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Abstract: A new approach is proposed to derive evapotranspiration (E) and irrigation requirements
by implementing the combination equation models of Penman–Monteith and Shuttleworth and
Wallace with surface parameters and resistances derived from Sentinel-2 data. Surface parameters are
derived from Sentinel-2 and used as an input in these models; namely: the hemispherical shortwave
albedo, leaf area index and water status of the soil and canopy ensemble evaluated by using a short-
wave infrared-based index. The proposed approach has been validated with data acquired during
the GRAPEX (Grape Remote-sensing Atmospheric Profile and Evapotranspiration eXperiment) in
California irrigated vineyards. The E products obtained with the combination equation models are
evaluated by using eddy covariance flux tower measurements and are additionally compared with
surface energy balance models with Landsat-7 and -8 thermal infrared data. The Shuttleworth and
Wallace (S-W S-2) model provides an accuracy comparable to thermal-based methods when using
local meteorological data, with daily E errors < 1 mm/day, which increased from 1 to 1.5 mm/day
using meteorological forcing data from atmospheric models. The advantage of using the S-W S-2
modeling approach for monitoring ET is the high temporal revisit time of the Sentinel-2 satellites and
the finer pixel resolution. These results suggest that, by integrating the thermal-based data fusion
approach with the S-W S-2 modeling scheme, there is the potential to increase the frequency and
reliability of satellite-based daily evapotranspiration products.

Keywords: evapotranspiration; irrigation management; Penman–Monteith; Shuttleworth and Wal-
lace; Sentinel-2; vineyards; GRAPEX
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1. Introduction

Evapotranspiration is the key variable for determining crop water requirements and
is needed for the optimal allocation of water resources for irrigation. Several methods
and experiments have demonstrated that earth observation (EO) is an effective tool to
derive evapotranspiration for supporting irrigation and water resources [1,2] from local to
regional scales. These methods can be grouped into three main groups:

(a) reflectance and vegetation index (VI) based-methods: crop coefficient and canopy
parameters, such as hemispherical albedo and leaf area index LAI, are obtained by
means of different analytics from reflectance or vegetation indices. These parameters
are the basic inputs for the application of the widely used FAO-56 approach [3] for de-
termining crop evapotranspiration, either by the direct calculation of the combination
equation of Penman–Monteith or by using the crop coefficient and reference evapo-
transpiration. These methods are already implemented in operational applications
for irrigation management [4] and are evolving toward the more explicit definition of
the canopy conductance [5,6];

(b) thermal-based energy balance models: land surface temperature is the main input
for estimating sensible heat flux and then latent heat flux as a residual term of
the surface energy balance. Significant advancements have been made from the
first contextual approaches using soil–vegetation–transfer models [7] to one-source
models i.e., SEBAL [8], SEBS [9] and METRIC [10], and two-source models, such as
TSEB [11] and ALEXI [12]. Thermal-based models have been intensively applied by
using observation data from Landsat [13], which is, at the present moment, the only
operational platform with medium resolution acquisitions in the thermal infrared
(100 m), which are resampled to 30 m with a revisit time of 8 to 16 days depending on
the site;

(c) EO-driven soil water balance models: these are simulation models of water bal-
ance using EO-based input data related to crop development [14,15]. These models
produce a continuous spatially distributed output, the quality of which strongly
depends on the availability of reliable soil physical and hydraulic properties, as well
as precipitation/irrigation inputs [16].

Compared to groups (b) and (c), (a) is particularly suitable for operational irrigation
management for two main reasons: (i) there is a wide availability of medium and high
resolution space-borne multispectral sensors, such as the Landsat series and Sentinel-2 of
the Copernicus Program of European Space Agency, collecting data in the range of the
electromagnetic spectrum used for this method, with frequent acquisitions over the same
area; and (ii) the data required for achieving reliable results from soil water balance models
with sufficient accuracy are often unavailable. However, it also should be noted that models
in (b) are fusing and sharpening thermal observations using visible, near-IR and SWIR data
from multiple satellites and developing operational evapotranspiration products that are
applicable for water management and irrigation scheduling at field scales [17–21].

Recently, an approach based on Sentinel-2 and a combination equation with resistance
terms derived by means of an empirical relationship with meteorological variables and
vegetation parameters, such as the leaf area index, has been proposed [6]. However, for
a given set of meteorological variables, the resistance terms in the calculation of evapo-
transpiration depend only on canopy parameters (i.e., LAI, fractional vegetation cover)
without variations in the water status of the soil–canopy ensemble within the footprint of
the meteorological dataset.

Diversely, in this study, an innovative approach for estimating crop evapotranspira-
tion is proposed and compared with experimental data in an irrigated vineyard under
Mediterranean climate conditions, aiming at the full exploitation of the Sentinel-2 sensors
in terms of geometrical, temporal and radiometric resolutions. As explained in this paper,
the proposed approach uses the full range of Sentinel-2 spectral observations to infer
the data required for computing evapotranspiration in partial canopies by means of a
modified combination equation. This modified method, based on the approach developed
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by Shuttleworth and Wallace [22], estimates soil and canopy contributions to the total
evapotranspiration E (the sparse crop combination equation) by incorporating shortwave
infrared data from Sentinel-2 for assessing the water status of the surface and modulating
the resistance terms in the combination equation. Results will also be compared with two
thermal-based model output sources available for the same study area.

2. Theory

The combination equation of Penman–Monteith for calculating evapotranspiration E is
based on the simultaneous solution of the surface energy balance equation and the turbulent
transport of heat and water vapor by means of resistance terms defined in different ways.
The general formulation is given by the following widely used equation [23]:

λE = λ
∆A + ρcpD/rh

a

∆ + γ
(
1 + rc

s/rh
a
) [W m−2] (1)

The different variables represented in the Equation (1) are defined by the follo-
wing equations:
λ [J Kg−1]: latent heat of vaporization;
∆ [kPa◦C−1]: slope of the saturated vapor pressure–temperature curve;
A [W m−2]: available energy flux density;
ρ [kg m−3]: air density;
cp [J kg−1 ◦C−1]: air specific heat;
D [kPa]: vapor pressure deficit at the screen height of measurement of air temperature;
γ [kPa ◦C−1]: thermodynamic psychrometric constant;
ra

h [sm−1]: aerodynamic resistance for sensible heat and latent heat;
rs

c [sm−1]: canopy resistance.
The available energy flux density A is given by the difference between the total net

radiation flux Rn and soil heat flux G:

A = Rn − G
[
W m−2

]
(2)

Rn = (1− α)K↓ + L∗
[
W m−2

]
(3)

with α (-) representing the spectrally integrated hemispherical albedo of the surface—for
the sake of simplicity, surface albedo in the rest of the text—K↓ representing the incoming
global shortwave radiation and L* representing the net incoming long-wave radiation flux
density. This latter term was calculated at the daily scale from air temperature and vapor
pressure, incoming shortwave radiation and extraterrestrial solar radiation [3].

