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Abstract: Many future space missions to asteroids and comets will implement autonomous or
near-autonomous navigation, in order to save costly observation time from Earth tracking stations,
improve the security of spacecraft and perform real-time operations. Existing Earth-Spacecraft-
Earth tracking modes rely on severely limited Earth tracking station resources, with back-and-forth
delays of up to several hours. In this paper, we investigate the use of CONSERT ranging data
acquired in direct visibility between the lander Philae and the Rosetta orbiter, in the frame of the ESA
space mission to comet 67P/Churyumov-Gerasimenko, as a proxy of autonomous navigation and
orbitography science capability.

Keywords: comet; 67P/C-G; CONSERT; navigation; ranging; solar system small bodies

1. Introduction: Rosetta Science and the CONSERT Experiment

Rosetta was an ESA cornerstone mission, launched 2 March 2004, that reached comet
67P/Churyumov-Gerasimenko (hereafter 67P/C-G) on August 2014 [1–5]. This mission
dramatically improved our understanding of comets and the formation of the solar sys-
tem [6–17]. One of the key moments of the mission was the tumultuous landing of the
small companion lander Philae on 12 November 2014. After about seven hours of free fall
descent to the comet surface [4,18], and two unexpected bounces after the failure of the
anchoring system, the Philae lander finally came to rest at the so-called “Abydos” site,
about 1 km from the planned location, in a non-optimal location and unknown orientation,
but was able to operate on battery power for about 60 h [18–21]. The lander was finally
identified lying on its side in a deep crevice in the shadow of a cliff, in an image taken by
the Rosetta spacecraft on 2 September 2016.

Among the 10 scientific payloads onboard Philae [22,23] was the Comet Nucleus
Sounding Experiment by Radiowave Transmission (CONSERT), a VHF radar transponder,
designed to sound the interior of the comet. Results from the CONSERT served as a key
input to help locate Philae’s position by determining the small zone where the lander came
to a final rest [24–27]. The CONSERT instrument consisted of two parts: the CONSERT
Orbiter (OCN) onboard the Rosetta spacecraft, and the CONSERT Lander (LCN) onboard
the Philae lander. The main idea was to use a double-way radio-link with a sufficiently low
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frequency, able to propagate throughout the comet, but sufficiently high to be able to image
interior permittivity variations. The frequency chosen was 90 MHz, giving a signal able
to propagate, with limited power, through several kilometers of a porous mix of silicates,
organics and ices material [6,7]. The measurement was a two-way delay in the range of
tens of microseconds with an accuracy of a few nanoseconds. This is mathematically the
same type of ranging of measurements with the usual two-way S/X/Ka band ranging from
Earth, but under widely different conditions and protocols (see Table 1). A CONSERT-like
radio-tracking instrument was considered for the unselected AIDA/AIM mission to the
binary asteroid 65803 Didymos, for the localization of the Mascot 2 lander on the asteroid
Dimorphos moon surface [28–30].

Table 1. Typical ranging accuracy for CONSERT, S-band and X-band signals from DSN tracking
antennas [27,31,32].

