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Abstract: The production of high-quality tea by Camellia sinensis (L.) O. Ktze is the goal pursued
by both producers and consumers. Rapid, nondestructive, and low-cost monitoring methods for
monitoring tea quality could improve the tea quality and the economic benefits associated with
tea. This research explored the possibility of monitoring tea leaf quality from multi-spectral im-
ages. Threshold segmentation and manual sampling methods were used to eliminate the image
background, after which the spectral features were constructed. Based on this, the texture features
of the multi-spectral images of the tea canopy were extracted. Three machine learning methods,
partial least squares regression, support vector machine regression, and random forest regression
(RFR), were used to construct and train multiple monitoring models. Further, the four key quality
parameters of tea polyphenols, total sugars, free amino acids, and caffeine content were estimated
using these models. Finally, the effects of automatic and manual image background removal methods,
different regression methods, and texture features on the model accuracies were compared. The
results showed that the spectral characteristics of the canopy of fresh tea leaves were significantly
correlated with the tea quality parameters (r ≥ 0.462). Among the sampling methods, the EXG_Ostu
sampling method was best for prediction, whereas, among the models, RFR was the best fitted
modeling algorithm for three of four quality parameters. The R2 and root-mean-square error values
of the built model were 0.85 and 0.16, respectively. In addition, the texture features extracted from
the canopy image improved the prediction accuracy of most models. This research confirms the
modeling application of a combination of multi-spectral images and chemometrics, as a low-cost,
fast, reliable, and nondestructive quality control method, which can effectively monitor the quality of
fresh tea leaves. This provides a scientific reference for the research and development of portable tea
quality monitoring equipment that has general applicability in the future.

Keywords: Camellia sinensis (L.) O. Ktze; multispectral image; texture feature; machine learning;
tea quality

1. Introduction

The Latin name of tea is Camellia sinensis (L.) O. Ktze, which is a popular beverage
all over the world [1,2]. It is also an important cash crop in Qingyuan City, Guangdong
Province, China, and dominates local agriculture as a characteristic industry [3,4]. Tea
polyphenols, caffeine, free amino acids, total sugars, and other tea components have
anti-oxidative, anti-cancerous, and anti-obesity characteristics, lower blood pressure, and
prevent cardiovascular diseases [5–10]. In addition, the content of these components deter-
mines the qualities of taste, aroma, and appearance of tea [11], which, in turn, determine
the tea quality and value [12]. Therefore, estimating and monitoring tea polyphenols and
other quality parameters is significant in improving the tea quality and economic benefits
associated with tea.
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Traditionally, tea quality was evaluated by a professional tea taster, who judged the
tea quality based on their sensory receptions. However, this method is inaccurate because
of its subjective nature [13,14]; additionally, it can only be conducted after fresh tea leaves
are converted into the final tea product, which is a time-consuming process. Conversely,
tea quality can be more accurately evaluated by experimentally measuring the content of
the main active components [15] using chemical composition analysis methods, such as gas
chromatography mass spectrometry (GC-MS) [16]. However, such methods are inefficient,
time-consuming, and destructive, and require technical expertise for their operation; addi-
tionally, their costs increase proportionally with the number of measurements [15]. Since
2019, the COVID-19 pandemic has severely impacted agriculture, especially with regard
to labor and health and safety, but digital agricultural technology can provide alternative
options to reduce personnel contact and labor restrictions during this period [17]. The
development of sensors and nondestructive measurement technology in recent years has
encouraged many scholars to study the application of new technologies, such as fluores-
cent nanotechnology [18], artificial olfaction based on colorimetric measurement [19], and
the use of hyperspectrometers [20–22], to measure tea quality. These methods have been
proven to deliver more accurate quality evaluation results compared to traditional methods,
However, certain issues are associated with these methods. Nanotechnology uses toxic
chemical reaction reagents, artificial olfaction technology is not mature enough [23], and
hyperspectrometers are expensive and data acquisition and processing are time-consuming
due to the large amount of data [24]. These issues limit their widescale application as a
cheap, efficient, and nondestructive tea quality monitoring technology, and equipment
is required.

