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Abstract: A new approach is proposed to derive evapotranspiration (E) and irrigation requirements 
by implementing the combination equation models of Penman–Monteith and Shuttleworth and 
Wallace with surface parameters and resistances derived from Sentinel-2 data. Surface parameters 
are derived from Sentinel-2 and used as an input in these models; namely: the hemispherical 
shortwave albedo, leaf area index and water status of the soil and canopy ensemble evaluated by 
using a shortwave infrared-based index. The proposed approach has been validated with data ac-
quired during the GRAPEX (Grape Remote-sensing Atmospheric Profile and Evapotranspiration 
eXperiment) in California irrigated vineyards. The E products obtained with the combination equa-
tion models are evaluated by using eddy covariance flux tower measurements and are additionally 
compared with surface energy balance models with Landsat-7 and -8 thermal infrared data. The 
Shuttleworth and Wallace (S-W S-2) model provides an accuracy comparable to thermal-based 
methods when using local meteorological data, with daily E errors < 1 mm/day, which increased 
from 1 to 1.5 mm/day using meteorological forcing data from atmospheric models. The advantage 
of using the S-W S-2 modeling approach for monitoring ET is the high temporal revisit time of the 
Sentinel-2 satellites and the finer pixel resolution. These results suggest that, by integrating the ther-
mal-based data fusion approach with the S-W S-2 modeling scheme, there is the potential to increase 
the frequency and reliability of satellite-based daily evapotranspiration products. 

Keywords: evapotranspiration; irrigation management; Penman–Monteith; Shuttleworth and Wal-
lace; Sentinel-2; vineyards; GRAPEX 
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1. Introduction 
Evapotranspiration is the key variable for determining crop water requirements and 

is needed for the optimal allocation of water resources for irrigation. Several methods and 
experiments have demonstrated that earth observation (EO) is an effective tool to derive 
evapotranspiration for supporting irrigation and water resources [1,2] from local to re-
gional scales. These methods can be grouped into three main groups: 
(a) reflectance and vegetation index (VI) based-methods: crop coefficient and canopy 

parameters, such as hemispherical albedo and leaf area index LAI, are obtained by 
means of different analytics from reflectance or vegetation indices. These parameters 
are the basic inputs for the application of the widely used FAO-56 approach [3] for 
determining crop evapotranspiration, either by the direct calculation of the combina-
tion equation of Penman–Monteith or by using the crop coefficient and reference 
evapotranspiration. These methods are already implemented in operational applica-
tions for irrigation management [4] and are evolving toward the more explicit defi-
nition of the canopy conductance [5,6]; 

(b) thermal-based energy balance models: land surface temperature is the main input for 
estimating sensible heat flux and then latent heat flux as a residual term of the surface 
energy balance. Significant advancements have been made from the first contextual 
approaches using soil–vegetation–transfer models [7] to one-source models i.e., SE-
BAL [8], SEBS [9] and METRIC [10], and two-source models, such as TSEB [11] and 
ALEXI [12]. Thermal-based models have been intensively applied by using observa-
tion data from Landsat [13], which is, at the present moment, the only operational 
platform with medium resolution acquisitions in the thermal infrared (100 m), which 
are resampled to 30 m with a revisit time of 8 to 16 days depending on the site; 

(c) EO-driven soil water balance models: these are simulation models of water balance 
using EO-based input data related to crop development [14,15]. These models pro-
duce a continuous spatially distributed output, the quality of which strongly de-
pends on the availability of reliable soil physical and hydraulic properties, as well as 
precipitation/irrigation inputs [16]. 
Compared to groups (b) and (c), (a) is particularly suitable for operational irrigation 

management for two main reasons: (i) there is a wide availability of medium and high 
resolution space-borne multispectral sensors, such as the Landsat series and Sentinel-2 of 
the Copernicus Program of European Space Agency, collecting data in the range of the 
electromagnetic spectrum used for this method, with frequent acquisitions over the same 
area; and (ii) the data required for achieving reliable results from soil water balance mod-
els with sufficient accuracy are often unavailable. However, it also should be noted that 
models in b) are fusing and sharpening thermal observations using visible, near-IR and 
SWIR data from multiple satellites and developing operational evapotranspiration prod-
ucts that are applicable for water management and irrigation scheduling at field scales 
[17–21]. 

Recently, an approach based on Sentinel-2 and a combination equation with re-
sistance terms derived by means of an empirical relationship with meteorological varia-
bles and vegetation parameters, such as the leaf area index, has been proposed [6]. How-
ever, for a given set of meteorological variables, the resistance terms in the calculation of 
evapotranspiration depend only on canopy parameters (i.e., LAI, fractional vegetation 
cover) without variations in the water status of the soil–canopy ensemble within the foot-
print of the meteorological dataset. 

Diversely, in this study, an innovative approach for estimating crop evapotranspira-
tion is proposed and compared with experimental data in an irrigated vineyard under 
Mediterranean climate conditions, aiming at the full exploitation of the Sentinel-2 sensors 
in terms of geometrical, temporal and radiometric resolutions. As explained in this paper, 
the proposed approach uses the full range of Sentinel-2 spectral observations to infer the 



Remote Sens. 2021, 13, 3720 3 of 30 
 

 

data required for computing evapotranspiration in partial canopies by means of a modi-
fied combination equation. This modified method, based on the approach developed by 
Shuttleworth and Wallace [22], estimates soil and canopy contributions to the total evap-
otranspiration E (the sparse crop combination equation) by incorporating shortwave in-
frared data from Sentinel-2 for assessing the water status of the surface and modulating 
the resistance terms in the combination equation. Results will also be compared with two 
thermal-based model output sources available for the same study area. 

2. Theory 
The combination equation of Penman–Monteith for calculating evapotranspiration E 

is based on the simultaneous solution of the surface energy balance equation and the tur-
bulent transport of heat and water vapor by means of resistance terms defined in different 
ways. The general formulation is given by the following widely used equation [23]: 𝜆𝐸 = 𝜆 ୼஺ାఘ௖೛஽/௥ೌ೓୼ାఊ൫ଵା௥ೞ೎ ௥ೌ೓⁄ ൯   [W m−2] (1)

The different variables represented in the Equation (1) are defined by the following 
equations: 
λ [J Kg−1]: latent heat of vaporization; 
Δ [kPa°C−1]: slope of the saturated vapor pressure–temperature curve; 
A [W m−2]: available energy flux density; 
ρ [kg m−3]: air density; 
cp [J kg−1 °C−1]: air specific heat; 
D [kPa]: vapor pressure deficit at the screen height of measurement of air temperature; 
γ [kPa °C−1]: thermodynamic psychrometric constant; 
rah [sm−1]: aerodynamic resistance for sensible heat and latent heat; 
rsc [sm−1]: canopy resistance. 

The available energy flux density A is given by the difference between the total net 
radiation flux Rn and soil heat flux G: 𝐴 = 𝑅௡ − 𝐺 [W m−2] (2)𝑅௡ = (1 − 𝛼)𝐾↓ + 𝐿∗ [W m−2] (3)

with α (-) representing the spectrally integrated hemispherical albedo of the surface—for 
the sake of simplicity, surface albedo in the rest of the text—K↓ representing the incoming 
global shortwave radiation and L* representing the net incoming long-wave radiation flux 
density. This latter term was calculated at the daily scale from air temperature and vapor 
pressure, incoming shortwave radiation and extraterrestrial solar radiation [3]. 