Instrument Frequency Ranging Accuracy

CONSERT 90 Mhz ~6 m

S-Band 1.5–2.2 Ghz ~2 m

X-Band 7.2–8.4 GHz ~0.6 m

2. Autonomous Navigation of Deep Space Probes

The number of deep space missions are going up as the number of countries involved
in deep space research are increasing, and the size and mean cost of such missions are
decreasing. Usually, the navigation of these space probes is carried out by two-way
radio-links. The reason for this is that it was, until recently, impossible to fly sufficiently
miniaturized precise atomic clocks (such as onboard GPS cesium-rubidium clocks) on
deep space probes, and so the only way to obtain sufficiently precise Doppler/Ranging
measurements was to use a radio-link with an Earth-based atomic clock (maser). The
situation will probably change very soon with the design of such a miniaturized clock,
the Deep Space mercury-ion trap Atomic Clock (DSAC), that was flight tested first on
25 June 2019 [33,34]. It is expected that a DSAC would incur no more than 1 microsecond
of error in 10 years of operations, a 10–100 times improvement above current onboard
Ultra Stable Oscillators, halving the load of Earth tracking antennas and allowing nearly
autonomous radio navigation for a spacecraft’s time-critical events, such as orbit insertions
or landings with a one-way Earth uplink. Another radical way to reduce Earth antennas’
time is to use optical navigation, with respect to the stars’/planets’/asteroids’ background
or landmarks on target objects, with no need of an Earth-based reference [35,36]. This
has been demonstrated with the DS1 (Deep Space 1) [37], Deep Impact missions [38,39],
and latest asteroid missions, such as DAWN and OSIRIS-Rex mission. Besides the pure
landmarks/background navigation, X-ray pulsars navigation or a combination of these
different approaches could also be used for deep space navigation [40–42]. For the HERA
mission that is succeeding the unselected AIDA/AIM mission to the same binary asteroid
target Didymos, an Inter-Satellite- Link will be used to determine the gravity field of the
Dimorphos moon with cubesats subsatellites flying down to 600 m from its surface [43]. On
the OSIRIS-REX mission to asteroid Bennu, the gravity field of the asteroid was determined
by modeling the trajectory of small particles ejected from the asteroid surface [44].

In this article, we study the use of CONSERT-like ranging data as another type of
data able to constrain the navigation of space probes close to small bodies of the solar
system. As navigation and gravity field estimation are two inseparable facets of deep space
probe radioscience, we also derive the GM of comet 67P/C-G and Philae lander location by
treating the CONSERT direct distance measurement as a “lander - orbiter” ranging, and
compare our solution with the mass estimate derived from X-band radio-tracking data of
the Rosetta spacecraft from Earth [15,45].
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3. Data
3.1. CONSERT Direct Visibility Ranging Data

In the CONSERT acquisition scenario, the OCN (orbiter) first transmits an initial pulse
wave to the LCN (lander), to synchronize the two devices (tuning phase), then the LCN
sends a second pulse wave to the OCN, which is the actual science measurement. During
the tuning phase, the two CONSERT units are supposed to be aligned in frequency with
∆f/f < 10−7 and time-synchronized within a few milliseconds [46]. More details about the
CONSERT instrument are given in Appendix A.

However, after the landing of Philae, during the First Science Sequence (FSS) period
just after the landing, the insufficiently strong signal between LCN and OCN made tuning
difficult. This was solved by the implementation of a so-called stroboscopic mode [27],
allowing four measurements every two minutes. With this stroboscopic method, 74 direct
2-W ranging data were finally collected.

The ranging data acquired during the lifetime of Philae contained 3 sequences ac-
cording to different time intervals (Figure 1). The three sequences consisted of 3, 12, and
3 sets, respectively, each of 4–5 measurements (Table 2). Every CONSERT direct range
measurement was dated with a UTC tag, which was estimated from the Spacecraft Event
Time (SCET) after correction and bias compensation [27]. The timing accuracy was esti-
mated to be better than 50 milliseconds. Considering the low velocity of the OCN relative
to the LCN (5.0~6.7 m/s during the measurement), this UTC tag uncertainty would have
resulted in a maximum error of 0.3 m in relative distance. Two sources were involved in the
CONSERT ranging error: one from the signal processing, linked to the detection of signal
arrival time and its correction by the transponder, the second from the absolute calibration
of the electronic devices. The total system delays, including all transponder and processing
delays, were calibrated with an accuracy estimated to be ±20 nanoseconds (i.e., 6 m in
vacuum [27]). In Figure 1, it can be seen that after Sequence 1, a maneuver was performed
to return the Rosetta S/C to a safer position. Considering this maneuver and the very short
time durations of Sequences 1 and 3, we will only focus on Sequence 2 in this study.Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 18 
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Figure 1. Rosetta trajectory during the Philae SDL phase (Separation, Descent and Landing) and FSS (First Science Sequence)
phase. The Philae lander separated from Rosetta S/C at 08:35 UTC on 12 Nov 2014, and the CONSERT instrument operated
through the descent of Philae until 14:51 UTC, then restarted at 18:56 UTC (FSS starts) [6]. Three sequences of direct visibility
ranging data were collected during the FSS phase.
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Table 2. CONSERT direct visibility range measurements.