This study investigated the use of an imaging multispectrometer for monitoring tea
quality. Compared with the hyperspectrometer, it has low costs, fast data acquisition speed,
and simple processing methods [25]. It is an improvement of hyperspectral technology [26].
In addition, imaging multi-spectral data includes both spectrum information and image
information. Different tea genotypes and their expressions can cause differences in texture
features of canopy images. Thus, to avoid this, the spectral and texture features were
simultaneously extracted from the tea canopy images, and used to monitor the tea quality
parameters. This has rarely been conducted in previous similar studies. Therefore, the
present study presents novel methods to promote the widescale application of rapid tea
quality assessment using stable and reliable machine learning methods to obtain a more
universally acceptable tea quality parameter monitoring model.

2. Materials and Methods
2.1. Experimental Program

The study area included five cooperative tea gardens Degaoxin, 800xiucai, Chuangmei,
Jiqingli, and Shimenshan, in Yingde City, Qingyuan, Guangdong Province, China. Yingde City
(23◦50′31′′–24◦33′11′′N, 112◦45′15′′–113◦55′38′′E) has a land area of 5634 km2 [27] and is
located in the transitional area from the south subtropical to the mid-subtropical zone.
It has a subtropical monsoon climate, with long summers and short winters, sufficient
sunshine, abundant rainfall, and an annual average temperature of 20.9 ◦C [28]. The
geographical location of the study area is shown in Figure 1.

The experiment was conducted three times in May, July, and September 2020. The
average temperature of the three experiments was 31, 35, and 30 ◦C, respectively. The
experiment was conducted at noon on a clear and cloudless day. In each tea garden, more
than 10 sampling points were randomly selected for spectral data and tea fresh leaf samples.
Each sampling point was more than 10 m away from the edge of the road and the mutual
distance was more than 100 m. The spectral image was taken through the vertical ground
down and 1 m away from the canopy. The canopy spectral image including the calibration
plate was taken three times for each sample point. At the same time, more than 250 g of
one bud and two leaf samples were collected at the sample point for laboratory testing.
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The collected samples and spectral data included more than a dozen different tea varieties,
mainly Yinghong No. 9, Huangdan, and Hongyan No. 12.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 22 

 

 

 
Figure 1. Geographical location of the study area. 

The experiment was conducted three times in May, July, and September, 2020. The 
average temperature of the three experiments was 31, 35, and 30 °C, respectively. The 
experiment was conducted at noon on a clear and cloudless day. In each tea garden, more 
than 10 sampling points were randomly selected for spectral data and tea fresh leaf sam-
ples. Each sampling point was more than 10 m away from the edge of the road and the 
mutual distance was more than 100 m. The spectral image was taken through the vertical 
ground down and 1 m away from the canopy. The canopy spectral image including the 
calibration plate was taken three times for each sample point. At the same time, more than 
250 g of one bud and two leaf samples were collected at the sample point for laboratory 
testing. The collected samples and spectral data included more than a dozen different tea 
varieties, mainly Yinghong No. 9, Huangdan, and Hongyan No. 12.  

For the acquired spectral images, multi-band image registration, synthesis, reflectiv-
ity calculation, raster sampling, vegetation index calculation, and texture features extrac-
tion operations were performed in sequence. Correlation analysis and model training 
were performed on the obtained texture features and spectral features with laboratory test 
data, and, finally, the accuracy of the model was evaluated. The abovementioned data 
processing was implemented using MATLAB 2016b software, and the results were dis-
played using R studio software. The experimental steps are shown in Figure 2. 

Figure 1. Geographical location of the study area.

