 mm (Figure 13h), the improvement becomes clear from 04Z. As shown in Figure 9b,
there was a sharp decrease and increase in the precipitation amount before and after 16Z,
showing that rainfall was developing rapidly. The larger hourly ETS of HIM8 during that
time demonstrates the advantage of assimilating high temporal resolution observations
in rapidly weakening precipitation forecasts. However, when the precipitation sharply
strengthened, the performance of the two experiments was similar. For 18 July a higher
ETS of HIM8 could be found at 0.1 mm (Figure 13c). HIM8 obtained a higher ETS from 08Z
to 15Z. For 5 mm (Figure 13f), the scores of the two experiments seemed to be close before
07Z, even with the lower ETS of HIM8. After 07Z, HIM8 showed an overall higher score
until 18Z. For 10 mm (Figure 13i), the clearest improvement for HIM8 occurred between
08Z to 22Z. Figure 9c shows that the rainfall on 18 July was continuously strengthening,
with the strongest intensification around 18Z. A higher ETS of HIM8 was found at that
time in different thresholds. These results show that the radiance assimilation experiment
better predicted the hourly accumulated precipitation.

The average percentages of relative improvement are also displayed in Table 4. For
different days, the hourly ETS on 5 July improved with assimilation by about 7.19%,
with a maximum improvement of 15.52% in the 10 mm threshold. The ETS on 6 July
improved by 8.53% on average, with the largest improvement of 11.20% in 10 mm. The
relative improvement on 18 July was 7.83%. Comparing the different thresholds, the largest
improvement was found in 10 mm. This shows that the prediction for heavy rainfall in a
short time with assimilation is better than that without assimilation. From all the cases, the
ETS of HIM8 increased by 7.85% compared to CTRL on average. Overall, the assimilation
of Himawari-8 radiance with the POD-4DEnVar method has positive impacts on short-term
precipitation forecast, especially for rapidly developing precipitation.

Table 4. The relative improvement in hourly ETS in HIM8 compared with CTRL.

5 July 6 July 18 July Average

0.1 mm 2.09% 5.40% 4.20% 3.90%
5 mm 3.96% 9.0% 7.90% 6.95%

10 mm 15.52% 11.20% 11.40% 12.71%
Average 7.19% 8.53% 7.83% 7.85%
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4.3. Discussion
4.3.1. The Initial Increments

As shown in the evaluation results above, assimilating Himawari-8 radiance reduces
the average bias and RMSE of meteorological elements’ analyses and forecasts. In addition,
assimilation further improves the score skills of quantitative rainfall forecast as well as the
structure, amplitude and location forecast. To further investigate the impacts of radiance
assimilation, the initial increments are analyzed and discussed in this section. Initial
increments show the difference between analysis and background, representing the change
from background to analysis by assimilating Himawari-8 radiance.

On 18 July, heavy rainfall appeared in the middle of Anhui Province (31◦N–33◦N,
114◦E–118◦E). Figure 14 shows the spatial distribution of the water vapor mixing ra-
tio (QVAPOR), temperature (T) and vertical velocity (W) at different pressure levels at
0000 UTC on 18 July 2020, when rainfall of varying intensity occurred around 30◦N
(Figure 12). The vectors represent the analysis of horizontal wind field, which provides
the circulation patterns. For QVAPOR, the spatial distribution of increments is all over the
inner domain, mostly in the precipitation area. The water vapor at 700 hPa was increased
in the middle of Anhui after assimilation, with a maximum of almost 0.8 g/kg. At 500 hPa,
the increments varied in different areas, with both increases and decreases in water vapor
in Anhui. Thus, assimilation of Himawari-8 radiance mainly increases the lower-level
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water vapor in the heavy rainfall area. More water vapor transport in the lower level is
provided for the development of precipitation, helping to strengthen the heavy rainfall in
the middle of Anhui Province. The change in temperature after assimilation was slight in
the precipitation area, which was dispersed and small, with few cooling effects at 500 hPa
and few warming effects at 700 hPa. Thus, assimilating Himawari-8 radiance has little
effect on temperature in the precipitation area. However, vertical velocity increments were
clearly found in the precipitation area at both 500 and 700 hPa. The positive increments
were found in the area where there was clear horizontal wind convergence at 700 hPa.
Horizontal wind convergence at the lower level means that there is clear air updraft. Thus,
the positive increments indicate that assimilation further strengthens the updraft in the
precipitation area, which is beneficial for precipitation development. In addition, the
increment at 500 hPa is stronger than that at 700 hPa, demonstrating that Himawari-8
radiance changes the mid-level vertical velocity more than the lower-level one. Overall,
the impacts of Himawari-8 radiance on the initial field are mainly found in water vapor
and vertical velocity in precipitation areas, which helps improve rainfall prediction.
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magnitude of the horizontal wind field from analysis.

