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Abstract: Change Detection in heterogeneous remote sensing images plays an increasingly essential
role in many real-world applications, e.g., urban growth tracking, land use monitoring, disaster
evaluation and damage assessment. The objective of change detection is to identify changes of
geo-graphical entities or phenomena through two or more bitemporal images. Researchers have
invested a lot in the homologous change detection and yielded fruitful results. However, change
detection between heterogenous remote sensing images is still a great challenge, especially for change
detection of heterogenous remote sensing images obtained from satellites and Unmanned Aerial
Vehicles (UAV). The main challenges in satellite-UAV change detection tasks lie in the intensive
difference of color for the same ground objects, various resolutions, the parallax effect and image
distortion caused by different shooting angles and platform altitudes. To address these issues, we
propose a novel method based on dual-channel fully convolution network. First, in order to alleviate
the influence of differences between heterogeneous images, we employ two different channels to
map heterogeneous remote sensing images from satellite and UAV, respectively, to a mutual high
dimension latent space for the downstream change detection task. Second, we adopt Hough method
to extract the edge of ground objects as auxiliary information to help the change detection model
to pay more attention to shapes and contours, instead of colors. Then, IoU-WCE loss is designed to
deal with the problem of imbalanced samples in change detection task. Finally, we conduct extensive
experiments to verify the proposed method using a new Satellite-UAV heterogeneous image data set,
named HTCD, which is annotated by us and has been open to public. The experimental results show
that our method significantly outperforms the state-of-the-art change detection methods.

Keywords: change detection; remote sensing; heterogeneous images; deep learning; fully convolution
network

1. Introduction

Remote sensing image change detection refers to the process of analyzing two or more
remote sensing images at different times to identify the changed geo-graphical entities or
phenomena [1]. Heterogeneous images refer to images taken from different types of remote
sensing platforms or sensors [2,3]. This paper aims at a special input situation of image
change detection, which is heterogeneous images taken by satellites and Unmanned Aerial
Vehicles (UAVs).

Remote sensing image change detection analyses multitemporal and multispace
information simultaneously, and the result is very meaningful for a vast set of applications,
including urban growth tracking [4,5], land use monitoring [6,7], disaster evaluation and
damage assessment [8,9]. Therefore, change detection has attracted increasing attention
from researchers all over the world.

The condition of conventional homologous image change detection is too strict for
many real-world applications. The remote sensing images of a target area before (pre-
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image) and after (post-image) the event to be analyzed should be taken by exactly the
same sensor under very similar situations, and then the conventional homologous change
detection methods can play its role. Hence, most of change detection research use satellite
images as input, for the reason that they are taken from the same orbit and under similar
situations. However, in many actual applications, this requirement is difficult to satisfy
for the limitations of characteristics of satellite imaging, such as weather, solar altitude,
restriction of orbital period and imaging width of payloads.

With the advancement of UAV, remote sensing images from UAVs are much easier to
be obtained. Change detection between heterogeneous images from satellite and UAV is
very import under a couple of applications. For example, in the application of emergency
disaster evaluation and rescue, pre-disaster data is often satellite images for its wide
coverage and rich historical accumulation, while the post-disaster data can be timeliness
images from UAVs, since UAV optical images are often the fastest way to be obtained.
In this emergency, satellite-UAV image change detection is the fastest way to assess the
disaster damage situation and support the first rescue. Therefore, heterogeneous change
detection between images from satellite and UAV has important application prospects,
especially in various emergency situations.

At present, the research of heterogeneous change detection mainly focuses on the
change detection between different sensors, such as optical images and SAR images. How-
ever, there are many differences between Satellite-UAV change detection and optical-SAR
change detection. In application, SAR images and UAV images have their own advantages.
The advantage of SAR is that it can provide full-time and full-weather observation for
targets. While compared to SAR images, UAV optical images have the following two
advantages. Firstly, compared with optical imaging, the SAR imaging system is more
complex. Therefore, it is more difficult to install on a portable UAV platform to obtain the
target area information at the first time in applications for emergency rescue. Secondly, the
resolution of SAR image is much lower than UAV optical image, and it cannot provide
color information such as UAV optical image [10]. This makes it inferior to UAV images
in reflecting the detailed information of the target area. Therefore, in the application of
emergency disaster evaluation and rescue, the portable UAV optical remote sensing system
and high-resolution UAV images are still the most effective source information of the
target area. Technically, optical-SAR heterogeneous change detection and Satellite-UAV
change detection face different difficulties. Optical-SAR change detection needs to deal
with more intensive image differences. While due to the high resolution of UAV image,
Satellite-UAV change detection requires the network to fully consider detailed features to
obtain pixel-level accurate change detection results.