For the acquired spectral images, multi-band image registration, synthesis, reflectivity
calculation, raster sampling, vegetation index calculation, and texture features extraction
operations were performed in sequence. Correlation analysis and model training were
performed on the obtained texture features and spectral features with laboratory test data,
and, finally, the accuracy of the model was evaluated. The abovementioned data processing
was implemented using MATLAB 2016b software, and the results were displayed using R
studio software. The experimental steps are shown in Figure 2.

2.2. Data Acquisition
2.2.1. Spectral Data

The ground multispectral data used in this study were collected by a multispectral
camera (RedEdge-MX, Micasense, Seattle, WA, USA), which has been widely used in the
field of agricultural remote sensing [29]. The spectral parameters of the multispectral
sensor are shown in Table 1. The data acquisition system is shown in Figure 3.

Table 1. Spectral parameters of multispectral sensor.

Band Number Band Name Center Wavelength (nm) Bandwidth FWHM (nm)

1 Blue 475 20
2 Green 560 20
3 Red 668 10
4 Near-IR 840 40
5 Red Edge 717 10

FWHM = full-width-at-half-maximum
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Tea canopy images were acquired through the multi-spectral camera by shooting at a
height of 80 cm from the tea tree canopies, and downward, perpendicular to the ground. A
standard white board was placed at the center of the camera’s field of view and an attempt
was made to ensure that the field of view completely included tea plants.

2.2.2. Quality Parameters

More than 250 g of fresh tea samples, with one bud and two leaves, were collected
from the sampling points. The collected tea samples were dried and submitted to a third-
party testing agency (Xi’an Guolian Quality Testing Technology Co. Ltd., Xi’an, China).
Subsequently, the contents of tea polyphenols, caffeine, total sugars, and free amino acids
were estimated by calculating them as a percentage of dry weight.

2.3. Methods
2.3.1. Image Processing

(1) Registration program and band fusion

Tea canopy images were radiometrically calibrated with standard whiteboard digital
numbers and digital number maps were converted to standard reflectance images to im-
prove data quality. The sensor of each channel of the multispectral camera was distributed
in an array, and the acquired images of each channel were spatially deviated; however, the
cameras were not equipped with an automatic registration program. To facilitate band
fusion and spectral information sampling, the Sift algorithm was used [30], and the features
of each band image were automatically selected, matched, and finally, the bands were
fused. An example of true color combination of the RGB three-channel combined image
before and after registration is shown in Figure 4.
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Figure 4. RGB three-channel combined true color image (a) before and (b) after registration.

(2) Raster sampling

To avoid the influence of soil and shadows in the captured images, the EXG [31] index
was calculated in the combined image, and tea features were added in the image to distin-
guish tea from the background. Subsequently, the Ostu [32] method was used for image
segmentation. After masking the background, pure tea areas in the image were finally ob-
tained. The images corresponding to the above process steps are shown in Figure 5. Later,
the average value of the area of the masked image was calculated. This group of average
data is referred to as EXG_Ostu (EO) sampling data in the following sections. Additionally,
the average value of the area of the image before removing the background was calculated.
This dataset is referred to as Global (G) sampling data in the following section. Moreover,
another dataset was added, 10 leaf positions on each image were manually added, and
the average value was calculated. The data are referred to as Manual (M) sampling data
in the following sections. The spectral data of the canopy tea leaves of the three sampling
methods were extracted prior to further calculation and analysis.
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Figure 5. Images corresponding to the different steps of the background removal process. (a) Original
image, (b) image enhanced by the EXG index, (c) binary image segmented by the Ostu method, and
(d) image acquired after masking the background.

2.3.2. Spectral Feature Construction

Previous studies have confirmed that the vegetation index can effectively improve
the relationship between plant spectral information and physical and chemical parameters.
Based on the actual situation, 24 commonly used vegetation indices were selected for
calculation. The names and calculation formulas of the indices are shown in Table 2. In
addition, 5 original single bands, 3 color components in hue saturation value color space,
4 discrete first-order derivatives, and a total of 36 parameters were used as spectral features.
In order to distinguish the vegetation index G from the Green channel, this article refers to
the Green channel as g.