Sequence
Number

Numbers
of Set Start Time UTC End Time UTC Distance between

LCN and OCN (km)
Numbers of Direct

Measurements

1 3 2014-11-13T22:04:26.79 2014-11-13T22:08:29.12 36.79~36.95 12

2 12 2014-11-14T10:20:50.49 2014-11-14T10:42:22.92 47.19~47.35 51

3 3 2014-11-14T23:42:00.24 2014-11-14T23:46:00.12 45.38~45.43 11

3.2. Philae Lander Rest Position

The Philae lander separated from the Rosetta S/C at 08:35 UTC on 12 November
2014, then flew in free fall during a 7 h descent [4,18]. Due to the failure of both the
ADS (Active Descent System) and anchoring harpoons, the Philae lander experienced two
unexpected bounces until finally coming to rest at the “Abydos” site, at approximately 1
km from the originally targeted place [19]. By using CONSERT ranging data during the
FSS, the Philae position was constrained to an area of 15 m × 150 m [6], then refined to
22 m × 106 m [27]. From January 2015 through March 2016, the distance from Rosetta
to the comet was too large to take high resolution images of the potential rest area of
the Philae lander, though contact was sporadically re-established in June 2015 [4,20]. To
identify Philae’s final location, ESA kicked off an active search campaign (Lamy et al.,
2015; Garmier et al., 2015; Jurado et al. 2016; Ulamec et al., 2017; Schröder et al., 2017) in
March 2016, involving different navigation and science teams [26]. The Philae lander was
finally located unambiguously from an OSIRIS Navigation Camera (NAC) high-resolution
image (5 cm/pixel) on 2 September 2016, taken from a 2.7 km distance from the comet
surface. As the Philae lander could be pinned in the OSIRIS image directly, the coordinates
from OSIRIS are regarded as the ones with the highest accuracy, directly related to the
accuracy of nucleus shape models. The 67P/C-G shape models were derived using the
stereo-photogrammetric (SPG) [47] method at DLR, and stereo-photoclinometry (SPC) [48]
technique at LAM. Table 3 lists the Philae lander position estimates from different sources.
It can be seen that the coordinates from LAM SPC and SPG SHAP7 are close to each other.
For the SPG SHAP7 model, the image resolution varied from 0.2 m/pixel to 3 m/pixel, and
its horizontal sampling was about 1–1.5 m while the vertical accuracy was at the decimetre
scale [49]. Considering the one-meter size of the Philae lander, the final uncertainty of
Philae coordinates is therefore about 2 m. In our following study, we chose the latest
estimates from Kofman et al., (2020), in the comet body-fixed 67P/C-G_CK frame, as our a
priori nominal values for the lander position.

Table 3. Philae lander position from different sources.

Cartesian Coordinates in the Comet-Fixed
67P/C-G_CK Frame (Meters) Data Source

X Y Z

2443.22366 −62.6126 −348.0192 CRM_4_V9-Shape4S-DLR-SPG-v1.0-June 2015 [47]

2447.064555 −62.711025 −348.566278 DTM_Abydos_V2-LAM-SPC-v3.0-October 2016 [48]

2445.568314 −62.67267 −348.352951 LAM (SPC) + DLR (SPG) [cg-dlr_spg-shap7-v1.0] [49]

2416.40500 −101.27740 −393.88200
From CONSERT team, first estimate of the lander position using only the

data corresponding to signal that propagated through the comet.
SPICE_PHILAE_CFF_CN_V1_1.BSP (SPICE SPK)

2447.3 −62.7 −348.6 From SONC team, SPICE_PHILAE_CFF_SONC_V2_0.BSP (SPICE SPK)

2449.18 −67.611 −342.469 (Kofman, private communication) from SPC shap8 v2.1 [17]
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4. 67P/C-G GM and Philae Lander Positions Solutions
4.1. Lander-Orbiter “One-Way” Range Model and Solution Method and Solve-for Method

The CONSERT ranging observables can be treated as an “instantaneous” S/C-lander
one-way range tracking model as the propagation time is ten microseconds with respect
to relative velocities, that are of metric magnitude. In this framework, the motion of the
Rosetta S/C around comet 67P/C-G is described by the following Newtonian equation of
motion [50]:

..
r = −GM67P

‖r‖3 r +
n

∑
i>0

(
GMBi

rBi − r

‖rBi − r‖3

)
−

..
R0 +

1
m

FS (1)

where r is the Rosetta S/C barycentre position vector in the 67P/C-G-centered J2000
reference system, G is the universal gravitation constant, M67P is the mass of 67P/C-G, MBi

is the mass of other celestial bodies (i.e., sun, planets, asteroids, etc.),
..
R0 is the acceleration

of 67P/C-G in SSB (Solar System Barycenter), and FS is the sum of all other forces acting
on the Rosetta S/C (e.g., non-spherical gravity, solar radiation pressure, outgassing from
the comet, etc.). Given the initial state vector x0, including the state of S/C, GM etc., we
could obtain the S/C orbit and STM Φ (State Transform Matrix, i.e., the derivatives of the
S/C state vector w.r.t. the initial S/C state etc.) by a standard integration of Equation (1)
and its associated partial derivatives [51].

The CONSERT direct range measurement (Figure 2) is the difference between the LCN
center-of-phase position and OCN center-of-phase position in the J2000 frame as:

ρconsert = |(rs/c + M1 · rOCN)−M2 · rLCN |+ δρ (2)

where rs/c is the Rosetta S/C position vector in J2000, rOCN is the OCN center-of-phase
coordinate in the Rosetta Spacecraft Frame, M1· symbolizes the rotation matrix from
the Rosetta Spacecraft Frame to the J2000 frame, rLCN is the LCN center-of-phase in the
67P/C-G body fixed frame, M2 symbolizes the rotation matrix from the 67P/C-G body
fixed frame to the J2000 frame, and δρ is the electronic system delay (20 nanoseconds).
We stress that rOCN here is the OCN center-of-phase coordinate, fixed with respect to
the Rosetta S/C body, which is modelled from SPICE Rosetta kernels (ftp://spiftp.esac.
esa.int/data/SPICE/ROSETTA/kernels, accessed on 19 September 2019). The center-of-
phase of LCN is always considered as the Philae reference frame center, so there is no
specific CONSERT frame defined on the lander side (Yves, private communication). From
a practical point-of-view, this means that rLCN is the Philae lander position mentioned in
Section 3.2.
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In our model, the CONSERT direct range measurement is a function of time and of a
set of eight initial parameters: x0 (Rosetta S/C initial position [SX0 SY0 SZ0] in the J2000
comet-centered frame), the Philae lander position [LX0 LY0 LZ0] in the comet body-fixed
67P/C-G_CK frame, the CONSERT constant measurement Bias, and the comet GM. We
are only solving for an initial position correction of the Rosetta spacecraft and not for a
joint position/velocity correction, because, as according to Pablo et al., (2015), the velocity
measurement error of Rosetta from Earth tracking is at the level of 1 mm/s. Therefore,
during the 22 min tracking period, the maximum position error caused by the velocity
error is less than 1.32 m, whereas the CONSERT ranging error is at a level of 6 m (see
Sections 4.2 and 4.3). We are also only solving for the lander position, that is considered
at rest in the comet-fixed frame. Its velocity in the 2000 comet-centered frame is given
through the comet rotation model. In linearized form, the partial derivatives of ρconsert w.r.t.
the initial parameters set x0 define the Jacobi matrix H:

H =
∂ρconsert

∂x0
=

∂ρconsert

∂(SX0, SY0, SZ0, LX0, LY0, LZ0, Bias, GM)
(3)

The computed delay values ρconsert are then fitted to the CONSERT range observables,
mentioned in Section 3.1, through a weighted least-squares inversion to obtain a correction
δx to the initial parameters x0 by:

δx = (HTWH + P−1
0 )

−1
HTWy (4)

where P−1
0 denotes the inverse of the a priori covariance matrix associated with x0, W

is the weight (diagonal) matrix containing the inverse of the standard deviations of the
CONSERT range measurements, and y is the difference vector between observables and
computed value ρconsert. An iterative process is performed until the observables and the
model values converge.