The aerodynamic resistance for sensible heat and latent heat, rah, is given by: 𝑟௔௛ = ௟௡ (೥ೠష೏బ೥బ೘ )௟௡൬೥೅ష೏బ೥బ೓ ൰௞మ௨ = ௟௡ (೥ೠషబ.లల೓೎బ.భమయ೓೎ )௟௡ቀ೥೅షబ.లల೓೎బ.బభమయ೓೎ ቁ௞మ௨  [sm−1] (4)

In this equation, hc is the canopy height, k is the von Karman’s constant (0.41), zu and 
zT are the measurement heights for wind speed u and temperature T, d0 is the zero-plane 
displacement height and z0m and z0h represent the roughness lengths for momentum and 
heat. The values of d0, z0m and z0h are taken as proportional to the canopy height hc [24], 
with factors 0.67, 0.123 and 0.0123, respectively. 

When calculations are made for daily intervals, especially with high solar radiation, 
atmospheric stability corrections can be considered as negligible due to night-time com-
pensating effects [25]. 

Finally, the bulk stomatal canopy resistance rsc in Equation (1) is given by: 
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𝑟௦௖ = ቐ ௥೗೐ೌ೑଴.ହ ௅஺ூ              𝐿𝐴𝐼 ≤ 4𝑟௟௘௔௙ 2ൗ             𝐿𝐴𝐼 > 4 [sm−1] (5)

The expression of rsc in Equation (5) was first introduced by Szeicz and Long [26] and 
successively adopted in the formulation of the Penman–Monteith equation proposed by 
the FAO-56 paper [3]. The coefficient 0.5 in the denominator was introduced because, in 
most cases, only the upper half of crop foliage is actively contributing to the heat and 
vapor transfer [26]. Although the Penman–Monteith approach was originally developed 
for closed canopies, several hydrological studies have also applied it in the presence of 
canopy gaps, provided that appropriate values of resistances are introduced to account 
for the gap fractions. To this end, the value of rsc can be empirically determined from latent 
heat flux measurements by a numerical inversion of the Penman–Monteith equation [27]. 
Different models have been proposed to determine the canopy resistance in relation to 
LAI and other environmental variables [28–30]. 

The leaf resistance rleaf in Equation (5) is the reciprocal of the leaf conductance, which 
has been investigated in several physiological studies [31,32]. From measurements on 
leaves of different species, including tree and herbaceous crops, a minimum value (maxi-
mum conductance) of rleaf = 100 sm−1 has been suggested, which is also adopted in the FAO-
56 approach in fully irrigated and disease-free conditions. This value has been confirmed 
on the basis of Fluxnet data from crop and grassland sites [33]. Assuming a constant fixed 
value for rleaf, i.e., 100 sm−1, allows for the calculation of E on the basis of meteorological 
data and canopy parameters, such as surface albedo, LAI and crop height, which can be 
estimated by using remote sensing techniques. This approach has been implemented in 
satellite-based advisory services for irrigation management without the need for using the 
crop coefficient Kc [2]. 

With an increasing water deficit in the root zone, potential stress conditions may oc-
cur due to limitations in the water uptake by roots. The variability of rleaf in relation to 
water stress conditions has been investigated for a Merlot grape variety in Israel that was 
subjected to different irrigation treatments [34], which reports measurements of the leaf 
resistance rleaf varying from 100 sm−1 in mild water stress to 400 sm−1 for severe stress. How-
ever, it is well known that the increase in rleaf, representing stomatal closure, occurs when 
the soil water content is lower than a certain threshold, by following approximately a bi-
linear function, as demonstrated by observations on irrigated wheat and olive trees 
[35,36]. Based on these studies, the variability of the leaf resistance can be considered to 
vary within the range 100–400 sm−1, depending on environmental conditions and the soil 
water content within the root zone. 

2.1. The Sparse Canopy Combination Equation 
One of the main limitations of the Penman–Monteith approach for estimating crop 

evapotranspiration E and irrigation requirements is the so-called “big-leaf” assumption 
[23], which is not valid for row or sparse crops i.e., crops that do not completely cover the 
soil surface. In this latter condition, the resulting value of evapotranspiration is underes-
timated, especially when the soil is wet, because the soil evaporation is not adequately 
represented. 

To extend the Penman–Monteith schematization in sparse crops, Shuttleworth and 
Wallace [22] proposed the following formulation for explicitly partitioning canopy tran-
spiration Ec and soil evaporation Es (sparse crop combination equation): 𝜆𝐸 = 𝜆𝐸௖ + 𝜆𝐸௦ =  ௱(஺ି஺ೞ)ାఘ௖೛஽బ/௥ೌ೎௱ାఊ(ଵା௥ೞ೎/௥ೌ೎) + ௱஺ೞାఘ௖೛஽బ/௥ೌೞ௱ାఊ(ଵା௥ೞೞ/௥ೌೞ)   [W m−2] (6)

In this equation, the term D0 represents the vapor pressure deficit at the canopy 
height, which can be expressed as follows: 
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𝐷଴ =  𝐷 + ௱஺ି(௱ାఊ) ఒா ௥ೌೌఘ௖೛  [KPa] (7)

The available energy at the substrate level As is derived from the net radiation flux 
density at the substrate Rns by means of the commonly used Beer’s law, accordingly to the 
relationships: 𝑅௡௦ = 𝑅௡𝑒𝑥𝑝(−0.5 𝐿𝐴𝐼) [W m−2] (8)𝐺 = 0.20𝑅௡௦ [W m−2] (9)𝐴௦ = 𝑅௡௦ − 𝐺 [W m−2] (10)

The vertical transport is controlled by two aerodynamic resistances, the first one from 
canopy level to the reference screen height, raa, and the second one corresponding to the 
flux from the substrate to the canopy level, raa. The values of these resistances vary linearly 
between two limits, ω and 0, corresponding to the closed canopy (LAI > 4) and bare sub-
strate, as expressed by the following equations [22]: 

𝑟௔௦ = ቊ௅஺ூସ 𝑟௔௦(𝜔) + (ସି௅஺ூ)ସ 𝑟௔௦(0)                      ∀  𝐿𝐴𝐼 ≤  4𝑟௔௦(𝜔)                                                         ∀  𝐿𝐴𝐼 >  4 [sm−1] (11)

𝑟௔௔ = ቊ௅஺ூସ 𝑟௔௔(𝜔) + (ସି௅஺ூ)ସ 𝑟௔௔(0)                      ∀  𝐿𝐴𝐼 ≤  4𝑟௔௔(𝜔)                                                          ∀  𝐿𝐴𝐼 >  4 [sm−1] (12)

with: 𝑟௔௦(𝜔) = ୪୬ (೥ష೏బ೥బ )௞మ௨ ௛೎௡(௛೎ିௗబ) ቄ𝑒𝑥𝑝 𝑛 −  𝑒𝑥𝑝[𝑛(1 − ௗబା௭బ௛೎ )]ቅ [sm−1] (13)