Table 2. Vegetation indices compiled from the literature.

VIs Formula Reference VIs Formula Reference

NDVI NIR − R/NIR + R [33] RDVI (NIR − ED)/SQRT(NIR + ED) [34]
RVI NIR/R [35] OSAVI 1.16(NIR − ED)/(NIR + ED + 0.16) [36]
DVI NIR − R [37] NLI (NIR2 − ED)/(NIR2 + ED) [38]
EVI 2.5(B − g)/(B + 6g − 7.5R + 1) [39] NDRE (NIR − ED)/(NIR + ED) [40]

VOG (B − g)/(R + ED) [41] BGI B/g [42]
MTCI (B − g)/(R − ED) [43] VARI (R − g)/(g + R − B) [44]

GNDVI (NIR − g)/(NIR + g) [45] EXG 2g − R − B [31]
WDRVI (0.1NIR − R)/(0.1NIR + R) [46] BI SQRT(R2 + g2)/2 [47]

GRVI (g − R)/(g + R) [48] G R/g [42]
PSRI (R − g)/ED [49] SIPI (NIR − B)/(NIR + B) [50]
RGR R/g [51] MCARI (B − g − 0.2(B − R))(B/g) [52]
CCCI (NIR− ED)/NIR + ED)/(NIR− R)/(NIR + R) [53] TGI g + 0.39R − 0.61B [54]

Notes: R, g, B, ED, and NIR are the reflectance in spectral bands of the red, green, blue, red-edge, and near-infrared, respectively.
VI = vegetation index, NDVI = normalized difference vegetation index, RVI = ratio vegetation index, DVI = simple difference vegetation
index, EVI = enhanced vegetation index, VOG = Vogelmenn red edge index, MTCI = MERIS terrestrial chlorophyll index, GNDVI = green
normalized difference vegetation index, WDRVI = wide-dynamic-range vegetation index, GRVI = green-red vegetation index, PSRI = plant
senescence reflectance index, RGR = red-green ratio index, CCCI = canopy chlorophyll content index, RDVI = renormalized difference
vegetation index, OSAVI = optimized soil-adjusted vegetation index, NLI = nonlinear vegetation index, NDRE = normalized difference red
edge, BGI = blue-green index, VARI = visible atmospheric resistance index, BI = brightness index, G = green, SIPI = structural independent
pigment index, MCARI = modified chlorophyll absorption ratio index, and TGI = triangular greenness index.
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2.3.3. Texture Feature Extraction

In this study, gray level co-occurrence matrix (GLCM) [55–58] and local binary pattern
(LBP) [59–61] methods were used to extract image texture features. The GLCM is a classic
texture feature extraction method, which has been mostly used for auxiliary classification in
previous research. Further, LBP has gained recent attention as a texture extraction method
having a simple working principle and an excellent performance, and is mostly used for
face recognition in artificial intelligence; Its basic coding principle is shown in Figure 6.
The local differences in the tea canopy image are very subtle. As the EO and M sampling
methods can destroy the image texture features, the standard whiteboard affects the texture
features of the canopy image. In this study, 1/9th part of the upper right corner of the
image was cropped to extract the LBP texture features; additionally, the GLCM extraction
was set to 16 gray levels, a default direction, and a step size of 1. The principles of the two
texture extraction methods are as follows:

LBP:
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The calculation formula is:

LBP(xc, yc) =
p−1

∑
p=0

2p(S(ip − ic) (1)

S(x) =
{

1 f x ≥ 0
0 else

(2)

where (xc, yc) are the coordinates of the central pixel, P is the Pth pixel in the field, ic is the
gray value of the pixel, ip is the gray value of the central pixel, and S(x) is the sign function.