4.2. Rosetta Orbit Dynamics and Error Source Analysis

As already mentioned in Section 3.1, due to the small number of CONSERT range
data in Sequences 1 and 3, we are only focusing on Sequence 2, from 10:20:50.49 UTC
to 10:42:22.92 (22 min). The SPICE Rosetta kernels used are listed in Table 4. With the
initial S/C state from the SPK kernels, we integrate Equation (1) to model the Rosetta
S/C orbit. The dynamical force models [36,39] for the integration include comet 67P/C-
G point mass attraction, non-spherical gravitational force (up to second degree and or-
der), solar radiation pressure (SRP), third-body perturbations and comet outgassing drag.
The typical magnitudes of acceleration during this arc in the J2000 frame are shown in
Table 5. The largest is 67P/C-G point mass gravity acceleration, at about 2.7 × 10−7 m/s2,
and the SRP is the second largest, at about 3.1 × 10−8 m/s2. During these 22 min, the rela-
tive position between Philae and Rosetta ranges from 47.185 km to 47.342 km (157 m), and
the corresponding relative velocity ranges from 0.231 m/s to 0.226 m/s (5 mm/s difference)
in the comet-centered J2000 frame, and from 6.531 m/s to 6.51 m/s (22 mm/s difference) in
the comet-fixed (67P/C-G_CK SPICE kernel) frame. For reference, the tangential velocity
in the comet-fixed frame for a spacecraft in a bounded circular orbit at this altitude is about
0.12 m/s (29 day period).

To investigate the influence of Rosetta S/C dynamic force models to the orbit, we
considered two cases: For case 1, all the dynamic force models mentioned above are
adopted when integrating the S/C orbit. For case 2, only a 67P/C-G point mass gravity
model is used. Figure 3 illustrates the orbit differences between our integrated orbit in this
paper and the nominal orbit provided by ESOC (RORB_DV_257_03___T19_00345.BSP).
From the upper part of Figure 3, it is clear that during the 22 min period, the case 1 orbit is
similar to the ESOC nominal orbit (discrepancies less than 2 mm). With only a comet point
mass force (case 2), the orbit differences during the integration interval are less than 30 mm.
Considering that the accuracy of CONSERT range is about 6 m (±20 ns), it can be safely
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concluded that the dynamical models 1 and 2 are both accurate enough for the following
parameter estimation.

Table 4. Main SPICE kernels used in this study.

Kernel Type Kernel Name

Rosetta frame kernel (FK) ROS_V32.TF

Rosetta S/C orbit kernel (SPK) RORB_DV_257_03___T19_00345.BSP

67P/C-G ephemeris kernel (SPK) CORB_DV_257_03___T19_00345.BSP

Rosetta S/C attitude kernel (CK) RATT_DV_145_01_01_T6_00216.BC

67P/C-G attitude kernel (CK) CATT_DV_145_02_______00216.BC

Rosetta S/C clock kernel (SCLK) ROS_160929_STEP.TSC

Table 5. Accelerations acting on the Rosetta S/C in the J2000 frame (m/s2).

Acceleration Magnitude

Comet point mass 2.7 × 10−7

Solar radiation pressure (SRP) 3.1 × 10−8

Comet out-gassing 2.9 × 10−10

Non-spherical gravitational 2.8 × 10−10

Three-body perturbations 9.1 × 10−11
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Figure 3. Rosetta S/C differences in position between the integrated orbit computed in this paper and the ESOC nominal
orbit in the comet-centered J2000 frame over the 22 min of the acquisition sequence, along the Radial, along-track (Transverse)
and cross-track (Normal) directions. For the upper graph, a full forces model (case 1) was used, while for the lower graph,
only a point mass was used (case 2). With a full-forces model, the discrepancies are under 2 mm; with the point-force model,
the position error is mainly along the cross-track (N) direction, but still less than 30 mm after 22 min.
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In Table 6, we list the a priori values of the parameters related to the model of
CONSERT direct range and their errors. For the comet 67P/C-G rotation model, we used
the numerical quaternions contained in the CK kernel (CATT_DV_145_02_______00216.BC),
produced by the ESOC/Flight Dynamics (FD). Due to the complexity of comet rotation,
linked to outgassing, it is difficult to describe, over long periods of time, the comet rotation
with the standard IAU formulation. The uncertainty in RA (±0.05◦) and DEC (±0.03◦)
provided in Table 6 for the comet rotation axis have the same level of influence as the Philae
lander position uncertainties (i.e., around 2 m).