The aerodynamic resistance for sensible heat and latent heat, ra
h, is given by:

rh
a =

ln
(

zu−d0
z0m

)
ln
(

zT−d0
z0h

)
k2u

=
ln
(

zu−0.66hc
0.123hc

)
ln
(

zT−0.66hc
0.0123hc

)
k2u

[sm−1] (4)

In this equation, hc is the canopy height, k is the von Karman’s constant (0.41), zu and
zT are the measurement heights for wind speed u and temperature T, d0 is the zero-plane
displacement height and z0m and z0h represent the roughness lengths for momentum and
heat. The values of d0, z0m and z0h are taken as proportional to the canopy height hc [24],
with factors 0.67, 0.123 and 0.0123, respectively.

When calculations are made for daily intervals, especially with high solar radiation,
atmospheric stability corrections can be considered as negligible due to night-time com-
pensating effects [25].

Finally, the bulk stomatal canopy resistance rs
c in Equation (1) is given by:

rc
s =

{ rlea f
0.5 LAI | LAI ≤ 4

rlea f
2 | LAI > 4

[sm−1] (5)
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The expression of rs
c in Equation (5) was first introduced by Szeicz and Long [26]

and successively adopted in the formulation of the Penman–Monteith equation proposed
by the FAO-56 paper [3]. The coefficient 0.5 in the denominator was introduced because,
in most cases, only the upper half of crop foliage is actively contributing to the heat and
vapor transfer [26]. Although the Penman–Monteith approach was originally developed
for closed canopies, several hydrological studies have also applied it in the presence of
canopy gaps, provided that appropriate values of resistances are introduced to account for
the gap fractions. To this end, the value of rs

c can be empirically determined from latent
heat flux measurements by a numerical inversion of the Penman–Monteith equation [27].
Different models have been proposed to determine the canopy resistance in relation to LAI
and other environmental variables [28–30].

The leaf resistance rleaf in Equation (5) is the reciprocal of the leaf conductance, which
has been investigated in several physiological studies [31,32]. From measurements on
leaves of different species, including tree and herbaceous crops, a minimum value (maxi-
mum conductance) of rleaf = 100 sm−1 has been suggested, which is also adopted in the
FAO-56 approach in fully irrigated and disease-free conditions. This value has been con-
firmed on the basis of Fluxnet data from crop and grassland sites [33]. Assuming a constant
fixed value for rleaf, i.e., 100 sm−1, allows for the calculation of E on the basis of meteorolog-
ical data and canopy parameters, such as surface albedo, LAI and crop height, which can
be estimated by using remote sensing techniques. This approach has been implemented in
satellite-based advisory services for irrigation management without the need for using the
crop coefficient Kc [2].

With an increasing water deficit in the root zone, potential stress conditions may
occur due to limitations in the water uptake by roots. The variability of rleaf in relation
to water stress conditions has been investigated for a Merlot grape variety in Israel that
was subjected to different irrigation treatments [34], which reports measurements of the
leaf resistance rleaf varying from 100 sm−1 in mild water stress to 400 sm−1 for severe
stress. However, it is well known that the increase in rleaf, representing stomatal closure,
occurs when the soil water content is lower than a certain threshold, by following approxi-
mately a bi-linear function, as demonstrated by observations on irrigated wheat and olive
trees [35,36]. Based on these studies, the variability of the leaf resistance can be considered
to vary within the range 100–400 sm−1, depending on environmental conditions and the
soil water content within the root zone.

2.1. The Sparse Canopy Combination Equation

One of the main limitations of the Penman–Monteith approach for estimating crop
evapotranspiration E and irrigation requirements is the so-called “big-leaf” assumption [23],
which is not valid for row or sparse crops i.e., crops that do not completely cover the soil
surface. In this latter condition, the resulting value of evapotranspiration is underestimated,
especially when the soil is wet, because the soil evaporation is not adequately represented.

To extend the Penman–Monteith schematization in sparse crops, Shuttleworth and
Wallace [22] proposed the following formulation for explicitly partitioning canopy transpi-
ration Ec and soil evaporation Es (sparse crop combination equation):

λE = λEc + λEs =
∆(A− As) + ρcpD0/rc

a

∆ + γ(1 + rc
s/rc

a)
+

∆As + ρcpD0/rs
a

∆ + γ(1 + rs
s/rs

a)
[W m−2] (6)

In this equation, the term D0 represents the vapor pressure deficit at the canopy height,
which can be expressed as follows:

D0 = D +
∆A− (∆ + γ) λE ra

a
ρcp

[KPa] (7)
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The available energy at the substrate level As is derived from the net radiation flux
density at the substrate Rns by means of the commonly used Beer’s law, accordingly to
the relationships:

Rns = Rnexp(−0.5 LAI) [W m−2] (8)

G = 0.20Rns [W m−2] (9)

As = Rns − G [W m−2] (10)

The vertical transport is controlled by two aerodynamic resistances, the first one
from canopy level to the reference screen height, ra

a, and the second one corresponding
to the flux from the substrate to the canopy level, ra

a. The values of these resistances vary
linearly between two limits, ω and 0, corresponding to the closed canopy (LAI > 4) and
bare substrate, as expressed by the following equations [22]:

rs
a =

{
LAI

4 rs
a(ω) + (4−LAI)

4 rs
a(0) ∀ LAI ≤ 4

rs
a(ω) ∀ LAI > 4

[sm−1] (11)

ra
a =

{
LAI

4 ra
a(ω) + (4−LAI)

4 ra
a(0) ∀ LAI ≤ 4

ra
a(ω) ∀ LAI > 4

[sm−1] (12)

with:

rs
a(ω) =

ln
(

z−d0
z0

)
k2u

hc

n(hc − d0)