4.3.2. The Effect of Observation Frequency

The hourly precipitation ETS results show that assimilation of every 10-min radiance
data with POD-4DEnVar improves the prediction of rapidly changed rainfall events. To
investigate the advantages of assimilating high observing frequency radiance data, another
assimilation experiment was conducted, HIM8-1h, which assimilates all the observations
in CTRL plus every 1-h Himawari-8 radiance. Correspondingly, the assimilation window
was set to 6 h, with seven observations made within the assimilation window. An ensemble
was made for HIM8-1h with the same method described in Section 2.2, but with a different
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temporal resolution. The other configurations in assimilation and forecast procedure are
the same as HIM8.

Figure 15 shows the ETS results in HIM8 and HIM8-1h on 18 July 2020 as a case
study. For 24-h accumulated precipitation (Figure 15a), in general, the ETS for HIM8 was
increased compared to HIM8-1h. The increase was much more apparent in the 0.1, 10 and
20 mm thresholds. On average, HIM8 improved the 24-h accumulated precipitation ETS
by 12.75% compared to HIM8-1h, with the greatest improvement of 28.66% in 100 mm
precipitation. As the results in Section 4.2 demonstrate the positive impacts of assimilation
on the rapidly developed rainfall, the same evaluation was carried out on the hourly
evolution of precipitation. Figure 15b–d display the hourly accumulated precipitation ETS
for different thresholds on 18 July. For 0.1 mm (Figure 15b), the ETS of HIM8 improved
between 05Z and 21Z. Clear improvements were found when the precipitation was contin-
uously strengthening. The same results appeared at larger thresholds, where, in the first
few hours, HIM8-1h presented better ETS results than HIM8. However, as the precipitation
developed, assimilating every-10-min radiance yielded clearly higher ETS results than
HIM8-1h. Averaging the different thresholds, the hourly accumulated precipitation ETS
improved by 15.88% in HIM8 compared to HIM8-1h. The largest increases in ETS were
found at 15Z for 0.1 mm, 12Z for 5 mm and 12Z for 10 mm thresholds. As shown in Figure 9,
the precipitation on 18 July continuously strengthened at 08Z and 18Z. Thus, the advantage
of assimilating high observational frequency data is revealed when the precipitation is
rapidly strengthening.
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4.3.3. The Effect of the Assimilation Method

To quantitatively discuss the advantage of assimilating Himawari-8 radiance data
with the POD-4DEnVar method, it was compared with the traditional 3DVar assimilation
method [59]. The analysis time of 3DVar was set to 0000 UTC on 18 July with the back-
ground field provided by a 6-h forecast using the WRF model. The assimilation window
was±3 h, with the analysis time at the center of the window. The other configurations were
the same as in the POD-4DEnVar experiments. A comparison of precipitation forecasts was
completed. Tables 5 and 6 display the ETS values of 24-h and hourly accumulated precipita-
tion with different assimilation methods. On average, assimilation with the POD-4DEnVar
method improved the 24-h accumulated precipitation by 11.88% (Table 5) compared to
assimilation with the 3Dvar method. The hourly accumulated precipitation ETS was also
evaluated between the two assimilation methods. The results show that the POD-4DEnVar
method improved the hourly ETS by 11% on average (Table 6). Overall, the quantitative
results indicate that assimilating Himawari-8 radiance data with the POD-4DEnVar method
outperforms the traditional 3DVar method.

Table 5. The ETS values of 24-h accumulated precipitation for different thresholds.

0.1 mm 10 mm 20 mm 40 mm 60 mm 80 mm 100 mm

POD-4DEnVar 0.545 0.57 0.521 0.471 0.446 0.313 0.202
3DVar 0.487 0.453 0.471 0.442 0.385 0.289 0.194

Table 6. The ETS values of hourly accumulated precipitation for different thresholds.