Table 6. Error budget for CONSERT direct range modelling.

Parameter Name A Priori Values Errors (1σ) Reference

Comet 67P/C-G GM (m3/s2) 666.2 0.2 [15]

Rosetta S/C position at epoch
10:20:50.49 UTC (m) in the J2000

comet-centered frame

SX0 −16,816.785 8.4

[27]SY0 −33,068.614 2.1

SZ0 32,219.679 20.6

Philae lander position in
the comet-fixed 67P/C-G_CK

frame (m)

LX0 2449.18 2.0

[17]LY0 −67.611 2.0

LZ0 −342.469 2.0

67P/C-G rotation model

RA 69.54◦ 0.05

[47,52]DEC 64.11◦ 0.03

Period 12.4041 h 0.0004

Electronic bias(m) Bias 0.0 6 [27]

4.3. Compatibility of CONSERT Measurements with the Tracking Nominal Parameters

To assert the compatibility of the CONSERT measurements with the tracking nominal
parameters given in Table 6, we solved for the eight parameters described in Section 4.1.
After three iterations, the eight parameters stabilized to the values given in Table 7. For
convenience, only the changes of the parameters are shown. The associated correlation
matrix of the parameters is given in Figures 4 and 5.

Table 7. Parameters corrections and associated formal errors for the parameters, with respect to the
least-squares fit corresponding to Equations (1)–(3) and the initial values and parameters given in
Table 6.

Estimated Parameter Corrections (m) Deviations (mm)

Rosetta S/C
position corrections in the

J2000 comet-centered frame

SX0 (m) 0.522 8.238

SY0 (m) 0.022 2.092

SZ0 (m) −5.019 9.554

Philae lander position
corrections in the comet-fixed

frame 67P/C-G_CK frame

LX0 (m) −0.393 1.986

LY0 (m) −0.585 1.987

LZ0 (m) 0.029 1.999

Ranging Bias Bias (m) −0.502 5.536

67P Gravity Constant GM (m3/s2) 1.380 × 10−5 0.199

The Rosetta S/C initial position vector [SX0 SY0 SZ0], SX0 and SY0 have only small
variations w.r.t. to the a priori values, with their formal error being close to the a priori
formal errors. It is the same for the lander position vector [LX0 LY0 LZ0] and comet GM,
reflecting the fact that the CONSERT measurements are fully compatible with the a priori
nominal parameters.
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Table 7. The correlations relative to the Rosetta S/C position [SX0, SY0, SZ0] are given in the J2000
comet-centered system of reference. An important result is that GM is uncorrelated with the other
parameters, showing that CONSERT-like measurements can be, in principle, used to determine the
GM coefficient, if sufficient numbers of measurements are stacked along an orbit with no maneuvers.
We also see that the CONSERT instrument bias has a strong correlation with the SZ0 value (see text).
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We can see in Figure 4 that the CONSERT instrument Bias has a strong correlation
with the SZ0 value. To make it clearer, we mapped the Rosetta S/C initial position [SX0 SY0
SZ0] to radial (R), along-track (Transverse) and cross-track (Normal) directions [SR0 ST0
SN0] in Figure 5. The SR0 value, along the radial direction, shows a very strong correlation
with the CONSERT range bias.

Figure 6 gives the post-fit residuals of the range measurements with respect to Table 7.
The mean value is about 0.004 m and the standard deviation is about 1.5 m. The largest
residues are less than 6 m, which corresponds to the CONSERT range measurement noise
level. From the residuals figure, we can also see that there are 4 to 5 measurements grouped
every 2 min, corresponding to the stroboscopic ranging acquisition mode discussed in
Part 3.1.
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Figure 6. Post-fit residuals for CONSERT range measurements corresponding to the values of Table 7. Note the typical
“burst repartition” of the 51 measurements, that is the result of CONSERT stroboscopic mode (see Appendix A).