{
exp n− exp

[
n
(

1− d0 + z0

hc

)]}
[sm−1] (13)

rs
a(0) =

ln
(

z
z′0

)
ln
(

d0+z0
z′0

)
k2u

[sm−1] (14)

ra
a(ω) =

ln
(

z−d0
z0

)
k2u

{
ln
(

z− d0
hc − d0

)
+

hc

n(hc − d0)

{
exp
[

n
(

1− d0 + z0
hc

)
− 1
]}}

[sm−1] (15)

ra
a(0) =

[
ln
(

z
z′0

)]2

k2u
− rs

a(0) [sm−1] (16)

In Equations (13)–(16), z0 and z0′ represent the roughness lengths for the fully closed
canopy and for the substrate, respectively. The value of z0 is proportional to the crop height
by a factor of 0.05 [37,38]. The roughness length for the substrate z0′ is considered constant,
with value z0′= 0.01 m, while the coefficient n for the eddy diffusivity decay coefficient is
fixed at 2.5 [22,39]. Thus, it is possible to eliminate the vapor pressure deficit at canopy
height D0 by rewriting Equation (6) in the following form:

λE = CcPMc + CsPMs [W m−2] (17)

where:

PMc =
∆A +

(
ρcpD− ∆rc

a As
)
/(ra

a + rc
a)

∆ + γ(1 + rc
s/(ra

a + rc
a)

[W m−2] (18)

PMs =
∆A +

[
ρcpD− ∆rs

a(A− As
)
]/(ra

a + rs
a)

∆ + γ(1 + rs
s/(ra

a + rs
a)

[W m−2] (19)

And the coefficients Cc and Cs coefficients in Equation (17) are given by:

Cc =
1[

1 + RcRa
Rs(Rc+Ra)

] (20)
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Cs =
1[

1 + RsRa
Rc(Rs+Ra)

] (21)

with:
Ra = (∆ + γ)ra

a (22)

Rs = (∆ + γ)rs
a + γrs

s (23)

Rc = (∆ + γ)rc
a + γrc

s (24)

These algebraic equations allow for calculating λE in Equation (17), and the resulting
value can be used back in Equation (7) to obtain D0 and hence the two terms λEc and λEs
by means of Equation (6).

In Equations (18) and (19), there are three more resistance terms, namely:

- the substrate resistance rs
s, which regulates the evaporation from the soil and has

been considered to vary between 500 (wet soil) and 2000 sm−1 (dry soil) [22];
- the bulk boundary layer resistance:

rc
a =

25
2LAI

[sm−1] (25)

- And the bulk stomatal canopy resistance, rs
c, already defined in Equation (5).

In Equation (25), the coefficient 25 represents the mean boundary layer resistance. It
has been shown that, due to its limited impact on the calculations, the constant value of 25
can be considered as valid for average conditions [22,39].

2.2. Linking Substrate and Canopy Resistance with SWIR Observations in the OPTRAM Approach

The detection of soil water content by means of remote sensing has been intensively
investigated by using different sensors and platforms [40], but there are still strong limi-
tations for applications at the plot scale in terms of both spatial and temporal resolution
and in accounting for the effects of vegetation cover. The sensitivity of the shortwave
infrared signal to vegetation water content has been confirmed, and vegetation water
indices have been defined to complement the commonly applied normalized difference
vegetation index, NDVI [41]. Recently, Sadeghi et al. [42] have proposed an approach
(called “OPTRAM”) for assessing the moisture content of the soil and vegetation ensemble
based on the utilization of shortwave infrared bands of Landsat-8 and Sentinel-2. Similar to
the triangle/trapezoidal method of Carlson et al. [7], which uses the domain of land surface
temperature and NDVI, or fractional vegetation cover, for estimating the soil water content,
Sadeghi et al. [43] define a relationship between NDVI and an index called “shortwave
infrared transformed reflectance” (STR), which is given by:

STR =
(1− ρSWIR)

2

2 ρSWIR
(26)

where ρSWIR is the surface reflectance as detected by Sentinel-2 bands 11 and 12 (1610
and 2190 nm) and Landsat bands (similar to Sentinel-2). The two-dimensional scatter
NDVI-STR for a given image (or set of images for the same area) is confined by two edges
corresponding to wet and dry soil water conditions. Pixels corresponding to wet surfaces
are located on the top edge of the trapezoid (wet edge), whereas pixels corresponding to
dry surfaces are located on the bottom edge (dry edge, Figure 1).
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Figure 1. NDVI-STR space for OPTRAM method and proposed modulation of substrate and leaf
stomatal resistance.

The boundaries of this domain are defined by plotting the pixel values of NDVI and
STR for several dates (i.e., different climatic conditions) over the same area. The slope and
intercepts for dry (sd, id) and wet (sw, iw) edges can then be determined and the two limits
in the (STR, NDVI) domain are defined by means of the following equations:

STRd = id + sdNDVI (27)

STRw = iw + swNDVI (28)

A “water index” W is then calculated for each pixel from the expression:

W =
STR− STRd

STRw − STRd
(29)

It has been shown that W, being a proxy of the soil water saturation degree, is strongly
correlated with measured soil water content (R2 > 0.8), especially when using band 12 of
Sentinel-2 data [43]. However, in the approach proposed here, we intend to use W as an
index to modulate the substrate and canopy resistances rs

s and rleaf between wet (W = 1)
and dry conditions (W = 0), corresponding to their lower and upper limit. The value
of rleaf is kept constant at rleaf,min until the water index is less than a specified threshold
Ws; below which, rleaf is increased linearly up to rleaf,max (Figure 2). Although it would be
quite complex to validate the resistance function depicted in the Figure 2, the underlying
assumptions are consistent with other similar consolidated parameterizations i.e., for root
water uptake [44,45]. The substrate resistance rs

s is considered to be inversely related with
W, over the entire range from 0 to 1, with limit values of 2000 and 500 sm−1 [22].
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Figure 2. Variation of the leaf resistance rleaf (left) and substrate resistance rs
s (right) with water index W, as considered in

this study (literature reference in the text).

The values of rs
s and rleaf resulting from this parameterization are inherently linked to

the fractional vegetation cover (through NDVI) and the environmental conditions (through
STR), and are finally used in the Shuttleworth–Wallace model for calculating Es and Ec, as
described in the Section 2.1.