GLCM:

P(i, j|d, θ) = {(x, y)| f (x, y) = i, f (x + dx, y + dy) = j; x, y = 0, 1, 2, · · · , N − 1} (3)

where D is the relative distance expressed in pixels; θ is the texture calculation direction
parameter, which is generally 0◦, 45◦, 90◦, or 135◦; i, j = 0, 1, 2, . . . L − 1; (x, y) are the pixel
coordinates in the figure; and L is the gray level.

The statistics of grayscale images after GLCM and LBP re-encoding are generally used
to describe features. In this study, energy (Asm), entropy (Ent), contrast (Con), correlation
(Cor), and their respective variances were selected as the descriptors of the GLCM texture
features. The average gray level (µ), mean square error (σ), skewness (S), kurtosis (K), en-
ergy (G), information entropy (E), and smoothness (R) of the histogram of the LBP-encoded
image were selected as the descriptors of the LBP texture features. These descriptors were
calculated as follows:

GLCM:

Asm =
N−1

∑
i=0

N−1

∑
j=0

[P(i, j, d, θ)]2. (4)

Ent = −
N−1

∑
i=0

N−1

∑
j=0

P(i, j, d, θ) log2 P(i, j, d, θ). (5)
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Con =
N−1

∑
i=0

n2

 ∑
|i−j|=n

P(i, j, d, θ)} . (6)

Cor =

N−1
∑

i=0

N−1
∑

j=0
(ijP(i, j))− u1u2

σ2
1 σ2

2
. (7)

among which

u1 =
N−1
∑

i=0

N−1
∑

j=0
iP(i, j, d, θ), u2 =

N−1
∑

i=0

N−1
∑

j=0
jP(i, j, d, θ),

σ2
1 =

N−1
∑

i=0
(i− u1)

2
N−1
∑

j=0
P(i, j, d, θ), σ2

2 =
N−1
∑

i=0
(i− u2)

2
N−1
∑

j=0
P(i, j, d, θ)

LBP:

µ =
L−1

∑
g=0

gP(g). (8)

σ =

√√√√L−1

∑
g=0

(g− µ)2P(g). (9)

S =
L−1

∑
g=0

(g− µ)3P(g). (10)

K =
1
σ4

L−1

∑
g=0

(g− µ)4P(g). (11)

G =
L−1

∑
g=0

P(g)2. (12)

E = −
L−1

∑
g=0

P(g) log2[P(g)]. (13)

R =
1

1 + σ2 . (14)

where P(g) is the LBP coded image, µ is the average gray level of the image, σ is the
mean square error reflecting the average image contrast, S is the skewness reflecting the
symmetry of the histogram distribution, and K is the closeness of the image gray level
to the mean value. The kurtosis of G is the energy reflecting the image uniformity, E is
the information entropy reflecting the randomness of the image grayscale, and R is the
smoothness reflecting the relative smoothness of the image.

2.3.4. Feature Selection

Correlation analysis is a conventional and effective dimensionality reduction method.
We analyzed the correlation between spectral and texture features and tea quality parame-
ters and selected 10 features with the highest absolute values of correlation coefficients for
linear regression to reduce calculations.