To the best of our knowledge, there is no research work on satellite-UAV heterogeneous
image change detection. The main challenges of it can be summarized as follows:

1. The intensive spectral difference between satellite images and UAV images. UAV
remote sensing generally uses visible light cameras to obtain RGB three-spectrum
images, while satellite remote sensing images generally can contain three or more
spectra. Furthermore, due to the intensive difference in shooting angle, atmospheric
propagation conditions, imaging sensors, etc., the two images might not be obtained
with the same spectrum, or the imaging colors of the same ground object will be
different. This poses challenges for change detection. The change detection model
should be able to discriminate the real ground object changes from the interference
caused by shooting condition differences.

2. Various ground resolution of satellite images and UAV images. Since the shooting
altitude and the sensors on satellite and UAV are different, UAV images generally
have higher resolution than satellite images. The ground resolution of VHR satellites
is about 0.5–1 m [11], while the ground resolution of UAV images is generally less
than 0.1 m [12]. Shrinking the image by downsampling and interpolation is a straight-
forward way to solve the problem, but that will lose a lot of detailed information and
introduce some accumulated error.
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3. The parallax and image distortion of the two kinds of remote sensing images are more
serious than homologous images. Since the satellite images and UAV images might
shoot from difference angles, the parallax and image distortion are inevitable. There
may exist differences between the two images of the same object and the positional
deviations are difficult to completely register.

4. The number of unchanged pixels (negative samples) are much more than that of
changed pixels (positive samples). Satellite-UAV heterogeneous remote sensing
image change detection can be regarded as a typical imbalanced learning problem.

To address these difficulties in heterogeneous change detection, we propose a novel
heterogeneous change detection approach and conduct comprehensive experiments on a
new dataset we collect and annotate. We name our approach Satellite-UAV heterogeneous
remote sensing image change detection neural Network (SUNet).

The main contributions of this paper are as follows:

1. We propose a novel end-to-end deep neural network-based model to map heteroge-
neous images from satellite and UAV to a mutual high dimension latent space for
change detection, in order to mitigate the influence of differences (color, resolution,
parallax and image distortion) between heterogeneous images. A novel loss function
is designed to address the problem of imbalanced learning issue.

2. We automatically extract the edges of ground objects and feed it into the proposed
neural network as auxiliary information to enhance the performance of heterogeneous
change detection.

3. To validate the proposed methods, we conducted comprehensive experiments on
a new satellite-UAV heterogeneous image change detection dataset, named HTCD,
which is collected and annotated by ourselves. The experiment results show that
the proposed model significantly outweighs the state-of-the-art change detection
methods. The HTCD dataset and our code is open access on https://github.com/
ShaoRuizhe/SUNet-change_detection (accessed on 9 September 2021).

2. Related Work
2.1. Image Change Detection

Automatic change detection is a significant technology in remote sensing. Various
change detection application scenarios bring various challenges. Researchers have pro-
posed various imaginative change detection approaches to meet these challenges. Tra-
ditional approaches, such as change vector analysis (CVA) [13], Multivariate alteration
detection (MAD) [14], slow feature analysis (SFA) [15], are simple but effective. They
generally use an elaborate handcraft method to extract features from the multitemporal
images and then compare the features to acquire the change map. These methods are
simple, but the effect is not ideal for some complex situations such as high resolution or
heterogeneous image input.

Nowadays, deep learning techniques are demonstrating its promising prospective,
especially in image processing field. Since neural networks are able to automatically
and continuously tune their parameters to obtain better models, many change detection
approaches based on deep learning have been demonstrated better performance than
traditional approaches [16–18].

2.2. Deep Learning for Change Detection

According to difference change detection ideas, various change detection processes
and model structures are proposed. Transformer [19] based approach uses encoders
and decoders to construct the change detection network. Graph Convolutional Network
(GCN) [20] based approach performs image segmentation first, then constructs image
blocks into a graph and uses GCN to determine which blocks are changed. Gong [21]
applies Generative Adversarial Networks (GAN) in change detection.

Siamese networks [18,22–24] use two subnets to extract the high-level features from
the two input images, respectively. For homologous change detection tasks, the two subnets

https://github.com/ShaoRuizhe/SUNet-change_detection
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can share their weights to reduce the parameters of the network and make sure the features
are extracted in the same way. Chen [23] uses a convolutional network without pooling as
subnet, and a RNN to detect changes. Chen [24] uses a dual attention mechanism to locate
the changed areas after feature extraction.

Fully convolution network (FCN) [25–28] is widely used in both image classifica-
tion and change detection. It uses deconvolution to obtain the change map from high-
dimensional features, which makes FCN complete change detection task in the form of
end-to-end. Liu [25] uses depth-wise separable convolution to make FCN lighter and
outperform the original FCN. Li [28] appends an unsupervised noise modeling module
after FCN to realize unsupervised change detection.

FCN is relatively mature and versatile among these methods and is therefore widely
used. This paper is also based on FCN change detection model.