2.3. Thermal-Based Energy Balance Models

The partitioning between canopy transpiration and soil evaporation has a robust
conceptualization in two-source energy balance models i.e., TSEB originally proposed by
Norman et al. [11]. TSEB has been intensively applied by using the thermal observations
from Landsat [46]. The “two sources” approach, consisting of vegetation and soil layers,
takes into account the surface heterogeneity and its influence on radiometric and aerody-
namic temperatures. In the TSEB scheme, the sensible heat flux, H, is expressed as the
sum of the contribution of the soil, Hs, and of the canopy, Hc. The vegetation directional
fractional cover is used to estimate the soil and canopy temperatures, TS and TC, from the
radiometric temperature by considering the viewing angle. By using an initial estimate of
canopy transpiration, usually based on the Priestley–Taylor formulation [47], an iterative
procedure allows for determining TC and consequently the closure of the surfaced energy
balance and the calculation of the instantaneous E. Details about the application of TSEB
are given by Kustas and Norman [48,49]. The daily integration is successively carried out
by using a scaling factor based on the solar radiation or the evaporative fraction [50].

The accuracy of TSEB evapotranspiration estimates is strongly dependent on the
accuracy of the land surface temperature inputs in relation to air temperature boundary
conditions. To reduce this sensitivity, the Atmosphere–Land Exchange Inverse (ALEXI)
algorithm [12] adopts a time differential correction based on the radiometric temperature
from geostationary platforms providing hourly or sub-hourly thermal infrared obser-
vations. By means of a disaggregation procedure (DisALEXI), the ALEXI algorithm is
extended to apply TSEB with less uncertainty caused by requiring absolute values of the
land surface temperature [51] derived from sharpened Landsat-7 and Landsat-8 thermal
imagery. More recently, the ALEXI/DisALEXI algorithm has been combined with a data
fusion approach [52] for deriving daily maps of evapotranspiration at the spatial resolution
of Landsat (30 m), as described by Cammalleri et al. [17,18]; this approach is indicated as
Data Fusion in the following sections of this paper.

The TSEB/DisALEXI and the more sophisticated Data Fusion approaches have been
applied for mapping evapotranspiration in irrigated vineyards in the context of the
GRAPEX experiment (Grape Remote sensing Atmospheric Profile and Evapotranspiration
eXperiment) [53,54]. For further details on this application of thermal-based methods in
GRAPEX, the reader is referred to [55–58].
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The resulting datasets, hereinafter referred to as “DisALEXI” when applying ALEXI/
DisALEXI for Landsat dates and “Data Fusion (DF)” when creating daily E maps, have
been used in the present study for a cross-comparison with the proposed Shuttleworth and
Wallace approach that was described in the Section 2.1.

3. Study Area Description and Datasets Developed in the Context of GRAPEX

The study area is the Ripperdan 720 irrigated vineyard (Vitis vinifera L.) located in
the central part of California, U.S. The period of investigation considered here is April-
September 2018. The site is included in the GRAPEX experiment conducted by USDA
since 2013 with the aim of applying remote sensing based methods for mapping evapo-
transpiration, crop water use and crop stress for improving the management of irrigation
in the Central Valley of California [53,54]. The climate is Mediterranean, with an average
temperature between May and October of 22 ◦C and 12 mm of rainfall.

The Ripperdan vineyard (Figure 3a) is planted in a merlot variety with an extension
of approximately 16 ha and trained on trellis with row spacing of 3.35 m and an inter-row
distance between vines of 1.5 m; the average canopy height reaches approximately 2 m.
Irrigation is applied by means of driplines, and there is the possibility of variable rates on a
30 × 30 m grid basis. The Ripperdan vineyard is divided into four treatment blocks, each
approximately 3.2 hectares in size (Figure 3b).

Figure 3. (a) Subset of Sentinel-2 image (NIR band), acquired on 26 June 2018 (extent WGS84/UTM 10N: LR 747740; 4076080;
UL 757920; 4085240); the Ripperdan vineyard position is indicated with R; (b) enlarged view of Ripperdan vineyard with
the four treatment blocks boundaries. White dots indicate the position of the eddy covariance station for each block; white
arrows represent nominal footprint dimension [19] and dominating wind direction (N-W).

Meteorological and flux datasets for the Ripperdan site used for this study have been
collected in the context of GRAPEX by the four identical eddy covariance towers installed
at the S-E corner of each plot in order to match the prevailing wind conditions (Figure 3b).
Wind direction data collected during the growing season from a nearby vineyard and later
validated with the local flux tower wind observations indicated that nearly 95% of the
upwind fetch wind was from the northwest quadrant and the upwind extent was typically
within 50–75 m. Therefore, the flux towers were deployed in the southeast corner of each
block to maximize the fetch and sampling within the block.

The eddy covariance (EC) systems were from Campbell Scientific, Inc. Logan Utah.
The IRGASON system, measuring the water vapor/carbon dioxide together with a CSAT3
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three-dimensional sonic anemometer to compute latent and sensible heat fluxes, net carbon
exchange and momentum flux, were deployed at 4 m above local ground level (a.g.l.)
facing due west. A four-way net radiometer (NR01 Net Radiometer Hukseflux, Delft,
The Netherlands) was mounted at 4.25 m a.g.l. Within 5 m of the tower, a transect across
the interrow of five soil heat flux plates (Radiation and Energy Balance Systems, Seattle,
Washington, USA) at 8 cm depth, with soil thermocouples (manufactured by USDA-ARS) at
2 and 6 cm depth and a volumetric water content at 5 cm depth using Stevens Hydraprobe
(HydraProbe, Stevens Water Monitoring System, Portland, OR, USA), were used to estimate
soil heat flux. See Agam et al. [59] for details on soil heat flux measurements. For details on
the eddy covariance flux tower measurements and post-processing, the reader is referred
to Alfieri et al. [60].

E observations were available as 30 min averages and were aggregated to daily mean
values for the application of the combination equation approaches, Penman–Monteith
(P-M) and Shuttleworth–Wallace (S-W).

In addition, half-hourly near-surface (5 cm depth) soil moisture data are available in
each block along a transect that comprises five Hydra Probes in the vine row and across the
inter-, where we expect a larger reflective response of the surface in the shortwave infrared
spectral region.