𝑟௔௦(0) = ୪୬ ( ೥೥బᇲ )௟௡ቆ೏బశ೥బ೥బᇲ ቇ௞మ௨  [sm−1] (14)

𝑟௔௔(𝜔) = ୪୬ (೥ష೏బ೥బ )௞మ௨ ቊ𝑙𝑛 ቀ ௭ିௗబ௛೎ିௗబቁ + ௛೎௡(௛೎ିௗబ) ቄ𝑒𝑥𝑝[𝑛(1 − ௗబା௭బ௛೎ ) − 1]ቅቋ  [sm−1] (15)

𝑟௔௔(0) = ቈ୪୬ ( ೥೥బᇲ )቉మ
௞మ௨ − 𝑟௔௦(0) [sm−1] 

(16)

In Equations (13)–(16), z0 and z0′ represent the roughness lengths for the fully closed 
canopy and for the substrate, respectively. The value of z0 is proportional to the crop 
height by a factor of 0.05 [37,38]. The roughness length for the substrate z0′ is considered 
constant, with value z0′= 0.01 m, while the coefficient n for the eddy diffusivity decay co-
efficient is fixed at 2.5 [22,39]. Thus, it is possible to eliminate the vapor pressure deficit at 
canopy height D0 by rewriting Equation (6) in the following form: 𝜆𝐸 = 𝐶௖𝑃𝑀௖ + 𝐶௦𝑃𝑀௦  [W m−2] (17)
where: 𝑃𝑀௖ = ௱஺ା(ఘ௖೛஽ି௱௥ೌ೎஺ೞ)/(௥ೌೌା௥ೌ೎)௱ାఊ(ଵା௥ೞ೎/(௥ೌೌା௥ೌ೎)  [W m−2] (18)

𝑃𝑀௦ = ௱஺ା[ఘ௖೛஽ି௱௥ೌೞ(஺ି஺ೞ)]/(௥ೌೌା௥ೌೞ)௱ାఊ(ଵା௥ೞೞ/(௥ೌೌା௥ೌೞ)  [W m−2] (19)

And the coefficients Cc and Cs coefficients in Equation (17) are given by: 
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𝐶௖ = 1[1 + 𝑅௖𝑅௔𝑅௦(𝑅௖ + 𝑅௔)] (20)

𝐶௦ = 1[1 + 𝑅௦𝑅௔𝑅௖(𝑅௦ + 𝑅௔)] (21)

with: 𝑅௔ = (∆ + 𝛾)𝑟௔௔ (22)𝑅௦ = (∆ + 𝛾)𝑟௔௦ + 𝛾𝑟௦௦ (23)𝑅௖ = (∆ + 𝛾)𝑟௔௖ + 𝛾𝑟௦௖ (24)
These algebraic equations allow for calculating λE in Equation (17), and the resulting 

value can be used back in Equation (7) to obtain D0 and hence the two terms λEc and λEs 
by means of Equation (6). 

In Equations (18) and (19), there are three more resistance terms, namely: 
- the substrate resistance rss, which regulates the evaporation from the soil and has 

been considered to vary between 500 (wet soil) and 2000 sm−1 (dry soil) [22]; 
- the bulk boundary layer resistance: 𝑟௔௖ = ଶହଶ௅஺ூ [sm−1] (25)

- And the bulk stomatal canopy resistance, rsc, already defined in Equation (5). 
In Equation (25), the coefficient 25 represents the mean boundary layer resistance. It 

has been shown that, due to its limited impact on the calculations, the constant value of 
25 can be considered as valid for average conditions [22,39]. 

2.2. Linking Substrate and Canopy Resistance with SWIR Observations in the OPTRAM 
Approach 

The detection of soil water content by means of remote sensing has been intensively 
investigated by using different sensors and platforms [40], but there are still strong limi-
tations for applications at the plot scale in terms of both spatial and temporal resolution 
and in accounting for the effects of vegetation cover. The sensitivity of the shortwave in-
frared signal to vegetation water content has been confirmed, and vegetation water indi-
ces have been defined to complement the commonly applied normalized difference veg-
etation index, NDVI [41]. Recently, Sadeghi et al. [42] have proposed an approach (called 
“OPTRAM”) for assessing the moisture content of the soil and vegetation ensemble based 
on the utilization of shortwave infrared bands of Landsat-8 and Sentinel-2. Similar to the 
triangle/trapezoidal method of Carlson et al. [7], which uses the domain of land surface 
temperature and NDVI, or fractional vegetation cover, for estimating the soil water con-
tent, Sadeghi et al. [43] define a relationship between NDVI and an index called “shortwave 
infrared transformed reflectance” (STR), which is given by: 

𝑆𝑇𝑅 = (1 − 𝜌ௌௐூோ)ଶ2 𝜌ௌௐூோ  (26)

where ρSWIR is the surface reflectance as detected by Sentinel-2 bands 11 and 12 (1610 and 
2190 nm) and Landsat bands (similar to Sentinel-2). The two-dimensional scatter NDVI-
STR for a given image (or set of images for the same area) is confined by two edges corre-
sponding to wet and dry soil water conditions. Pixels corresponding to wet surfaces are 
located on the top edge of the trapezoid (wet edge), whereas pixels corresponding to dry 
surfaces are located on the bottom edge (dry edge, Figure 1). 
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Figure 1. NDVI-STR space for OPTRAM method and proposed modulation of substrate and leaf 
stomatal resistance. 

The boundaries of this domain are defined by plotting the pixel values of NDVI and 
STR for several dates (i.e., different climatic conditions) over the same area. The slope and 
intercepts for dry (sd, id) and wet (sw, iw) edges can then be determined and the two limits 
in the (STR, NDVI) domain are defined by means of the following equations: 𝑆𝑇𝑅ௗ = 𝑖ௗ + 𝑠ௗ𝑁𝐷𝑉𝐼 (27)𝑆𝑇𝑅௪ = 𝑖௪ + 𝑠௪𝑁𝐷𝑉𝐼 (28)

A “water index” W is then calculated for each pixel from the expression: 

𝑊 = 𝑆𝑇𝑅 − 𝑆𝑇𝑅ௗ𝑆𝑇𝑅௪ − 𝑆𝑇𝑅ௗ (29)

It has been shown that W, being a proxy of the soil water saturation degree, is 
strongly correlated with measured soil water content (R2 > 0.8), especially when using 
band 12 of Sentinel-2 data [43]. However, in the approach proposed here, we intend to use 
W as an index to modulate the substrate and canopy resistances rss and rleaf between wet 
(W = 1) and dry conditions (W = 0), corresponding to their lower and upper limit. The 
value of rleaf is kept constant at rleaf,min until the water index is less than a specified threshold 
Ws; below which, rleaf is increased linearly up to rleaf,max (Figure 2). Although it would be 
quite complex to validate the resistance function depicted in the Figure 2, the underlying 
assumptions are consistent with other similar consolidated parameterizations i.e., for root 
water uptake [44,45]. The substrate resistance rss is considered to be inversely related with 
W, over the entire range from 0 to 1, with limit values of 2000 and 500 sm−1 [22]. 