Loss function is one of the most crucial ingredients in deep learning methods. Early
researchers employ the same loss functions of image segmentation tasks [29] to train change
detection networks. However, due to the problem of imbalanced samples (unchanged
pixels are generally much more than changed pixels) in change detection tasks, these loss
functions tend to acquire poor training results. Therefore, various specialized loss functions
for change detection have been proposed.

According to the optimization objective of change detection loss functions, they can be
divided into three categories. Firstly, distribution-based losses are generally the extensions
of Cross Entropy (CE) loss. For example, Weighted Cross Entropy (WCE) [30] adds weight
to different classes to deal with the problem of imbalanced samples. Secondly, region-based
losses aim to minimize the mismatch regions and maximize the overlap regions between the
ground truth region and the predicted region. The mainstream region-based loss functions
are Dice loss [31] and IoU loss [32], which are good at dealing with imbalanced sample
problem [32]. Finally, combo loss [33–35] refers to the fusion of multiple loss functions
through weighted addition and other methods to comprehensively utilize the advantages
of multiple loss functions. In this way, the change detection network can be precisely
optimized toward the right direction that constrained by the loss.

In our experiments, we found that the region-based loss functions, such IoU loss,
cannot drive the model training stably, which often leads to non-convergence of training.
However, CE loss is less effective in change detection, which is an imbalanced sample task.
Therefore, this paper tries to study the combo loss to fit our problem best.

2.3. Heterogeneous Remote Sensing Change Detection

The existing research works on heterogeneous change detection mainly focus on the
change detection between optical images and SAR images. There are two main ideas for
heterogeneous change detection: homogeneous transformation and extracting the feature
of contour and structures as auxiliary information.

Homogeneous transformation refers to the idea that transform the heterogeneous
images into a homogenous domain, then use homogenous change detection methods to
complete the change detection task. Based on this idea, Mercier proposes conditional
copula [36] and homogeneous pixel transformation [37], Jiang [38] proposes Deep Homo-
geneous Feature Fusion for heterogeneous optical and SAR images.

Contour and structure feature refers to the idea that uses the feature of contours and
structures in the image rather than the feature of colors and pixels in the image to detect
changed areas, since the color of heterogeneous images is less reliable than contour and
structure. Contour and structure features can play an essential role when pixels and color
are incompetent for heterogeneous change detection. Sun [39] performs heterogeneous
change detection by constructing and mapping a nonlocal patch-based graph (NLPG). On
the basis of histogram of direction of lines (HODOL), the building changes are detected
in [40]. In [20], images are segmented into patches of different shapes, and a graph is
constructed on these patches and their structure, and the changed areas are determined
based on this graph.
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Heterogeneous image change detection is a field that gives full play to the creativity
of researchers. In addition to the above two main ideas, there are also many ingenious
methods. Touati, R. et al. [41] use a series of elaborate constraints and an energy-based
model to yield a similarity map. Ayhan, B et al. [42] calculate the correlation between each
pixel and other pixels of the two images based on the Pixel Pair, and further obtain the
change map. These approaches can perform quite well in some heterogeneous change
detection scenarios. However, the existing methods cannot be employed in satellite-UAV
change detection tasks directly, since the challenges of optical-SAR change detection or
other types of heterogenous are very different from those of satellite-UAV change detection.

3. Methodology

Given two heterogeneous remote sensing images for the same target area A: satellite
image ISat ∈ RWSat×HSat and UAV image IUAV ∈ RWUAV×HUAV captured on different dates
t1 and t2, respectively, the purpose of change detection is to generate a binary change map
D to identify the changed and unchanged geographical entities or phenomena in area A.
To achieve this, we propose a novel and effective method, named SUNet.

In this section, first the overall pipeline of the proposed SUNet is given. Then, we
elaborate on the detail design of the proposed change detection approach.

3.1. Overview

The framework of the proposed SUNet is shown in Figure 1. Our approach consists
of three components: a dual-channel FCN (Section 3.2), an edge auxiliary information
extraction method (Section 3.3) and the IoU-WCE loss (Section 3.4).
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SUNet employs the proposed Dual-Channel FCN to detect changes between two
images of different types. The satellite images and UAV images are directly input into
Dual-Channel FCN, without interpolation and scaling. In the Dual-Channel FCN, the
feature maps of the two input images are firstly generated through two different feature
extraction channels separately, and then the feature maps are concatenated before fed into
the encoder of FCN to obtain the high-level feature map. Afterwards, the high-level feature
map will pass through the decoder to acquire the change map.

In order to use the edge and shape information to help the model detect heterogeneous
changes, the edge auxiliary information is extracted from the image through a Hough-
based edge extraction method. Then, it is fed into the model along with the feature maps
which are the output of the two channels.

In the training phase, we use the proposed IoU-WCE loss to minimize the difference
between the output change map and the labeled change map, because IoU-WCE loss can
excellently solve the difficulty of imbalanced samples that plague the general CE loss1.