The cumulative irrigation applied during the study period is shown in Figure 4. There
are irrigation events in late May/early June, followed by a lull until mid to late July,
with significant irrigation amounts through August and early September. The cumulative
volumes applied are approximately 3200 m3/ha for Blocks 1 to 3 and 3700 m3/ha for
Block 4. A lesser amount of irrigation was applied to Blocks 1 and 2 during July, due
to trying to induce stress conditions compared to Blocks 3 and 4 during an intensive
observation period (IOP) involving the collection of the leaf level gas exchange and leaf
water potential data in conjunction with airborne remote sensing imagery. See Kustas
et al. [54] for a detailed description of measurements conducted during the IOPs.

Figure 4. Cumulative irrigation volumes [m3 ha−1] applied for the Ripperdan blocks.

The measured values of evapotranspiration at the four different vineyard blocks
comprising Ripperdan 720 are given in Table 1, from which one observes lower cumulative
evapotranspiration at Blocks 1 and 2 as a consequence of the reduced irrigation applied.
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Table 1. Summary of irrigation and evapotranspiration depths at Ripperdan 720 site from 10 April to
25 September 2018.

Block #1 Block #2 Block #3 Block #4

cumulated IRR (mm) 302.8 293.5 308.2 348.2
averaged IRR (mm/d) 1.79 1.74 1.82 2.06

cumulated E (mm) 680.3 669.2 775.2 755.4
averaged E (mm/d) 4.03 3.96 4.59 4.47

min E (mm/d) 1.34 1.46 1.51 1.35
max E (mm/d) 6.85 6.16 8.41 6.61

In the application of the thermal-based methods—DisALEXI and Data Fusion—
meteorological data are not used as boundary conditions in the strict sense, as in the
combination equation models; as such, they are less sensitive to the accuracy of the me-
teorological data input compared to the combination equation. For regional applications,
the calculation of λE fluxes by means of DisALEXI and Data Fusion thermal approaches is
based on global meteorological data provided by the Climate Forecast System Reanalysis
(CFSR) of the National Center for Atmospheric Research (NCAR/UCAR).

4. Description of the Sentinel-2 and Landsat-7–8 Datasets and Derived Products

A main advantage of the P-M and S-W approaches proposed in this study relies on
the temporal and pixel resolution of the twin platforms Sentinel-2A and 2B, herein referred
to as S-2. During the five-month period from mid-April to mid-September 2018, it was
possible to acquire 29 cloud-free images from Sentinel-2A and 2B over the Ripperdan site,
included in the tile T10SGF (as identified in the Copernicus system). The Copernicus Open
Access Hub provides free download access to Sentinel-2 products.

Top-of-atmosphere reflectance S-2 images (Level 1C) have been downloaded from the
data repository of Copernicus (https://scihub.copernicus.eu/, accessed on 8 March 2020).
An atmospheric correction for deriving surface reflectance coefficients in each S-2 band
has been performed by using the Sen2cor processor developed by the European Space
Agency and is freely available (https://step.esa.int/main/third-party-plugins-2/sen2cor/,
accessed on 18 March 2020). S-2 images have a geometrical resolution of 10 m in the visible
and near infrared bands and a geometrical resolution of 20 m in the red edge and shortwave
(Appendix B). This latter resolution is of particular interest when compared with that of
the thermal bands of Landsat-8 (100 m). For the processing carried out in this study, we
have used the S-2 bands with a resolution of 10 and 20 m, these latter being successively
resampled at 10 m resolution by means of the simple nearest neighbor method.

During the same period, the Landsat-7 and -8 (L-7 and L-8) had nine and seven cloud-
free overpasses, respectively, along path 43 row 34; two overpass dates for each Landsat
occurred on the same date of S-2 (Appendix A). However, the Landsat-7 SLC failure
creates gaps over the Ripperdan blocks, limiting the usage of these images without gap-
filling. Landsat surface reflectance products have been downloaded from the EROS Science
Processing Architecture ESPA (https://espa.cr.usgs.gov/, accessed on 10 January 2020).

Surface reflectance coefficients from S-2 and L-7/L-8 were in good agreement, as
shown by the temporal plots of NDVI in Figure 5 and of the hemispherical surface albedo
in Figure 6. The values in these graphs represent the average for each of the four treatment
blocks of the Ripperdan vineyard.

https://scihub.copernicus.eu/
https://step.esa.int/main/third-party-plugins-2/sen2cor/
https://espa.cr.usgs.gov/
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Figure 5. Temporal series of NDVI derived from S-2 and L-7/8 satellites (average values for the
Ripperdan treatment blocks).

Figure 6. Temporal series of surface albedo derived from S-2 and L-7/8 satellites (average values for
the Ripperdan treatment blocks).

The albedo estimates for DisALEXI use nominal values of soil and canopy reflectances
in the visible and near-infrared based on the model of Campbell and Norman [61]. In the
case of Sentinel-2, the albedo has been calculated as the weighted sum of surface spectral
reflectances ρi [62]:

α = ∑
i

wiρi i = 1, 2, . . . , m (30)

where the weighting factors, wλ, are calculated from the mean exo-atmospheric solar
irradiance in m different spectral bands (Appendix B) from the following equation:

wi =
ESUN,i

∑m
i=1 ESUN,i

(31)
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The leaf area index is the most important crop parameter in the calculation of evap-
otranspiration by means of the combination equation methods P-M and S-W. In the case
of Landsat, LAI has been derived by using the algorithm proposed by Gao et al. [63]. For
Sentinel-2, LAI values have been derived by using the procedure described in the Sentinel-2
ToolBox embedded in the ESA package SNAP [64]. More specifically, LAI is estimated from
the inversion of the radiative transfer model PROSPECT + SAILH based on the Artificial
Neural Network, thus taking full advantage of the spectral resolution of S-2. This approach
has been validated on different crop types [65].

Table 2 provides a comparison for LAI values on the two dates during the study
period, with coincident Landsat-8 and Sentinel-2 acquisitions. On the first date, the L-8 LAI
is lower than S-2 LAI, whereas the opposite is true on the second date.

Table 2. Comparison of LAI on coincident S-2 and L-8 dates.