4.4. In-Situ Navigation Analysis

To investigate the possibility of in situ navigation of a spacecraft, we fixed the lander
position [LX0 LY0 LZ0] and CONSERT range bias, and perturbed both the initial state
vector (with a 10-sigma error) and the nominal GM (by a 3-sigma error), and fitted with
a least-squares fit the Rosetta position [SX0 SY0 SZ0] (Table 8). The post-fit orbit errors
of Rosetta S/C with respect to the nominal orbit provided by ESOC, are shown in the
left column of Table 9 (case A). The orbit error is at a one hundred meters level along
the along-track direction (T), and is one order of magnitude smaller in the radial (R) and
cross-track (N) directions. This is the usual behavior for orbital errors.

Usually, when a spacecraft arrives in the vicinity of a small body, the uncertainty of the
body’s GM value is quite large [53]. Therefore, we used, in the following two simulations,
relatively large a priori discrepancies (10% and 50%) to the nominal GM value, then only
solved for the initial state vector of Rosetta [SX0 SY0 SZ0], also with a 10-sigma error to
initial state vector. The least-squares fit results are shown in Table 10 (10% relative GM error,
case B) and Table 11 (50% relative GM error, case C). The post-fit orbit errors of Rosetta
S/C are shown in the second and third columns of Table 9. The orbital error has the same
magnitude in both cases, mainly along the along-track direction (T). These results indicate
that the duration of the tracking window is simply too small (22 min) to constrain the GM
value. This is not an indication of an intrinsic inability for the CONSERT-like measurements
to constrain the GM, as Figures 5 and 6 also indicate clearly that the determination of the
GM value is decorrelated from the determination of the other parameters.

After several weeks following arrival, the GM value was determined with a small rel-
ative error, either by 2-Way Doppler from Earth or by local (mainly optical) measurements.
Assuming the GM was considered as constant (the mass of CG-67 decreased by a small
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amount after perihelion, due to outgassing), we were able to study this nominal navigation
case by fixing the GM value to its nominal value and only solving for the 22 min arc initial
position [SX0 SY0 SZ0], with a 3-sigma error imposed on their a priori values (case D, a
priori initial position values found in Table 11). The Rosetta S/C orbit differences with
respect to the ESOC orbit decreased to 35 m with respect to cases A, B and C (last column
of Table 9), again along-track (T). It is essential to mention that the corrections to SZ0 from
cases A, B and C are larger than those two other directions. This is because the SZ0 has a
strong correlation with CONSERT range (see also Tables 6 and 7).

Table 8. Evaluation of navigation accuracy (case A). The Rosetta initial position vector has been perturbed with a 10-sigma
error and the GM with a 3-sigma error. Post-fit orbit residuals are given in Table 9, first column. The Philae position is kept
fixed to the coordinates given in Table 6.

Estimated Parameter Perturbed A Priori
Values A Priori Sigma Corrections A Posteriori

Values
A Posteriori

Sigma

Rosetta S/C
Initial Position

in J2000

SX0 (m) −16,732.785
(10-sigma error) 8.4 13.181 −16,719.604 8.209

SY0 (m) −33,047.614
(10-sigma error) 2.1 4.424 −33,043.190 2.090

SZ0 (m) 32,425.679
(10-sigma error) 20.6 −144.133 32,281.547 4.944

Ranging Bias Bias (m) 0 6.0 - - -

67P Gravity
Constant GM (m3/s2)

666.8
(3-sigma error) 0.2 - - -

Table 9. Post-fit orbit errors of Rosetta S/C, for the four cases considered in Section 4.4, along
the Radial, Transverse (along-track) and Normal (cross-track) directions, with respect to the orbit
determined by ESOC, in the J2000 comet-centered frame. These errors are almost constant during the
22 min CONSERT observation window. Case A is relative to Table 8, case B is relative to Table 10,
case C is relative to Table 11, and case D is relative to the fixed GM value (last case of Section 4.4).

Orbit Error Case A, Table 8 Case B, Table 10 Case C, Table 11 Case D

R (m) −9.76 −9.75 −9.54 −3.80

T (m) 116.21 116.21 121.98 34.55

N (m) −11.92 −11.91 −17.63 −3.73

Table 10. Evaluation of navigation accuracy (case B). Parameter corrections and associated formal errors for the least-squares
fit with a 10% relative error on the GM value. Post-fit orbit residuals are given in Table 9, second column. The other
parameters are kept constant to the values found in Tables 6 and 8.