3.2. Construction of Dual-Channel FCN

As mentioned in Section 1, the ground resolution of satellite and UAV images are
always different. Therefore, for the same target area, the sizes of the two input images are
different, which cannot be processed by general homogeneous change detection models.

One straightforward way is to use image interpolation methods to reduce the size of
UAV images, such as bilinear interpolation and nearest interpolation. However, the simple
image downsampling and interpolation methods have some drawbacks with respect to the
heterogeneous change detection problem.

1. Image interpolation uses only a few surrounding pixels and loses some information
in the UAV image. The edges of the ground objects in the image may be blurred,
texture and detail information may be lost, which may lead to a degeneration in the
accuracy of subsequent change detection.

2. Image interpolation methods cannot overcome other challenges of the heterogeneous
input images, such as the spectral differences and parallax mentioned in Section 1.

To address the above problems, we propose a Dual-Channel FCN to map the two types
of images into a mutual high dimension space and then do change detection with FCN.
FCN-based change detection methods [43] need two input images of the same size, which
means that the heterogenous images of different sizes have to be scaled to the same size with
interpolation. While the proposed Dual-Channel FCN can directly input images of different
sizes, and extract feature maps from them through two different feature extraction channels,
which are composed of two different multilayer convolutional networks, respectively. The
UAV feature extraction channel converts the high-resolution UAV image into a high-
dimensional feature map that carries both context information and detailed information.
Afterwards, the two feature maps are concatenated over their channels and fed into the
following FCN. Compared with image interpolation, convolutional network has larger
receptive field and allows the network to propagate the context information of high-
resolution layers into high-dimensional feature layers, thereby the contextual information
can be used to deal with spectral differences and parallax. Given two remote sensing
images IUAV ∈ RWUAV×HUAV and ISat ∈ RWSat×HSat , and the edge auxiliary information
EUAV ∈ {0, 1}WUAV×HUAV and ESat ∈ {0, 1}WSat×HSat which will be detailed in Section 3.3,
the formulas for calculating the feature maps FUAV ∈ RWSat×HSat and FSat ∈ RWSat×HSat

through two channels are as follows:

FUAV = CUAV(cat(IUAV, EUAV)) (1)

FSat = CSat(cat(ISat, ESat)) (2)

where cat (·) represents the operation of concatenating two inputs over their channels,
CUAV (·) and CSat (·) are feature channels for UAV and satellite, respectively.
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Inspired by U-net [30] and FCNs [26,43,44], we use “skip connection” concept in our
Dual-Channel FCN model. Compared with FCN, Dual-Channel FCN adds the same size
feature layer of the encoder to the input of the decoder convolutional layer, as illustrated in
Figure 1. The motivation for “skip connections” is to complement large-scale and global
information of the encoded features with the detail and localized information that are
present in the earlier feature layers of the encoder. Through the fusion of local and global
information, the model can not only correctly judge the change area and position, but
also find the precise and detailed boundary. To be specific, the encoder and decoder of
Dual-Channel FCN are formulated as follows:

ei =

{
Hei{cat(FUAV, FSat)} i = 0
Hei{AvePool(ei−1)} 4 > i > 0

(3)

dj =

{
Hdj

{
cat

(
TConv

(
AvePool

(
e3−j

))
, e3−j

)}
j = 0

Hdj
{

cat
(
TConv

(
dj−1

)
, e3−i

)}
4 > j > 0

(4)

D = argmax
(

d2×Wout×Hout
3

)
(5)

whereH (·) denotes the operation of the convolution block, ei and dj are feature layers in
encoder and decoder, respectively, AvePool (·) is average pooling, TConv (·) is the opera-
tion of transposed convolution. D ∈ {0, 1}1×Wout×Hout is the output binary change map.

3.3. Extraction of Edge Auxiliary Information

Auxiliary information including edges and shapes is very helpful to the change
detection between UAV images and satellite images. Firstly, although the Dual-Channel
structure enlarges the receptive field and preserves more context information compared to
downsampling and interpolation, the feature still only contains local information of a small
region. If this local and detail information can be complemented with global information,
the obtained feature map will represent the original image more completely. The edge
auxiliary information is extracted based on global features—the shape and contour of
the ground objects. Secondly, as stated in Section 1, since there is a variety of intensive
spectral difference between satellite images and UAV images, the color information is less
reliable than the shape and contour. Therefore, for the task of Satellite-UAV heterogenous
change detection, if the change detection algorithm can pay more attention to the shape
and contour, it will reduce the interference of the spectral difference and find the real
changes. Finally, for application scenarios of urban area administration and human rescue
supporting, artificial entity changes are more attention-worthy than natural feature changes.
Since the latter might be caused by seasons and climate, while the former can directly
reflect the factors we are concerned about, such as the extent of house damage caused by
natural disasters or urban development. Generally speaking, artificial entities (such as
houses and roads) will have neat straight edges, while natural features (such as trees, etc.)
will have irregular edges. Based on this, the proposed model can pay more attention to
artificial features with the help of auxiliary edge information, so as to better meet the needs
of these applications.