26 June 2018 14 September 2018

Block Landsat-8 Sentinel-2 Landsat-8 Sentinel-2

1 1.89 2.26 2.11 1.75
2 1.81 2.15 2.08 1.70
3 1.90 2.39 2.18 1.86
4 1.81 2.33 2.21 1.88

The plots in Figure 7 show that the general temporal pattern in LAI from L-8 and S-2
is similar. Ground sampling of LAI was available in three dates but over smaller areas
than represented by the 10–30 m pixel resolution of the remote sensing retrievals, so a
comparison was not conducted. The decrease in June is a result of both the cover crop in
the inter-row being mowed and senescent in late May and early June and July and the
vine canopy undergoing structural changes and some management activities, i.e., pruning,
as also shown by the NDVI decrease in mid-July. However, the LAI values for L-8 are
significantly lower than S-2 in June, but closer in August and September. In general, the
S-2 LAI values evidence a larger variability along the season, as well as among the four
blocks, with special regard to Blocks 1 and 2 versus 3 and 4, due to the irrigation differences,
particularly during June and July. This effect is also due to the different spatial resolution
of the two observation datasets.

Figure 7. Temporal series of LAI derived from S-2 and L-7/8 satellites (average values for the
Ripperdan treatment blocks).
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The surface reflectance in Bands 11 and 12 of S-2 has been used for calculating the
“shortwave infrared transformed reflectance” (STR) in Equation (21). From a theoretical
point of view, the graphs in Figure 8 indicate that the values of STR based on Band 12,
with a central wavelength of 2190 nm, has a larger interval—from 1.2 to 4.6—than Band 11;
furthermore, there is a larger variability among the different blocks. This indicates a better
sensitivity of Band 12 with respect to Band 11 of S-2 for the analyses of the present study.
The temporal variation of STR is coherent with the irrigation events shown in Figure 4. We
notice that, in correspondence with the significant amount of irrigation applied in August,
the value of STR increases, and it decreases when there is a period without irrigation. In
addition, it is worth noting that Blocks 1 and 2 correspond to lower irrigation amounts,
which is reflected by the lower STR values in the time series plot.

Figure 8. Temporal series of shortwave infrared transformed reflectance derived from S-2 SWIR
bands (average values for the Ripperdan treatment blocks).

5. Results

In order to determine the substrate and canopy resistances rs
s and rs

c by means of the
approach described in the Sections 2.1 and 2.2, the NDVI-STR domain has been plotted
by considering the pixels included in the S-2 image subset covering a square area of
approximately 10 × 10 km2 (~106 pixels) centered on the Ripperdan site (as shown in
the left part of Figure 3). We have deliberately chosen to not perform a calibration of the
resistances as a function of the water index W, but we instead used the standard values
reported in the literature, i.e., Figure 2, which should cover a wide range of possible cases.

The entire set of S-2 images given in Appendix A has been used to produce the plot
illustrated in Figure 9. The boundaries of the domain are characteristic for a given area, and
they are identified by considering all of the different combinations of NDVI-STR observed
over a certain scene portion. For the present study, dry and wet edges have been identified
by visual inspection. This does not represent a major drawback of the methodology, since
the shape of the pixel distribution on the NDVI-STR space is identical for a given location,
at any time, regardless of the surface and meteorological conditions. Pixels excluded above
the wet edge represent oversaturated or shadowed pixels. There are issues related to the
definition of the dry and wet edges, in relation to the oversaturated pixels, which should
be excluded from the NDVI-STR domain [42]. Recent research has proposed alternative
ways for defining the boundaries of the NDVI-STR domain, and this is an aspect that may
deserve attention for improving the methodology [66].
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Figure 9. [NDVI, STR] domain for GRAPEX area, extracted from the time series of 2018
Sentinel-2 images (Appendix B). Wet and dry edges are shown with dashed lines. Parameters
of Equations (27) and (28) are indicated on the left corner.

The values of the intercept and slope of the lines representing the wet and dry edge for
the Ripperdan site are indicated in Figure 9, from which, the value of W in Equation (29)
has been determined for each date.

The substrate, leaf and canopy resistances rs
s, rleaf and rs

c, resulting from the adoption
of these limits, are plotted in Figures 10–12. In the case of the substrate resistance rs

s, the
values are linearly derived from W, with limits of 2000 sm−1 (dry edge) and 500 sm−1 (wet
edge). In Figure 10, there is variation between 1200–1300 sm−1 until early June. From late
July, rs

s starts to decrease due to the irrigation water applied, in conjunction with shortwave
infrared transformed reflectance STR, as illustrated in Figure 8. The leaf resistance rleaf

(Figure 11) shows a behavior similar to rs
s, with a value of 200–240 sm−1 in June, rapidly

decreasing from mid-July to its minimum value of 100 sm−1 at the beginning of September,
when W is below the threshold of 0.6 (Figure 2).

Figure 10. Temporal series of substrate resistance rs
s in the S-W S-2 model modulated by using the

OPTRAM approach (average values for the Ripperdan treatment blocks).



Remote Sens. 2021, 13, 3720 16 of 27

Figure 11. Temporal series of leaf resistance rleaf in the P-M and S-W S-2 models modulated by using
the OPTRAM approach (average values for the Ripperdan treatment blocks).

Figure 12. Temporal series of canopy resistance rs
c in the P-M and S-W S-2 models (Equation (20))

modulated by using the OPTRAM approach (average values for the Ripperdan treatment blocks).

The combined effect of LAI and rleaf is depicted in Figure 12, showing the temporal
variation of the bulk canopy resistance rs

c, derived by means of Equation (5). The peak
value of 1000 sm−1 is due to the low foliage density at the beginning of the season, with
LAI < 0.5 (Figure 7), followed by a sharp decrease at the end of May, when LAI reaches its
maximum.

The graph in Figure 13 shows the temporal variation of the average soil moisture
along the transect of Block 1 with the corresponding values of the water index W derived
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by means of Equation (29). It is possible to notice the decrease in W in correspondence
with the reduction in surface soil moisture during June, and the rapid increase with the
intensification of irrigation applications from the second half of July. The value of W in
this last period is much higher than during the earlier months (April), when a higher soil
moisture content is recorded. A similar behavior has been observed in all four blocks.
This may appear controversial, but it is explained instead by the fact that, starting from
July, the vine canopy is fully developed, maintained continuously and well hydrated by
the irrigation applications. The spectral response in the shortwave infrared is dependent
not only on the soil but also on the vegetation water content. Hence, the water index W
represents the water status of the soil–canopy ensemble and, as such, it provides useful
indications for modulating surface resistances in the combination equation when vegetation
is present.