The values of rss and rleaf resulting from this parameterization are inherently linked to 
the fractional vegetation cover (through NDVI) and the environmental conditions 
(through STR), and are finally used in the Shuttleworth–Wallace model for calculating Es 
and Ec, as described in the Section 2.1. 
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Figure 2. Variation of the leaf resistance rleaf (left) and substrate resistance rss (right) with water index W, as considered in 
this study (literature reference in the text). 

2.3. Thermal-Based Energy Balance Models 
The partitioning between canopy transpiration and soil evaporation has a robust con-

ceptualization in two-source energy balance models i.e., TSEB originally proposed by 
Norman et al. [11]. TSEB has been intensively applied by using the thermal observations 
from Landsat [46]. The “two sources” approach, consisting of vegetation and soil layers, 
takes into account the surface heterogeneity and its influence on radiometric and aerody-
namic temperatures. In the TSEB scheme, the sensible heat flux, H, is expressed as the sum 
of the contribution of the soil, Hs, and of the canopy, Hc. The vegetation directional frac-
tional cover is used to estimate the soil and canopy temperatures, TS and TC, from the 
radiometric temperature by considering the viewing angle. By using an initial estimate of 
canopy transpiration, usually based on the Priestley–Taylor formulation [47], an iterative 
procedure allows for determining TC and consequently the closure of the surfaced energy 
balance and the calculation of the instantaneous E. Details about the application of TSEB 
are given by Kustas and Norman [48,49]. The daily integration is successively carried out 
by using a scaling factor based on the solar radiation or the evaporative fraction [50]. 

The accuracy of TSEB evapotranspiration estimates is strongly dependent on the ac-
curacy of the land surface temperature inputs in relation to air temperature boundary 
conditions. To reduce this sensitivity, the Atmosphere–Land Exchange Inverse (ALEXI) 
algorithm [12] adopts a time differential correction based on the radiometric temperature 
from geostationary platforms providing hourly or sub-hourly thermal infrared observa-
tions. By means of a disaggregation procedure (DisALEXI), the ALEXI algorithm is ex-
tended to apply TSEB with less uncertainty caused by requiring absolute values of the 
land surface temperature [51] derived from sharpened Landsat-7 and Landsat-8 thermal 
imagery. More recently, the ALEXI/DisALEXI algorithm has been combined with a data 
fusion approach [52] for deriving daily maps of evapotranspiration at the spatial resolu-
tion of Landsat (30 m), as described by Cammalleri et al. [17,18]; this approach is indicated 
as Data Fusion in the following sections of this paper. 

The TSEB/DisALEXI and the more sophisticated Data Fusion approaches have been 
applied for mapping evapotranspiration in irrigated vineyards in the context of the 
GRAPEX experiment (Grape Remote sensing Atmospheric Profile and Evapotranspira-
tion eXperiment) [53,54]. For further details on this application of thermal-based methods 
in GRAPEX, the reader is referred to [55–58]. 

The resulting datasets, hereinafter referred to as “DisALEXI” when applying 
ALEXI/DisALEXI for Landsat dates and “Data Fusion (DF)” when creating daily E maps, 
have been used in the present study for a cross-comparison with the proposed Shuttle-
worth and Wallace approach that was described in the Section 2.1. 
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3. Study Area Description and Datasets Developed in the Context of GRAPEX 
The study area is the Ripperdan 720 irrigated vineyard (Vitis vinifera L.) located in 

the central part of California, U.S. The period of investigation considered here is April-
September 2018. The site is included in the GRAPEX experiment conducted by USDA 
since 2013 with the aim of applying remote sensing based methods for mapping evapo-
transpiration, crop water use and crop stress for improving the management of irrigation 
in the Central Valley of California [53,54]. The climate is Mediterranean, with an average 
temperature between May and October of 22 °C and 12 mm of rainfall. 

The Ripperdan vineyard (Figure 3a) is planted in a merlot variety with an extension 
of approximately 16 ha and trained on trellis with row spacing of 3.35 m and an inter-row 
distance between vines of 1.5 m; the average canopy height reaches approximately 2 m. 
Irrigation is applied by means of driplines, and there is the possibility of variable rates on 
a 30 × 30 m grid basis. The Ripperdan vineyard is divided into four treatment blocks, each 
approximately 3.2 hectares in size (Figure 3b). 

 
Figure 3. (a) Subset of Sentinel-2 image (NIR band), acquired on 26 June 2018 (extent WGS84/UTM 10N: LR 747740; 
4076080; UL 757920; 4085240); the Ripperdan vineyard position is indicated with R; (b) enlarged view of Ripperdan vine-
yard with the four treatment blocks boundaries. White dots indicate the position of the eddy covariance station for each 
block; white arrows represent nominal footprint dimension [19] and dominating wind direction (N-W). 

Meteorological and flux datasets for the Ripperdan site used for this study have been 
collected in the context of GRAPEX by the four identical eddy covariance towers installed 
at the S-E corner of each plot in order to match the prevailing wind conditions (Figure 3b). 
Wind direction data collected during the growing season from a nearby vineyard and later 
validated with the local flux tower wind observations indicated that nearly 95% of the 
upwind fetch wind was from the northwest quadrant and the upwind extent was typically 
within 50–75 m. Therefore, the flux towers were deployed in the southeast corner of each 
block to maximize the fetch and sampling within the block. 

The eddy covariance (EC) systems were from Campbell Scientific, Inc. Logan Utah. 
The IRGASON system, measuring the water vapor/carbon dioxide together with a CSAT3 
three-dimensional sonic anemometer to compute latent and sensible heat fluxes, net car-
bon exchange and momentum flux, were deployed at 4 m above local ground level (a.g.l.) 
facing due west. A four-way net radiometer (NR01 Net Radiometer Hukseflux, Delft, The 
Netherlands) was mounted at 4.25 m a.g.l. Within 5 m of the tower, a transect across the 
interrow of five soil heat flux plates (Radiation and Energy Balance Systems, Seattle, 
Washington, USA) at 8 cm depth, with soil thermocouples (manufactured by USDA-ARS) 
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at 2 and 6 cm depth and a volumetric water content at 5 cm depth using Stevens Hydrap-
robe (HydraProbe, Stevens Water Monitoring System, Portland, OR, USA), were used to 
estimate soil heat flux. See Agam et al. [59] for details on soil heat flux measurements. For 
details on the eddy covariance flux tower measurements and post-processing, the reader 
is referred to Alfieri et al. [60]. 

E observations were available as 30 min averages and were aggregated to daily mean 
values for the application of the combination equation approaches, Penman–Monteith (P-
M) and Shuttleworth–Wallace (S-W). 

In addition, half-hourly near-surface (5 cm depth) soil moisture data are available in 
each block along a transect that comprises five Hydra Probes in the vine row and across 
the inter-, where we expect a larger reflective response of the surface in the shortwave 
infrared spectral region. 

The cumulative irrigation applied during the study period is shown in Figure 4. 
There are irrigation events in late May/early June, followed by a lull until mid to late July, 
with significant irrigation amounts through August and early September. The cumulative 
volumes applied are approximately 3200 m3/ha for Blocks 1 to 3 and 3700 m3/ha for Block 
4. A lesser amount of irrigation was applied to Blocks 1 and 2 during July, due to trying 
to induce stress conditions compared to Blocks 3 and 4 during an intensive observation 
period (IOP) involving the collection of the leaf level gas exchange and leaf water potential 
data in conjunction with airborne remote sensing imagery. See Kustas et al. [54] for a de-
tailed description of measurements conducted during the IOPs. 