Hough algorithm [45] is a classic and effective method for straight line extraction.
However, it can satisfy the effect of the auxiliary information mentioned above on the
Dual-Channel structure. First, in the process of mapping pixels in the entire image to
the parameter space and finding extreme values, global information can be obtained to
complement the local information provided by image convolution. Secondly, the straight
line extracted by the Hough transform conforms to the straight edge feature of artificial
entities.

In this paper, the edges of the two images are extracted using Canny algorithm [45],
and then Hough algorithm is applied to extract straight edges as auxiliary information.
Hough algorithm is delicately tuned to acquire two suitable groups of parameters for
satellite and UAV images, respectively. The extracted edge auxiliary information is input
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into the model by concatenating with the input images over the channels. An example of
edge auxiliary extraction is displayed in Figure 2.
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3.4. IoU-WCE Loss

As mentioned in Section 2.1, compared with general image segmentation, an impor-
tant difference of change detection is the imbalanced ratio of the two classes—“changed”
class and “unchanged” class. This is likely to cause the misdirection of the model opti-
mization and training. For this problem, we propose two solutions based on loss function
improvement.

3.4.1. Introduction of WCE

Based on the idea of minimizing KL divergence, cross entropy is defined by:

Lce(i) = −
C

∑
c=1

g(i, c)logp(i, c) (6)

where C is the number of classes, g(i, c) represents the ground truth binary map, indicating
if pixel i is in class c, and p(i, c) is the predicted probability of pixel i is in class c.

To address the problem of imbalanced samples, WCE [30] increases the weight of
sub-categories to prevent them from being ignored:

Lwce(i) = −
C

∑
c=1

wcg(i, c)logp(i, c) (7)

where wc is the weight of class c.
In this paper, to balance the changed and unchanged class, we use the ratio of the

pixels as the weight. The proposed WCE loss for change detection can be formulated
as follows:

Lwce(i) = −[Pug(i, u)logp(i, u) + Pcg(i, c)logp(i, c)] (8)

where Pu and Pc are the frequencies of the changed and unchanged pixels, respectively. u
and c in g and p represents the pixel i is unchanged or changed.

3.4.2. IoU-WCE Combo Loss

In the field of image segmentation, region-based loss functions are proposed to handle
the imbalanced sample problem [29]. At present, the mainstream region-based loss func-
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tions are Dice loss and IoU loss [29]. Through experiments (Section 4.5), we found that in
our heterogenous change detection task, using IoU-loss can acquire a better training result.
The idea of IoU loss is to minimize the IoU of the network output. IoU loss is defined by
the following equation.

Liou = 1− ∑i∈I gi pi

∑i∈I(gi + pi − gi pi)
(9)

IoU loss can handle imbalanced sample problems such as change detection well [32].
However, in IoU loss (Equation (9)), the model output p appears in the denominator
and the unstable term 1

p2 will turn up in the derivative of p during the backpropagation
process. This term lays a hidden trouble to the training process. Therefore, we propose
IoU-WCE combo loss to smoothly optimize our model while overcoming the problem of
unbalanced sampling:

Ltotal = αLiou + (1− α)Lwce (10)

where α is a constant weight to balance the two weights. It will be further discussed in the
experiment (Section 4.5.3).

4. Experiment
4.1. Dataset

The objective of our HTCD dataset is to provide a standardized way to compare the
efficacy of various heterogenous change detection models and algorithms proposed by
creative researchers. The HTCD dataset covers Chisinau and its surrounding area, which is
an area of approximately 36 square kilometers. The dataset contains two image scenes that
are shot by satellite in 2008 and UAV in 2020, respectively. The dataset is labeled focused
on urban areas. Urban changes, including buildings, roads and other urban man-made
features, are carefully labeled, while natural changes are ignored. Some examples of the
dataset are shown in Figure 3. Since the dataset contains pixel-wise ground truth change
labels, accurate to every changing object in the area, the dataset can be applied to evaluate
or train various supervised learning models for heterogenous change detection.
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The HTCD dataset was built using the satellite images from Google Earth (https:
//www.google.com/earth/ (accessed on 10 April 2021)) and UAV images from Open
Aerial Map (https://map.openaerialmap.org/ (accessed on 10 April 2021)). The size of the
satellite image is 11 K× 15 K pixels. While the UAV image is consisted of 15 image blocks,
in total 1.38 M× 1.04 M pixels. The ground resolutions of them are 0.5971 m and 7.465 cm,
respectively. Images and labels are all stored in GeoTiff format with location information,
for the convenience of further analysis and research.

The image is registered by manually selecting control points and using the polynomial
method. After registration, the pixel-wise ground truth labels were manually generated
by comparing the two images. The operations including image registration, comparison
and annotation are completed using QGIS (https://www.qgis.org/en/site/ (accessed on
9 September 2021)).