Figure 13. Temporal series of average surface soil moisture content (lines) and water index W (circles)
derived from the shortwave infrared transformed reflectance (Ripperdan treatment block #1).

The calculation of E by means of the combination equation approaches, i.e., P-M and
S-W S-2, has been compared with Eobs from the flux towers measurements. The calculations
are made using either the meteorological input from the locally installed flux towers, or
using the meteorological data provided by the Climate Forecast System Reanalysis (CFSR)
of the National Center for Atmospheric Research (NCAR/UCAR), similarly to DisALEXI
and Data Fusion. The E values considered for the comparison correspond to pixels falling
approximately within the footprint of the flux tower measurements in the N-W direction of
the prevailing wind.

The results of this first comparison are summarized in the plot of Figure 14, with
the corresponding statistics in Table 3. The statistical indicators have been calculated by
considering the average values over the estimated footprint of the flux towers for the dates
of S-2 acquisition given in Appendix A. In addition to Pearson and the determination
coefficient R2, the root mean square error and the mean absolute error have been calculated
as follows:

RMSE =

√
∑n

i=1(Eobs − Emod)
2

n
(32)

MAE = |Eobs − Emod|/n (33)
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Figure 14. Correlation between the daily evapotranspiration E measured by eddy covariance towers
(E tower) and the estimates (E models) obtained by means of Penman–Monteith (P-M S-2, cross) and
Shuttleworth–Wallace (S-W S-2, circles), with flux tower meteorological data and surface parameters
and resistances derived from Sentinel-2.

Table 3. Statistical results between daily E (Figure 14) from P-M S-2 and S-W S-2 calculated with two
different meteorological input data vs. tower measurements.

Flux Tower Meteorological Data CFSR Meteorological Data

P-M S-2 S-W S-2 P-M S-2 S-W S-2

Pearson coeff. 0.798 0.743 0.759 0.703

Determ. coeff. R2 0.638 0.551 0.577 0.494

RMSE 1.016 1.037 1.390 1.801

MAE 0.850 0.815 1.147 1.520

slope 0.871 1.015 0.904 1.096

F 2576.9 2237.2 1090.4 914.2

degr. freed. 111 111 111 111

Table 3 also gives the F-statistics for the corresponding degree of freedom (n-1).
The thermal-based approaches described in Section 2.3, namely DisALEXI and Data

Fusion, have been applied by using Landsat-7 and -8 acquisitions (see Appendix A) and
have also been compared with the measured fluxes at each individual block of the Ripper-
dan vineyard. The results are summarized in Table 4 and Figure 15, which are including
also the S-W S-2 shown above, but disaggregated for the four management blocks.
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Table 4. Statistical evaluation of daily E (mm d−1) from the three approaches: S-W S-2, S-W S-2 with CFSR meteorological input, DisALEXI and Data Fusion vs. flux tower data.

Block #1 S-W S-2 S-W S-2 CFSR Data Fusion DisALEXI Block #2 S-W S-2 S-W S-2 CFSR Data Fusion DisAlexi

Pearson 0.706 0.667 0.753 0.773 Pearson 0.756 0.746 0.816 0.753
R2 0.498 0.445 0.567 0.597 R2 0.572 0.557 0.666 0.568

RMSE 1.036 1.818 1.017 0.631 RMSE 0.871 1.558 0.995 0.582
MAE 0.816 1.553 0.823 0.523 MAE 0.675 1.328 0.828 0.530
Slope 1.069 1.125 1.158 1.069 slope 1.021 1.068 1.182 1.081

F 578.0 208.9 1101.1 1031.3 F 674.2 235.7 1603.4 1012.8
degr. freed. 28 28 27 16 degr. freed. 28 28 27 16

Block #3 S-W S-2 S-W S-2 CFSR Data fusion DisALEXI Block #4 S-W S-2 S-W S-2 CFSR Data fusion DisALEXI

Pearson 0.718 0.635 0.810 0.834 Pearson 0.801 0.770 0.859 0.824
R2 0.515 0.403 0.657 0.695 R2 0.641 0.593 0.738 0.679

RMSE 1.183 2.129 0.796 0.650 RMSE 0.951 1.729 0.683 0.766
MAE 0.919 1.828 0.641 0.437 MAE 0.744 1.444 0.531 0.462
Slope 1.002 1.078 1.014 0.966 slope 0.975 1.045 1.051 0.965

F 491.5 181.5 1084.0 1170.3 F 677.4 234.8 1684.6 1207.0
degr. freed. 28 28 27 16 degr. freed. 28 28 27 16
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Figure 15. Comparison of the daily evapotranspiration E measured by EC flux towers and the estimates of the three models:
circles represent SW-S-2 output, asterisks are from Data Fusion approach and solid triangles are from DisALEXI. Values are
the average of the pixel within the estimated flux footprint of each EC tower.

The dates for the S-W S-2 and Data Fusion results are coincidental, with the exception
of May 27, which is missing from the Data Fusion; the dates for DisALEXI are related to
the Landsat overpasses. Hence, there is a difference in the number of samples for each one
of the three data sets, as indicated by the degree of freedom given in Table 4.

6. Discussion

From the results shown in Figure 14 and Table 3, it is possible to conclude that both
combination equation methods yield a reasonable agreement with the measured values of
daily E. This finding confirms that the resistance modulation with OPTRAM reproduces
the observed process with a satisfactory accuracy. However, although the correlation
coefficients and the errors are similar for the two methods based on the combination
equation, we notice that the slope of the regression is close to 1 for S-W S-2 and significantly
lower for P-M S-2. This behavior was expected, considering that soil evaporation is not
adequately represented in the “big-leaf” concept of the Penman–Monteith equation.
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In the comparison between the Shuttleworth–Wallace and Penman–Monteith (P-M)
approaches, it is interesting to observe the ratio of E S-W S-2 and E P-M plotted in Figure 16.
In this graph, the continuous lines represent the variation of the ratio between E S-W S-2
and E P-M with LAI. The calculation is carried out with the two models by considering an
average climatic day during the irrigation season at Ripperdan (Tair = 23.6 ◦C; RH% = 45%;
u = 1.6 ms−1, K↓ = 315 Wm−2), a value of leaf resistance rleaf of 200 sm−1 and four different
values for the substrate resistance rs

s. The circles are the actual values obtained for the Rip-
perdan, with the approach described in previous sections. As expected, the Shuttleworth
and Wallace approach gives higher E for low LAI values, and it quickly converges toward
Penman–Monteith for LAI > 1. The ratio S-W/P-M is greater than 1 for LAI < 1, depending
on the substrate resistance rs

s (inversely related to soil evaporation); the influence of rs
s

decreases significantly and the four lines reach an asymptotical value of the ratio, which
is 1.06 in this specific case. However, for LAI = 2, the evapotranspiration estimates with
Shuttleworth and Wallace are still larger than Penman–Monteith within a range of 5–20%.