 
Figure 4. Cumulative irrigation volumes [m3 ha−1] applied for the Ripperdan blocks. 

The measured values of evapotranspiration at the four different vineyard blocks 
comprising Ripperdan 720 are given in Table 1, from which one observes lower cumula-
tive evapotranspiration at Blocks 1 and 2 as a consequence of the reduced irrigation ap-
plied. 
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Table 1. Summary of irrigation and evapotranspiration depths at Ripperdan 720 site from 10 April 
to 25 September 2018. 

 Block #1 Block #2 Block #3 Block #4
cumulated IRR (mm) 302.8 293.5 308.2 348.2
averaged IRR (mm/d) 1.79 1.74 1.82 2.06

cumulated E (mm) 680.3 669.2 775.2 755.4
averaged E (mm/d) 4.03 3.96 4.59 4.47

min E (mm/d) 1.34 1.46 1.51 1.35
max E (mm/d) 6.85 6.16 8.41 6.61

In the application of the thermal-based methods—DisALEXI and Data Fusion—me-
teorological data are not used as boundary conditions in the strict sense, as in the combi-
nation equation models; as such, they are less sensitive to the accuracy of the meteorolog-
ical data input compared to the combination equation. For regional applications, the cal-
culation of λE fluxes by means of DisALEXI and Data Fusion thermal approaches is based 
on global meteorological data provided by the Climate Forecast System Reanalysis (CFSR) 
of the National Center for Atmospheric Research (NCAR/UCAR). 

4. Description of the Sentinel-2 and Landsat-7–8 Datasets and Derived Products 
A main advantage of the P-M and S-W approaches proposed in this study relies on 

the temporal and pixel resolution of the twin platforms Sentinel-2A and 2B, herein re-
ferred to as S-2. During the five-month period from mid-April to mid-September 2018, it 
was possible to acquire 29 cloud-free images from Sentinel-2A and 2B over the Ripperdan 
site, included in the tile T10SGF (as identified in the Copernicus system). The Copernicus 
Open Access Hub provides free download access to Sentinel-2 products. 

Top-of-atmosphere reflectance S-2 images (Level 1C) have been downloaded from 
the data repository of Copernicus (https://scihub.copernicus.eu/, accessed on 8 March 
2020). An atmospheric correction for deriving surface reflectance coefficients in each S-2 
band has been performed by using the Sen2cor processor developed by the European 
Space Agency and is freely available (https://step.esa.int/main/third-party-plugins-
2/sen2cor/, accessed on 18 March 2020). S-2 images have a geometrical resolution of 10 m 
in the visible and near infrared bands and a geometrical resolution of 20 m in the red edge 
and shortwave (Appendix B). This latter resolution is of particular interest when com-
pared with that of the thermal bands of Landsat-8 (100 m). For the processing carried out 
in this study, we have used the S-2 bands with a resolution of 10 and 20 m, these latter 
being successively resampled at 10 m resolution by means of the simple nearest neighbor 
method. 

During the same period, the Landsat-7 and -8 (L-7 and L-8) had nine and seven cloud-
free overpasses, respectively, along path 43 row 34; two overpass dates for each Landsat 
occurred on the same date of S-2 (Appendix A). However, the Landsat-7 SLC failure cre-
ates gaps over the Ripperdan blocks, limiting the usage of these images without gap-fill-
ing. Landsat surface reflectance products have been downloaded from the EROS Science 
Processing Architecture ESPA (https://espa.cr.usgs.gov/, accessed on 10 January 2020). 

Surface reflectance coefficients from S-2 and L-7/L-8 were in good agreement, as 
shown by the temporal plots of NDVI in Figure 5 and of the hemispherical surface albedo 
in Figure 6. The values in these graphs represent the average for each of the four treatment 
blocks of the Ripperdan vineyard. 
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Figure 5. Temporal series of NDVI derived from S-2 and L-7/8 satellites (average values for 
the Ripperdan treatment blocks). 

 
Figure 6. Temporal series of surface albedo derived from S-2 and L-7/8 satellites (average val-
ues for the Ripperdan treatment blocks). 

The albedo estimates for DisALEXI use nominal values of soil and canopy reflec-
tances in the visible and near-infrared based on the model of Campbell and Norman [61]. 
In the case of Sentinel-2, the albedo has been calculated as the weighted sum of surface 
spectral reflectances ρi [62]: 𝛼 = ෍ 𝑤௜௜ 𝜌௜     𝑖 = 1,2, . . . , 𝑚 (30)

where the weighting factors, wλ, are calculated from the mean exo-atmospheric solar irra-
diance in m different spectral bands (Appendix B) from the following equation: 

𝑤௜ = 𝐸ௌ௎ே,௜∑ 𝐸ௌ௎ே,௜௠௜ୀଵ  (31)

The leaf area index is the most important crop parameter in the calculation of evap-
otranspiration by means of the combination equation methods P-M and S-W. In the case 
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of Landsat, LAI has been derived by using the algorithm proposed by Gao et al. [63]. For 
Sentinel-2, LAI values have been derived by using the procedure described in the Sentinel-
2 ToolBox embedded in the ESA package SNAP [64]. More specifically, LAI is estimated 
from the inversion of the radiative transfer model PROSPECT + SAILH based on the Ar-
tificial Neural Network, thus taking full advantage of the spectral resolution of S-2. This 
approach has been validated on different crop types [65].  

Table 2 provides a comparison for LAI values on the two dates during the study pe-
riod, with coincident Landsat-8 and Sentinel-2 acquisitions. On the first date, the L-8 LAI 
is lower than S-2 LAI, whereas the opposite is true on the second date. 

Table 2. Comparison of LAI on coincident S-2 and L-8 dates. 

 26 June 2018 14 September 2018 
Block Landsat-8 Sentinel-2 Landsat-8 Sentinel-2 

1 1.89 2.26 2.11 1.75 
2 1.81 2.15 2.08 1.70 
3 1.90 2.39 2.18 1.86 
4 1.81 2.33 2.21 1.88 

The plots in Figure 7 show that the general temporal pattern in LAI from L-8 and S-2 
is similar. Ground sampling of LAI was available in three dates but over smaller areas 
than represented by the 10–30 m pixel resolution of the remote sensing retrievals, so a 
comparison was not conducted. The decrease in June is a result of both the cover crop in 
the inter-row being mowed and senescent in late May and early June and July and the 
vine canopy undergoing structural changes and some management activities, i.e., prun-
ing, as also shown by the NDVI decrease in mid-July. However, the LAI values for L-8 are 
significantly lower than S-2 in June, but closer in August and September. In general, the 
S-2 LAI values evidence a larger variability along the season, as well as among the four 
blocks, with special regard to Blocks 1 and 2 versus 3 and 4, due to the irrigation differ-
ences, particularly during June and July. This effect is also due to the different spatial 
resolution of the two observation datasets. 