4.2. Setup
4.2.1. Metrics

We calculate 5 metrics to evaluate the performance of the proposed method: precision
(Pre), recall (Rec), F1 score (F1), overall accuracy (OA) and Intersection-over-Union (IoU).
P and R represent lower false detection and omission, respectively. While the overall
evaluation metrics of the prediction results are given by F1 and OA. The larger their values,
the better the prediction results. The above-mentioned metrics are mainly introduced from
prediction problems. In addition to these metrics, we also adopt IoU, a pivotal metric in
image segmentation problem, which is a good assessment of the consistency between the
detected changes and ground truth. They are expressed as follows:

Pre =
TP

TP + FP
(11)

Rec =
TP

TP + FN
(12)

F1 =
2P · R
P + R

(13)

OA =
TP + TN

TP + TN + FP + FN
(14)

IoU =
{PreChange} ∩ {GTChange}
{PreChange} ∪ {GTChange} (15)

where TP is the number of true positives, FP is the number of false positives, TN is
the number of true negatives and FN is the number of false negatives. {PreChange}
and {GTChange} are the set of detected change pixels and ground-truth change pixels,
respectively.

4.2.2. Training Details

During training, HTCD dataset was clipped into 3772 image tile pairs consisting
of WSat × HSat = 256 × 256 satellite images and WUAV × HUAV = 2048 × 2048 UAV
images. Furthermore, 60%, 20% and 20% of them are randomly selected as the training set,
validation set and testing set, respectively. The training set was input into the model with
5 images as a batch. Adam optimizer with a learning rate of 0.001 was adopted to adjust
the weights. The weight of IoU loss α (Equation (10)) is set to 0.66.

Our change detection approach is implemented via OpenCV (https://opencv.org/
(accessed on 15 September 2021)) and Pytorch (http://pytorch.org/ (accessed on 9 Septem-
ber 2021)) on a deep learning server powered by 2× GeForce GTX 2080Ti GPU, 256 GB
RAM, 2× 10 GB VRAM.

https://www.google.com/earth/
https://www.google.com/earth/
https://map.openaerialmap.org/
https://www.qgis.org/en/site/
https://opencv.org/
http://pytorch.org/
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4.3. Baselines

To the best of our knowledge, there are no existing research results on Satellite-UAV
heterogeneous change detection. Therefore, we selected the latest change detection method
including both homologous and heterogeneous models as the baseline.

• Symmetric Convolutional Coupling Network (SCCN) [46]. SCCN is a method for
heterogenous change detection tasks. It extracts feature maps from SAR and optical
images from satellites. Next, the high-quality different map can be obtained by
comparing and fusing these feature maps. SCCN is a wide-used heterogenous change
detection model.

• Spatial–Temporal Attention neural Network (STANet) [47]. STANet is a homologous
change detection method for very high resolution (VHR) satellite images. It first uses
a Siamese FCN to extract the bitemporal image feature maps, then uses the proposed
self-attention module to update the feature. Finally, the features are compared and the
change map is generated.

• Fully Convolutional Early Fusion (FC-EF) [43]. FC-EF is a method for homologous
change detection tasks. It uses the idea of FCN image segmentation for change
detection. It stacks the two images as the input to the model, and uses the skip
connection concept introduced in U-Net [30] to fuse the features of different scales
and obtain the final change map.

• BiDateNet [48]. BiDateNet is a model for homologous change detection between
satellite images. It integrated the Recurrent Neural Network (RNN) into the encoder
of U-Net to help the network learn the temporal change pattern.

• The combination of Siamese network and Nested U-Net for Change Detection (SNUNet-
CD) [49]. SNUNet-CD is a method for homologous change detection between VHR
satellite images. It uses nested information transmission between the encoder and
the decoder to alleviate the loss of localization information in the deep layers of the
neural network. In addition, ECAM is proposed in this work to suppress semantic
gaps and localization errors.

To make the above methods be able to process the HTCD satellite-UAV heterogeneous
data, we used downsampling and linear interpolation to reduce the UAV image to the
same size as the satellite image before training and testing these baseline methods. When
testing SCCN, in addition to the above operation. We also converted three-channel RGB
images into grayscale images. During the training process, we used hyperparameters as
the experiments of the method proposers.

4.4. Performance
4.4.1. Experiment Results

To evaluate the performance of the proposed method, we conducted comparative
experiments with the baselines introduced in Section 4.3. The results are shown in Table 1
and Figure 4.

Table 1. Result of SUNet and Baselines on HTCD Dataset. The metrics are Recall (Rec), Precision
(Pre), F1-score (F1), Overall-Accuracy (OA), and Intersection over Union (IoU).