0.1 mm 5 mm 10 mm

POD-4DEnVar 3DVar POD-4DEnVar 3DVar POD-4DEnVar 3DVar

01Z 0.325 0.294 0.178 0.177 0.142 0.148
02Z 0.325 0.323 0.158 0.19 0.096 0.103
03Z 0.315 0.334 0.142 0.18 0.07 0.103
04Z 0.335 0.353 0.126 0.179 0.015 0.092
05Z 0.316 0.331 0.13 0.165 0.015 0.067
06Z 0.293 0.286 0.109 0.136 0.023 0.052
07Z 0.276 0.256 0.121 0.125 0.034 0.072
08Z 0.261 0.234 0.187 0.143 0.081 0.042
09Z 0.266 0.213 0.182 0.161 0.071 0.064
10Z 0.304 0.233 0.201 0.167 0.134 0.08
11Z 0.295 0.224 0.228 0.159 0.141 0.096
12Z 0.252 0.202 0.184 0.117 0.125 0.072
13Z 0.274 0.218 0.181 0.133 0.12 0.08
14Z 0.296 0.245 0.188 0.175 0.137 0.118
15Z 0.308 0.277 0.225 0.224 0.172 0.123
16Z 0.305 0.284 0.275 0.262 0.222 0.165
17Z 0.308 0.285 0.276 0.266 0.276 0.209
18Z 0.318 0.277 0.277 0.258 0.301 0.216
19Z 0.35 0.301 0.326 0.282 0.275 0.235
20Z 0.397 0.333 0.35 0.304 0.268 0.216
21Z 0.414 0.345 0.407 0.319 0.248 0.205
22Z 0.423 0.386 0.441 0.352 0.285 0.255
23Z 0.407 0.396 0.411 0.364 0.256 0.226
24Z 0.422 0.409 0.412 0.41 0.217 0.188

5. Conclusions

In this study, the potential impacts of assimilating every-10-min Himawari-8 radi-
ance data were investigated based on a four-dimensional ensemble variation assimilation
method. To assimilate Himawari-8 AHI radiance data, quality control, especially cloud de-
tection, was first conducted. Based on the POD-4DEnVar method, the assimilation window
was designed according to the frequency of Himawari-8 observations used in this study.
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In addition, historical forecasts and physical ensembles were combined in order to make
ensembles as well as reduce computational costs. The results suggest that the simulated
radiance after quality control and bias correction procedures agrees more with observations,
indicating that radiance with “good” quality is guaranteed in the assimilation system.

The impacts of Himawari-8 radiance assimilation on the analysis and forecast of
the main meteorological elements were examined. Clear positive effects were found for
geopotential, wind field and relative humidity. The impacts on temperature and water
vapor mixing ratio were small but still positive overall. An evaluation of rainfall prediction
was also conducted to further examine the impacts of assimilation. On average, the
HIM8 experiment improved the ETS of 24-h accumulated precipitation for all the rainfall
cases compared to the CTRL experiment. The SAL results also indicate that assimilation
can improve the precipitation prediction from the perspective of structure, amplitude
and location. The increments indicate that assimilation strengthens the water vapor at a
lower level and vertical velocity in middle and lower levels, especially in the rainfall area,
which helps fix the underestimated heavy rainfall prediction. Moreover, an additional
experiment assimilating Himawari-8 radiance every 1 h was conducted. In comparison,
the 24-h ETS clearly improved when assimilating every-10-min Himawari-8 radiance.
The hourly ETS evolution suggests that assimilation of high observing frequency data
can improve the prediction of rapidly intensified precipitation. Thus, the observations
with high observing frequency can be utilized more appropriately with POD-4DEnVar.
Assimilation of Himawari-8 radiance data was also compared with the traditional 3DVar
method. The quantitative ETS results show that POD-4DEnVar outperforms the 3DVar
method in general.

This study encourages the assimilation of every-10-min radiance data from the
Himawari-8 geostationary satellite with the POD-4DEnVar method. The results in this
study demonstrate that the assimilation has the potential to improve numerical weather
predictions. However, further studies still need to be conducted in the future. On the one
hand, higher quality ensembles need to be produced while not increasing the computa-
tional cost too much. On the other hand, this study only assimilated clear-sky radiance
from the Himawari-8 satellite. However, most severe weather is associated with dense
clouds and precipitation. Assimilating observations affected by clouds and precipitation
may provide more information. Several studies have investigated the assimilation of
all-sky Himawari-8 radiance with traditional methods [47,48]. Thus, assimilation of all-sky
Himawari-8 radiance data with the POD-4DEnVar method may be the next step of our
future work in order to further improve severe weather forecasts.
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