 
Figure 7. Temporal series of LAI derived from S-2 and L-7/8 satellites (average values for the 
Ripperdan treatment blocks). 

The surface reflectance in Bands 11 and 12 of S-2 has been used for calculating the 
“shortwave infrared transformed reflectance” (STR) in Equation (21). From a theoretical 
point of view, the graphs in Figure 8 indicate that the values of STR based on Band 12, 
with a central wavelength of 2190 nm, has a larger interval—from 1.2 to 4.6—than Band 
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11; furthermore, there is a larger variability among the different blocks. This indicates a 
better sensitivity of Band 12 with respect to Band 11 of S-2 for the analyses of the present 
study. The temporal variation of STR is coherent with the irrigation events shown in Fig-
ure 4. We notice that, in correspondence with the significant amount of irrigation applied 
in August, the value of STR increases, and it decreases when there is a period without 
irrigation. In addition, it is worth noting that Blocks 1 and 2 correspond to lower irrigation 
amounts, which is reflected by the lower STR values in the time series plot. 

 
Figure 8. Temporal series of shortwave infrared transformed reflectance derived from S-2 SWIR 
bands (average values for the Ripperdan treatment blocks). 

5. Results 
In order to determine the substrate and canopy resistances rss and rsc by means of the 

approach described in the Sections 2.1 and 2.2, the NDVI-STR domain has been plotted by 
considering the pixels included in the S-2 image subset covering a square area of approx-
imately 10 × 10 km2 (~106 pixels) centered on the Ripperdan site (as shown in the left part 
of Figure 3). We have deliberately chosen to not perform a calibration of the resistances as 
a function of the water index W, but we instead used the standard values reported in the 
literature, i.e., Figure 2, which should cover a wide range of possible cases. 

The entire set of S-2 images given in Appendix A has been used to produce the plot 
illustrated in Figure 9. The boundaries of the domain are characteristic for a given area, 
and they are identified by considering all of the different combinations of NDVI-STR ob-
served over a certain scene portion. For the present study, dry and wet edges have been 
identified by visual inspection. This does not represent a major drawback of the method-
ology, since the shape of the pixel distribution on the NDVI-STR space is identical for a 
given location, at any time, regardless of the surface and meteorological conditions. Pixels 
excluded above the wet edge represent oversaturated or shadowed pixels. There are is-
sues related to the definition of the dry and wet edges, in relation to the oversaturated 
pixels, which should be excluded from the NDVI-STR domain [42]. Recent research has 
proposed alternative ways for defining the boundaries of the NDVI-STR domain, and this 
is an aspect that may deserve attention for improving the methodology [66]. 

The values of the intercept and slope of the lines representing the wet and dry edge 
for the Ripperdan site are indicated in Figure 9, from which, the value of W in Equation 
(29) has been determined for each date. 
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Figure 9. [NDVI, STR] domain for GRAPEX area, extracted from the time series of 2018 Sentinel-2 
images (Appendix B). Wet and dry edges are shown with dashed lines. Parameters of Equations 
(27) and (28) are indicated on the left corner. 

The substrate, leaf and canopy resistances rss, rleaf and rsc, resulting from the adoption 
of these limits, are plotted in Figures 10–12. In the case of the substrate resistance rss, the 
values are linearly derived from W, with limits of 2000 sm−1 (dry edge) and 500 sm−1 (wet 
edge). In Figure 10, there is variation between 1200–1300 sm−1 until early June. From late 
July, rss starts to decrease due to the irrigation water applied, in conjunction with 
shortwave infrared transformed reflectance STR, as illustrated in Figure 8. The leaf re-
sistance rleaf (Figure 11) shows a behavior similar to rss, with a value of 200–240 sm−1 in June, 
rapidly decreasing from mid-July to its minimum value of 100 sm−1 at the beginning of 
September, when W is below the threshold of 0.6 (Figure 2). 

The combined effect of LAI and rleaf is depicted in Figure 12, showing the temporal 
variation of the bulk canopy resistance rsc, derived by means of Equation (5). The peak 
value of 1000 sm−1 is due to the low foliage density at the beginning of the season, with 
LAI < 0.5 (Figure 7), followed by a sharp decrease at the end of May, when LAI reaches its 
maximum. 
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Figure 10. Temporal series of substrate resistance rss in the S-W S-2 model modulated by using the 
OPTRAM approach (average values for the Ripperdan treatment blocks). 

 
Figure 11. Temporal series of leaf resistance rleaf in the P-M and S-W S-2 models modulated by using 
the OPTRAM approach (average values for the Ripperdan treatment blocks). 
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Figure 12. Temporal series of canopy resistance rsc in the P-M and S-W S-2 models (Equation (20)) 
modulated by using the OPTRAM approach (average values for the Ripperdan treatment blocks). 

The graph in Figure 13 shows the temporal variation of the average soil moisture 
along the transect of Block 1 with the corresponding values of the water index W derived 
by means of Equation (29). It is possible to notice the decrease in W in correspondence 
with the reduction in surface soil moisture during June, and the rapid increase with the 
intensification of irrigation applications from the second half of July. The value of W in 
this last period is much higher than during the earlier months (April), when a higher soil 
moisture content is recorded. A similar behavior has been observed in all four blocks. This 
may appear controversial, but it is explained instead by the fact that, starting from July, 
the vine canopy is fully developed, maintained continuously and well hydrated by the 
irrigation applications. The spectral response in the shortwave infrared is dependent not 
only on the soil but also on the vegetation water content. Hence, the water index W rep-
resents the water status of the soil–canopy ensemble and, as such, it provides useful indi-
cations for modulating surface resistances in the combination equation when vegetation 
is present. 

 
Figure 13. Temporal series of average surface soil moisture content (lines) and water index W (cir-
cles) derived from the shortwave infrared transformed reflectance (Ripperdan treatment block #1). 
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The calculation of E by means of the combination equation approaches, i.e., P-M and 
S-W S-2, has been compared with Eobs from the flux towers measurements. The calcula-
tions are made using either the meteorological input from the locally installed flux towers, 
or using the meteorological data provided by the Climate Forecast System Reanalysis 
(CFSR) of the National Center for Atmospheric Research (NCAR/UCAR), similarly to 
DisALEXI and Data Fusion. The E values considered for the comparison correspond to 
pixels falling approximately within the footprint of the flux tower measurements in the 
N-W direction of the prevailing wind. 

The results of this first comparison are summarized in the plot of Figure 14, with the 
corresponding statistics in Table 3. The statistical indicators have been calculated by con-
sidering the average values over the estimated footprint of the flux towers for the dates of 
S-2 acquisition given in Appendix A. In addition to Pearson and the determination coef-
ficient R2, the root mean square error and the mean absolute error have been calculated as 
follows: 

𝑅𝑀𝑆𝐸 =  ඨ∑ (𝐸௢௕௦ − 𝐸௠௢ௗ)ଶ௡௜ୀଵ 𝑛  
(29)

𝑀𝐴𝐸 = |𝐸௢௕௦ − 𝐸௠௢ௗ|/𝑛 (30)

Table 3 also gives the F-statistics for the corresponding degree of freedom (n-1). 