Method Rec Pre F1 OA IoU

SCCN 0.053 0.324 0.091 0.828 0.048
STANet 0.817 0.656 0.728 0.985 0.572
FC-EF 0.774 0.907 0.835 0.991 0.717

BiDateNet 0.813 0.930 0.863 0.993 0.767
SNUNet-CD 0.334 0.227 0.249 0.947 0.156

SUNet 0.864 0.973 0.910 0.996 0.842
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Table 1 shows that our method has a significant improvement over other methods on
the heterogeneous dataset, which proves that our method is effective for change detection
task between satellite and UAV remote sensing images.

In order to intuitively explain why the proposed SUNet is superior to other advanced
methods in the evaluation metrics in Table 1. We visualized some of the outputs in Figure 4.

4.4.2. Discussions on the Performance of SUNet

In Section 4.4.1, the outstanding performance of the proposed method is proved. As
you can see from Table 2 and Figure 4, compared to the homologous methods, including
STANet, FC-EF, BiDateNet and SNUNet-CD, SUNet, using the dual-channel structure
and edge auxiliary information, obtained more accurate detection results in the details
of the changed areas. Among them, BiDateNet, STANet and SNUNet-CD use a Siamese
network with shared weights, which can reduce the number of parameters and improve the
training efficiency in homologous change detection, but this structure seems less effective
for heterogeneous change detection task. The SCCN method for optical-SAR image change
detection performs poorly in the satellite-UAV task. One of the reasons is that SCCN is
an unsupervised method, therefore, its results are worse than those supervised methods.
However, the performance of SCCN in satellite-UAV change detection task is also worse
than that of the optical-SAR task [46]. This fact reveals the difference between satellite-UAV
change detection and optical-SAR change detection, and focused research on satellite-UAV
change detection is necessary to handle its unique challenges.
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Table 2. Ablation Study Result. Where Info denotes the Auxiliary information proposed in Section 3.1, and DC denotes the
Dual-Channel structure proposed in Section 3.2. ‘

√
’ sign means using this proposed component, while ‘×’ sign means

removing this component from the proposed change detection method. The metrics are Recall (Rec), Precision (Pre), F1-score
(F1), Overall-Accuracy (OA) and Intersection over Union (IoU).

Method Info DC Loss Rec Pre F1 OA IOU

NoInfo-NoDC-WCE × × WCE 0.774 0.907 0.835 0.991 0.717
NoInfo-NoDC × × WCE + IoU 0.911 0.855 0.883 0.994 0.790

HM-NoDC × × WCE + IoU 0.935 0.835 0.877 0.994 0.789
NoDC

√
× WCE + IoU 0.920 0.877 0.893 0.995 0.815

NoInfo ×
√

WCE + IoU 0.892 0.913 0.898 0.995 0.823
WCE

√ √
WCE 0.868 0.849 0.859 0.993 0.752

IoU
√ √

IoU not converge
Dice-WCE

√ √
WCE + Dice 0.825 0.937 0.872 0.994 0.781

SUNet
√ √

WCE + IoU 0.864 0.973 0.910 0.996 0.842

4.5. Ablation Study

To better study the utility of each component in the method, we designed ablation
experiments to evaluate the performance of the auxiliary information, Dual-Channel FCN
structure and IoU-WCE combo loss.

4.5.1. Ablation Study Result for the Components in SUNet

We designed ablation experiments for every proposed component in SUNet. First, to
evaluate the performance improvement brought by Edge Auxiliary Information, we remove
the Edge Auxiliary Information and directly input the images into the model. We mark
this modification as NoInfo. Furthermore, Histogram Matching (HM) [50] is a commonly
used color correction method in the field of remote sensing images. In order to explore
whether this method can be used as a preprocessing method to alleviate the impact of the
spectral difference between satellite and UAV images, we also conducted an experiment to
input the preprocessed images of histogram matching into the network. Figure 5 shows the
effect of histogram matching preprocessing. This experiment is denoted as HM (Histogram
Matching). Second, in order to verify the effect of the Dual-Channel structure, we use
bilinear interpolation instead of Dual-Channel to reduce the UAV image to the same size as
the satellite image. We mark this modification as NoDC. Third, we replace WCE-IoU loss
with WCE, IoU or Dice-WCE loss, respectively, and mark this modification as WCE, IoU or
Dice-IoU. Finally, in order to observe the correlation effects of these components, we also
conducted experiments in which multiple components were modified simultaneously in
accordance with the above-mentioned methods. While conducting these experiments, the
weight of IoU loss in the combo loss (α in Equation (10)) is 0.66. The result is demonstrated
in Table 2.