Estimated Parameter A Priori Values A Priori Sigma Total Corrections A Posteriori Sigma

Rosetta S/C
Initial Position

in J2000

SX0 (m) −16,732.785
(10-sigma error) 8.4 13.179 8.208

SY0 (m) −33,047.614
(10-sigma error) 2.1 4.425 2.090

SZ0 (m) 32,425.679
(10-sigma error) 20.6 −144.122 4.942

67P Gravity
Constants GM (m3/s2)

732.82
(10% relative GM error) 0.2 - -
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Table 11. Evaluation of navigation accuracy (case C). Parameter corrections and associated formal errors for the least-squares
fit with a 50% relative error on the GM value (case C). Post-fit orbit residuals are given in Table 9, third column. The other
parameters are kept constant to the values found in Tables 6 and 8.

Estimated Parameter A Priori Values A Priori Sigma Corrections A Posteriori Sigma

Rosetta S/C
Initial Position

in J2000

SX0 (m) −16,732.785
(10-sigma error) 8.4 24.395 8.203

SY0 (m) −33,047.614
(10-sigma error) 2.1 0.128 2.087

SZ0 (m) 32,425.679
(10-sigma error) 20.6 −142.214 4.801

67P Gravity
Constants GM (m3/s2)

999.3
(50% relative GM error) 0.2 - -

5. Conclusions

Many papers have been devoted to the autonomous navigation of spacecraft in the
vicinity of small bodies of the solar system. Our goal was not to give a full analysis
of the autonomous navigation problem (see [35,53]), merely to add to knowledge by
demonstrating that CONSERT-like ranging measurements, a flight-proven design, can
be used towards an achievable goal of improving accuracy in positioning to a few tens
of meters or less. In addition, there is also the possibility to adjust for ancillary (and
science-rich) parameters such as the gravitational constant of the small body if observations
are conducted during a sufficient amount of time along an orbit with no maneuvers. The
advantage of a CONSERT-like method is its ability to provide range measurements, i.e.,
at absolute scale. Optical measurements are only giving angles, absolute scale must be
inferred by indirect means.
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Appendix A. The CONSERT Instrument

CONSERT is an abbreviation of “Comet Nucleus Sounding Experiment by Radiowave
Transmission”. CONSERT works as a time domain transponder: a 90 MHz radio signal,
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phase modulated with pseudo-randomly encoded data is transmitted back-and-forth (see
Figure A1) from the orbiter (OCN electronic box, mass 3 kg, power 3 W) towards the lander
on the comet surface (LCN electronic box, mass 2.3 kg, power 3 W). An indirect “ping-pong”
transmitting procedure was designed by the science team to reduce the required accuracy
of the clocks on both sides of the transmission link (frequency stability constraint of
∆f/f = 2 × 10−7) and to stay within stringent constraints on mass and power consumption.

A periodic pseudo-random code of 25.5 microseconds is transmitted from orbiter
to lander, and the transmission cycle lasts about 200 milliseconds. The received signal
is digitized and accumulated for 26 msec in the lander receiver to increase the signal to
noise ratio and to assess the arrival time of the main path. During processing, the signal is
compressed to obtain a time/space accuracy corresponding at least to ±50 nanoseconds
(it was found to be closer to 20 nanoseconds in actual measurements [54]). After the
signal processing on the lander, which determines the position of the strongest path, the
lander transmits the same pseudo-random code with a delay corresponding to that of the
strongest path. The transmission cycle again lasts about 200 microseconds. The signal
propagates back to the orbiter along virtually the same path, since the orbiter velocity
with respect to the comet surface is a few meters per second. The signal is received on
the orbiter, accumulated for about 26 msec and stored in the memory, in order to be sent
to Earth. A complete measurement cycle lasts about 1 s. In this way the OCN measures
twice the propagation delay plus the electronic delays on the OCN/LCN (see Figure A2).
An in-depth description of the inner workings of the CONSERT instrument as well as the
details of the physical implementation can be found in [25].
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Figure A1. The CONSERT signal propagation throughout the nucleus between OCN and LCN. The
red rays correspond to the direct visibility mode used in this paper (adapted from [6]).
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