 
Figure 14. Correlation between the daily evapotranspiration E measured by eddy covariance towers 
(E tower) and the estimates (E models) obtained by means of Penman–Monteith (P-M S-2, cross) 
and Shuttleworth–Wallace (S-W S-2, circles), with flux tower meteorological data and surface pa-
rameters and resistances derived from Sentinel-2. 
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Table 3. Statistical results between daily E (Figure 14) from P-M S-2 and S-W S-2 calculated with 
two different meteorological input data vs. tower measurements. 

 Flux Tower Meteorological 
Data CFSR Meteorological Data 

 P-M S-2 S-W S-2 P-M S-2 S-W S-2  
Pearson coeff. 0.798 0.743 0.759 0.703 

Determ. coeff. R2 0.638 0.551 0.577 0.494 
RMSE 1.016 1.037 1.390 1.801 
MAE 0.850 0.815 1.147 1.520 
slope 0.871 1.015 0.904 1.096 

F 2576.9 2237.2 1090.4 914.2 
degr. freed. 111 111 111 111 

The thermal-based approaches described in Section 2.3, namely DisALEXI and Data 
Fusion, have been applied by using Landsat-7 and -8 acquisitions (see Appendix A) and 
have also been compared with the measured fluxes at each individual block of the Rip-
perdan vineyard. The results are summarized in Table 4 and Figure 15, which are includ-
ing also the S-W S-2 shown above, but disaggregated for the four management blocks. 

The dates for the S-W S-2 and Data Fusion results are coincidental, with the exception 
of May 27, which is missing from the Data Fusion; the dates for DisALEXI are related to 
the Landsat overpasses. Hence, there is a difference in the number of samples for each one 
of the three data sets, as indicated by the degree of freedom given in Table 4. 
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Table 4. Statistical evaluation of daily E (mm d−1) from the three approaches: S-W S-2, S-W S-2 with CFSR meteorological input, DisALEXI and Data Fusion vs. flux 
tower data. 

Block #1 S-W S-2 S-W S-2 CFSR Data Fusion DisALEXI Block #2 S-W S-2 S-W S-2 CFSR Data Fusion DisAlexi 
Pearson  0.706 0.667 0.753 0.773 Pearson  0.756 0.746 0.816 0.753 

R2 0.498 0.445 0.567 0.597 R2 0.572 0.557 0.666 0.568 
RMSE 1.036 1.818 1.017 0.631 RMSE 0.871 1.558 0.995 0.582 
MAE 0.816 1.553 0.823 0.523 MAE 0.675 1.328 0.828 0.530 
Slope 1.069 1.125 1.158 1.069 slope 1.021 1.068 1.182 1.081 

F 578.0 208.9 1101.1 1031.3 F 674.2 235.7 1603.4 1012.8 
degr. freed. 28 28 27 16 degr. freed. 28 28 27 16 

Block #3 S-W S-2 S-W S-2 CFSR Data fusion DisALEXI Block #4 S-W S-2 S-W S-2 CFSR Data fusion DisALEXI 
Pearson  0.718 0.635 0.810 0.834 Pearson  0.801 0.770 0.859 0.824 

R2 0.515 0.403 0.657 0.695 R2 0.641 0.593 0.738 0.679 
RMSE 1.183 2.129 0.796 0.650 RMSE 0.951 1.729 0.683 0.766 
MAE 0.919 1.828 0.641 0.437 MAE 0.744 1.444 0.531 0.462 
Slope 1.002 1.078 1.014 0.966 slope 0.975 1.045 1.051 0.965 

F 491.5 181.5 1084.0 1170.3 F 677.4 234.8 1684.6 1207.0 
degr. freed. 28 28 27 16 degr. freed. 28 28 27 16 
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Figure 15. Comparison of the daily evapotranspiration E measured by EC flux towers and the estimates of the three mod-
els: circles represent SW-S-2 output, asterisks are from Data Fusion approach and solid triangles are from DisALEXI. Val-
ues are the average of the pixel within the estimated flux footprint of each EC tower. 
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6. Discussion 
From the results shown in Figure 14 and Table 3, it is possible to conclude that both 

combination equation methods yield a reasonable agreement with the measured values 
of daily E. This finding confirms that the resistance modulation with OPTRAM repro-
duces the observed process with a satisfactory accuracy. However, although the correla-
tion coefficients and the errors are similar for the two methods based on the combination 
equation, we notice that the slope of the regression is close to 1 for S-W S-2 and signifi-
cantly lower for P-M S-2. This behavior was expected, considering that soil evaporation is 
not adequately represented in the “big-leaf” concept of the Penman–Monteith equation. 

In the comparison between the Shuttleworth–Wallace and Penman–Monteith (P-M) 
approaches, it is interesting to observe the ratio of E S-W S-2 and E P-M plotted in Figure 
16. In this graph, the continuous lines represent the variation of the ratio between E S-W 
S-2 and E P-M with LAI. The calculation is carried out with the two models by considering 
an average climatic day during the irrigation season at Ripperdan (Tair = 23.6 °C; RH% = 
45%; u = 1.6 ms−1, K↓ = 315 Wm−2), a value of leaf resistance rleaf of 200 sm−1 and four different 
values for the substrate resistance rss. The circles are the actual values obtained for the 
Ripperdan, with the approach described in previous sections. As expected, the Shuttle-
worth and Wallace approach gives higher E for low LAI values, and it quickly converges 
toward Penman–Monteith for LAI > 1. The ratio S-W/P-M is greater than 1 for LAI < 1, 
depending on the substrate resistance rss (inversely related to soil evaporation); the influ-
ence of rss decreases significantly and the four lines reach an asymptotical value of the 
ratio, which is 1.06 in this specific case. However, for LAI = 2, the evapotranspiration esti-
mates with Shuttleworth and Wallace are still larger than Penman–Monteith within a 
range of 5–20%. 

 
Figure 16. Ratio E S-W/E Penman–Monteith for different values of the substrate resistance rss cal-
culated by using an average day for the meteorological input during the observation period. Dots 
represent the actual values for the Ripperdan treatment blocks. 

The S-W S-2 approach provides reliable estimates of E also in the presence of moder-
ate water stress. During July and August, it is possible to notice a significant differentia-
tion between the four treatment blocks, as a consequence of the different irrigation 
amounts applied. It is interesting to analyze the plots of Figure 12 (bulk canopy stomatal 
resistance) in parallel with the cumulative irrigation applied in Figure 4. Block 3, which 
received fairly constant irrigation, falls in the lower part of the plot of Figure 12, followed 
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by Block 4, which has the highest total amount of irrigation but with only a minor increase 
during June and July. Blocks 1 and 2, where there was minimal irrigation during June and 
July, have higher values of rsc in response to mild hydric stress conditions. Blocks 2 and 3 
correspond to the lower and upper lines in the plot of Figure 12, thus representing the 
maximum and minimum E modeled by S-W S-2. The corresponding values of E are rep-
resented in Figure 17 together with the daily measurements from the eddy covariance 
stations. The temporal behavior of Blocks 2 and 3 in the observed and modeled daily E 
are in good agreement with each other, with the exception of early season and end of 
season, around bud break and harvest in April and September, where the S-W S-2 ap-
proach is under and overestimating the observed E, respectively. This might be explained 
by an underestimation of the cover crop evapotranspiration in April and an overestima-
tion of vine transpiration in September as vines begin senescing. 