The result shows that our approach does improve the performance of the model, and
each component contributes to the performance improvement. Experiment of row 2, 3,
4, 5 and 9 proves the effect of auxiliary information. For interpolation-based structure
and dual-channel structure, the auxiliary information improves IoU by 3.2% and 2.3%,
respectively. Experiment of row 2, 4, 5 and 9 also proves the effect of Dual-Channel FCN
structure. In the presence and absence of auxiliary information, the dual-channel structure
improves IoU by 4.2% and 3.3%, respectively. Experiments of row 1, 2, 6, 7 and 9 prove
the effect of IoU-WCE loss. For the presence and absence of auxiliary information and
Dual-Channel structure, compared with WCE loss, IoU-WCE loss improved by 12.0% and
10.2%. The last two rows of the table prove that in the training of SUNet, the effect of
IoU-WCE loss is better than that of Dice-WCE loss.
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4.5.2. Visualization of Ablation Study Result

To further understand the effect of the components in SUNet more intuitively, we
visually demonstrate some examples in Figure 6.
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Figure 6. Visualization of Ablation Study Experiments. “NoInfo” below these columns indicates that the edge auxiliary
information is removed from the proposed changed detection method. “NoDC” means downsampling and interpolation
is employed to downscale the UAV images and Dual-Channel structure is not used. “WCE” indicates that the WCE loss
function is used instead of IoU-WCE loss function.

As can be seen from Figure 6, all three ingredients in our method have contributed
to the improvement of the detection result. The Dual-Channel structure and the edge
auxiliary information make the boundary more refined, and IoU-WCE loss makes the
changed area be detected more completely.

4.5.3. Experiments on α

As discussed in Section 3.4.2, the IoU-WCE loss use a constant parameter α to balance
the two loss functions. Since the value of α will have a great influence on the training
result, we conducted an experiment to analysis the relationship between the performance
of SUNet and the value of α to find the best selection of α. Figure 7 shows the performance
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of SUNet with different α. According to the result in Figure 7, 0.66 is the most suitable
value of α for SUNet.
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Figure 7. The influence of α on SUNet4.5.4 Discussions on the ingredients of SUNet.

In Sections 4.5.1 and 4.5.2, the ingredients of the proposed change detection method
are confirmed.

Table 2 and Figure 5 confirm the discussion in Section 3.2. Compared with downsam-
pling and interpolation methods, the multiple convolutional layers of the UAV channel in
Dual-Channel structure retain more detailed information, so more detailed detection result
is obtained. Figure 6 has a very intuitive proof of this. Table 2 also proves this point from
the perspective of metric evaluation.

Comparing the 5th and 6th columns, the 7th and 9th columns of Figure 6, it can be
found that when other factors are the same, the auxiliary information can help the model
to better find the edges of the changed part, and make the detection result more accurate.
This is consistent with what is stated in Section 3.2. Edge information can be used as global
information to supplement the local information of the convolution model. In addition,
HM’s experiments proved the complexity of the color difference between UAV images and
satellite images. As mentioned in Section 1, their complex spectral differences are caused
by the differences in imaging conditions, such as different imaging spectra, atmospheric
propagation conditions and imaging sensors. However, histogram matching is good at
correcting the imaging color differences caused by the lighting conditions, so it is difficult
to be used as the preprocessing method to greatly improve the network performance.
Without the information about shape and structure, the complex spectral difference of the
heterogeneous image will confuse the FCN network, and ultimately acquire poor results.

Table 2 shows that among the three methods we proposed, the loss function brings
the most improvement, indicating that the loss function is indeed crucial to the training
of the model, but it does not mean that other methods are not as important as the loss
function. Since in the final model, the three methods work together to achieve the best
performance. We tested serval different loss functions in our experiments. Firstly, for
SUNet’s change detection task, the combo losses (including IoU-WCE loss and Dice-WCE
loss) have obtained better performance than WCE loss. As described in Section 3.4, the
two proposed methods, adding weight to CE loss and adding the IoU loss, overcome the
challenge of unbalanced samples in the change detection task, and correctly guide the
model training. Secondly, since in IoU loss (demonstrated in Equation (9)), the model
output p appears in the denominator, the unstable term 1

p2 will turn up in the derivative of
p during the backpropagation process. This led to the result of non-convergent training.
While by compounding with CE loss, IoU-WCE loss is more stable than IoU loss, and the
problem of non-convergence is successfully overcome. Finally, The poor effect of Dice loss
may be because it directly ignoring the background regions [51], which causes information
loss during training.
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5. Conclusions and Future Work

In this paper, we propose SUNet, which is a deep-learning-based approach for change
detection in Satellite-UAV heterogenous images, which significantly improves the accuracy
of Sat-UAV heterogeneous change detection. Through extensive experiments, we found
that although satellite and UAV images are all optical images, there are many significant
differences between them, such as intensive spectral difference, various ground resolution,
the parallax and image distortion. The experiments also prove that the method proposed
in this article can specifically address these differences and overcome the challenges they
brought to significantly improve the change detection performance. We also provide a new
dataset, HTCD for Satellite-UAV change detection tasks. We do hope that this dataset can
help researchers explore more creative approaches in the field.

Our future work is to study semi-supervised or unsupervised satellite-UAV change
detection methods, which have wider application scenarios.
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