Figure 16. Ratio E S-W/E Penman–Monteith for different values of the substrate resistance rs
s

calculated by using an average day for the meteorological input during the observation period. Dots
represent the actual values for the Ripperdan treatment blocks.

The S-W S-2 approach provides reliable estimates of E also in the presence of moderate
water stress. During July and August, it is possible to notice a significant differentiation
between the four treatment blocks, as a consequence of the different irrigation amounts
applied. It is interesting to analyze the plots of Figure 12 (bulk canopy stomatal resistance)
in parallel with the cumulative irrigation applied in Figure 4. Block 3, which received fairly
constant irrigation, falls in the lower part of the plot of Figure 12, followed by Block 4,
which has the highest total amount of irrigation but with only a minor increase during June
and July. Blocks 1 and 2, where there was minimal irrigation during June and July, have
higher values of rs

c in response to mild hydric stress conditions. Blocks 2 and 3 correspond
to the lower and upper lines in the plot of Figure 12, thus representing the maximum
and minimum E modeled by S-W S-2. The corresponding values of E are represented in
Figure 17 together with the daily measurements from the eddy covariance stations. The
temporal behavior of Blocks 2 and 3 in the observed and modeled daily E are in good
agreement with each other, with the exception of early season and end of season, around
bud break and harvest in April and September, where the S-W S-2 approach is under and
overestimating the observed E, respectively. This might be explained by an underestimation
of the cover crop evapotranspiration in April and an overestimation of vine transpiration
in September as vines begin senescing.
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Figure 17. Comparison of daily E derived from eddy covariance (lines) and corresponding average
values estimated by S-W S-2 (points) for block #2 (lower E) and block #3 (higher E) for the Ripperdan
site, 2018.

In Figure 18, the values of the ratio between E from S-W S-2 and the reference evap-
otranspiration are plotted for the four Ripperdan blocks. In vineyard operations for this
region, ratio values below the threshold of 0.7 (dashed line in Figure 17) are considered as
an indication of water stress. During the months of July and August, Blocks 1 (diamonds)
and 2 (squares) are below this threshold, as a consequence of less irrigation water applied.
The reduction of E is consistent with the model predicted increase in leaf/canopy resistance
for these two blocks, as shown in Figure 12.

Figure 18. Ratio E S-W S-2/E-reference for the Ripperdan treatment blocks.

Based on the discussion above, only S-W S-2 has been considered in the comparison
with thermal-based methods. From the results shown in Figure 14 and Table 4, we notice
that—among the three models, S-W S-2, DisALEXI and Data Fusion—the best results are
obtained by means of DisALEXI on Landsat overpass dates, corresponding to the lowest
values of RMSE and MAE, even with the lowest number of data points. In all cases, the
slope of the correlation is around 1, except for Blocks 1 and 2 for the Data Fusion approach,
where E tends to be overestimated. The best agreement between the S-W S-2 approach and
the measured fluxes in terms of correlation coefficients is observed in Block 4, whilst the
lowest errors are found in Block 2.
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As expected, the quality of input data affects the accuracy of results of the combination
equation method S-W S-2 in all of the four blocks, as shown by the statistical indicators in
Table 4. When S-W S-2 is applied by using the meteorological data from the global CFSR
dataset, its performance is lower in comparison to thermal-based methods, especially in
Blocks 1 and 3.

7. Conclusions

Based on the comparative analysis presented in this study, the S-W S-2 approach
for calculating E, including the simple parameterization for the canopy and substrate
resistances corrected with shortwave information, provides reasonable agreement with
flux observations obtained in a variably stressed vineyard. The OPTRAM approach is able
to follow the temporal evolution of the water status in the soil–vegetation ensemble, thus
allowing us to modulate the resistances for the calculation of E within upper and lower
limits values, which are typical for irrigated crops. The proposed method is consistent with
the classical Penman–Monteith approach, with fractional vegetation cover and LAI ranging
up to a fully closed canopy. Although DisALEXI outperforms S-W S-2, the main advantage
of this latter approach is the spatial resolution of Sentinel-2 data (10 m) and the temporal
resolution of 3–5 days. However, new advances in thermal sharpening techniques provide
a way to attain the visible and near-infrared resolutions [65,66] and are being used in
combining Sentinel-2 data with Sentinel-3 thermal observations to create a 20 m resolution
LST product [21].

The S-W S-2 approach runs with daily averages of meteorological forcing and, there-
fore, does not need upscaling from instantaneous to daily values, as in the thermal-based
approaches. However, this modeling approach is most accurate using local meteorological
data. Using non-local weather station data leads to additional errors, which have been
quantified, whereas such non-local meteorological forcing does not have a similar effect
on DisALEXI results. Clearly, there are advantages and disadvantages of both thermal
and shortwave-based approaches, and efforts to integrate these modeling schemes by
leveraging the information and intermediate output provided by both would improve their
utility in computing reliable daily E products at 10–20 m resolutions.

Further analyses are required for refining the definition of the STR-NDVI dom-
ain and the determination of both the wet and dry edges required for coefficients in
Equations (27) and (28) and how these impact the model estimates of E using the S-W S-2
approach. The addition of thermal data and model output from DisALEXI to help to
determine the dry and wet edges and/or better estimate the soil and canopy resistances
will be explored. The availability of algorithms for deriving added-value products from S-2
data, such as LAI, the sharpened S-3 LST product and gridded meteorological data allow
for the development of automated processing tools that can lead to operational applications
for irrigation management and precision agriculture applications.
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GRAPEX research team.
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Appendix A

Figure A1. Cloud-free acquisitions over the Ripperdan Site during the irrigation season 2018.
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Appendix B

Figure A2. Characteristics of the multispectral imager (MSI) on board Sentinel-2 satellites and
coefficients for hemispherical albedo calculation.
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