In Figure 18, the values of the ratio between E from S-W S-2 and the reference evap-
otranspiration are plotted for the four Ripperdan blocks. In vineyard operations for this 
region, ratio values below the threshold of 0.7 (dashed line in Figure 17) are considered as 
an indication of water stress. During the months of July and August, Blocks 1 (diamonds) 
and 2 (squares) are below this threshold, as a consequence of less irrigation water applied. 
The reduction of E is consistent with the model predicted increase in leaf/canopy re-
sistance for these two blocks, as shown in Figure 12. 

 
Figure 17. Comparison of daily E derived from eddy covariance (lines) and corresponding average 
values estimated by S-W S-2 (points) for block #2 (lower E) and block #3 (higher E) for the Ripper-
dan site, 2018. 
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Figure 18. Ratio E S-W S-2/E-reference for the Ripperdan treatment blocks. 

Based on the discussion above, only S-W S-2 has been considered in the comparison 
with thermal-based methods. From the results shown in Figure 14 and Table 4, we notice 
that—among the three models, S-W S-2, DisALEXI and Data Fusion—the best results are 
obtained by means of DisALEXI on Landsat overpass dates, corresponding to the lowest 
values of RMSE and MAE, even with the lowest number of data points. In all cases, the 
slope of the correlation is around 1, except for Blocks 1 and 2 for the Data Fusion approach, 
where E tends to be overestimated. The best agreement between the S-W S-2 approach 
and the measured fluxes in terms of correlation coefficients is observed in Block 4, whilst 
the lowest errors are found in Block 2. 

As expected, the quality of input data affects the accuracy of results of the combina-
tion equation method S-W S-2 in all of the four blocks, as shown by the statistical indica-
tors in Table 4. When S-W S-2 is applied by using the meteorological data from the global 
CFSR dataset, its performance is lower in comparison to thermal-based methods, espe-
cially in Blocks 1 and 3. 

7. Conclusions 
Based on the comparative analysis presented in this study, the S-W S-2 approach for 

calculating E, including the simple parameterization for the canopy and substrate re-
sistances corrected with shortwave information, provides reasonable agreement with flux 
observations obtained in a variably stressed vineyard. The OPTRAM approach is able to 
follow the temporal evolution of the water status in the soil–vegetation ensemble, thus 
allowing us to modulate the resistances for the calculation of E within upper and lower 
limits values, which are typical for irrigated crops. The proposed method is consistent 
with the classical Penman–Monteith approach, with fractional vegetation cover and LAI 
ranging up to a fully closed canopy. Although DisALEXI outperforms S-W S-2, the main 
advantage of this latter approach is the spatial resolution of Sentinel-2 data (10 m) and the 
temporal resolution of 3–5 days. However, new advances in thermal sharpening tech-
niques provide a way to attain the visible and near-infrared resolutions [65,66] and are 
being used in combining Sentinel-2 data with Sentinel-3 thermal observations to create a 
20 m resolution LST product [21]. 

The S-W S-2 approach runs with daily averages of meteorological forcing and, there-
fore, does not need upscaling from instantaneous to daily values, as in the thermal-based 
approaches. However, this modeling approach is most accurate using local meteorologi-
cal data. Using non-local weather station data leads to additional errors, which have been 
quantified, whereas such non-local meteorological forcing does not have a similar effect 
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on DisALEXI results. Clearly, there are advantages and disadvantages of both thermal 
and shortwave-based approaches, and efforts to integrate these modeling schemes by lev-
eraging the information and intermediate output provided by both would improve their 
utility in computing reliable daily E products at 10–20 m resolutions. 

Further analyses are required for refining the definition of the STR-NDVI domain 
and the determination of both the wet and dry edges required for coefficients in Equations 
(27) and (28) and how these impact the model estimates of E using the S-W S-2 approach. 
The addition of thermal data and model output from DisALEXI to help to determine the 
dry and wet edges and/or better estimate the soil and canopy resistances will be explored. 
The availability of algorithms for deriving added-value products from S-2 data, such as 
LAI, the sharpened S-3 LST product and gridded meteorological data allow for the devel-
opment of automated processing tools that can lead to operational applications for irriga-
tion management and precision agriculture applications. 
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Appendix A 

 

Figure A1. Cloud-free acquisitions over the Ripperdan Site during the irrigation season 2018. 

  Acquisition date  

Tile 
Number     

WRS Path WRS Row 
 

T10SGF Platform    43 34 Platform 
Cloud Cover    Acquisition date Cloud Cover  

       
2018-04-12 0.17 SENTINEL-2A     
2018-04-22 0.00 SENTINEL-2A     

    2018-04-23 12.00 Landsat 8 
2018-04-27 0.00 SENTINEL-2B     
2018-05-02 0.07 SENTINEL-2A     
2018-05-07 0.00 SENTINEL-2B      

       2018-05-09 1.50 Landsat 8 
2018-05-12 0.17 SENTINEL-2A      
2018-05-17 0.19 SENTINEL-2B coincident 2018-05-17 1.00 Landsat 7 
2018-05-22 0.28 SENTINEL-2A      
2018-05-27 2.15 SENTINEL-2B      
2018-06-01 0.00 SENTINEL-2A      

        2018-06-02 1.00 Landsat 7 
2018-06-06 3.64 SENTINEL-2B      

        2018-06-10 0.90 Landsat 8 
2018-06-11 0.00 SENTINEL-2A      
2018-06-16 0.00 SENTINEL-2B      

        2018-06-18 3.00 Landsat 7 
2018-06-21 0.01 SENTINEL-2A      
2018-06-26 0.00 SENTINEL-2B coincident 2018-06-26 0.73 Landsat 8 

        2018-07-04 4.00 Landsat 7 
2018-07-06 0.00 SENTINEL-2B   
2018-07-11 0.00 SENTINEL-2A   
2018-07-16 0.34 SENTINEL-2B      

        2018-07-20 3.00 Landsat 7 
2018-07-21 20.65 SENTINEL-2A      
2018-07-26 0.00 SENTINEL-2B      

        2018-07-28 1.92 Landsat 8 
2018-07-31 0.00 SENTINEL-2A      
2018-08-05 0.00 SENTINEL-2B coincident 2018-08-05 3.00 Landsat 7 
2018-08-10 0.00 SENTINEL-2A      

        2018-08-13 0.83 Landsat 8 
2018-08-20 2.41 SENTINEL-2A      

        2018-08-21 3.00 Landsat 7 
2018-08-25 2.21 SENTINEL-2B      

        2018-08-29 2.77 Landsat 8 
2018-09-04 0.00 SENTINEL-2B      

        2018-09-06 0.00 Landsat 7 
2018-09-09 0.00 SENTINEL-2A      
2018-09-14 0.00 SENTINEL-2B coincident 2018-09-14 5.59 Landsat 8 
2018-09-19 0.00 SENTINEL-2A      

        2018-09-22 0.91 Landsat 7 
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Appendix B 

 
Figure A2. Characteristics of the multispectral imager (MSI) on board Sentinel-2 satellites and coef-
ficients for hemispherical albedo calculation. 
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