2.3.5. Regression Modeling

Several simple and effective regression modeling algorithms, such as partial least
squares regression (PLS), support vector machine regression (SVR), and random forest
regression (RFR), were used in this study. Among these, PLS is widely used to study
the relationship between multiple dependent and independent variables. It combines the
advantages of principal component analysis, normative analysis, and linear regression,
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and can effectively acquire the dominant factor with the strongest explanatory power for
the dependent variable. PLS is especially used to solve problems, such as multicollinearity
between variables or when the number of variables is more than the sample number [62,63].
The linear relationship between spectral data and chemical composition can be successfully
modeled, especially in the presence of multiple dimensions and multicollinearity in the orig-
inal spectral data [64]. SVR can provide a more rational solution to the above-mentioned
problems than the linear method can [65]. SVR uses a kernel function to map input variables
to a high-dimensional feature space [66]; therefore, it can process high-dimensional input
vectors. Recently, SVR has been widely used in spectral analysis, subsequently producing
accurate calibration results [67–70]. The RFR algorithm is an integrated learning algorithm
that combines a large number of regression trees, which represent a series of conditions or
constraints that are organized in a hierarchical structure and applied sequentially from the
root to the leaves of the tree. RFR starts with multiple guide samples, which are randomly
drawn from the original training dataset. Subsequently, the regression tree is applied to
each bootstrap sample. A small group of input variables selected from the total set are
randomly considered for the binary partitioning of each tree node [71–73].

2.3.6. Accuracy Evaluation

The coefficient of determination (R2) and root-mean-square error (RMSE) were used
to comprehensively evaluate the model accuracy. The verification method used random
subsampling verification (hold-out method) and the two parameters were calculated
as follows:

R2 = 1−
n

∑
i=1

(xi − yi)
2/

n

∑
i=1

(xi − x)2 (15)

RMSE =

√
n

∑
i=1

(xi − yi)2/n (16)

where xi is the real measured value, yi is the predicted value, x is the average of the
measured values, and n is the number of samples.

3. Results
3.1. Correlation Analysis

The correlation between tea quality parameters and spectral indices is shown in
Figure 7. The ten features having the highest correlation coefficients with the tea quality
parameters are shown in Table 3.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 22 

 

 

between variables or when the number of variables is more than the sample number 
[62,63]. The linear relationship between spectral data and chemical composition can be 
successfully modeled, especially in the presence of multiple dimensions and multicollin-
earity in the original spectral data [64]. SVR can provide a more rational solution to the 
above-mentioned problems than the linear method can [65]. SVR uses a kernel function to 
map input variables to a high-dimensional feature space [66]; therefore, it can process 
high-dimensional input vectors. Recently, SVR has been widely used in spectral analysis, 
subsequently producing accurate calibration results [67–70]. The RFR algorithm is an in-
tegrated learning algorithm that combines a large number of regression trees, which rep-
resent a series of conditions or constraints that are organized in a hierarchical structure 
and applied sequentially from the root to the leaves of the tree. RFR starts with multiple 
guide samples, which are randomly drawn from the original training dataset. Subse-
quently, the regression tree is applied to each bootstrap sample. A small group of input 
variables selected from the total set are randomly considered for the binary partitioning 
of each tree node [71–73]. 

2.3.6. Accuracy Evaluation  
The coefficient of determination (R2) and root-mean-square error (RMSE) were used 

to comprehensively evaluate the model accuracy. The verification method used random 
subsampling verification (hold-out method) and the two parameters were calculated as 
follows: 
 2

1
2

1
2 )(/)(1 xxyxR n

i i
n

i ii −−−=  ==
 (15) 

 nyxRMSE i
n

i i /)( 2
1

−=  =
 (16) 

where xi is the real measured value, yi is the predicted value,⎯x is the average of the meas-
ured values, and n is the number of samples. 

3. Results 
3.1. Correlation Analysis 

The correlation between tea quality parameters and spectral indices is shown in Fig-
ure 7. The ten features having the highest correlation coefficients with the tea quality pa-
rameters are shown in Table 3.  

 

Figure 7. Correlation analysis results. TP, TS, TFAA, and C represent tea polyphenols, total sugar, total free amino acids, and caf-
feine, respectively. The blank sections indicate failed significance test. 

It can be seen from Figure 5 that there are significant differences in the correlation 
analysis results between the spectral parameters and the quality parameters under the 
three sampling methods, but most of the correlations have reached a significant level, 

Figure 7. Correlation analysis results. TP, TS, TFAA, and C represent tea polyphenols, total sugar, total free amino acids,
and caffeine, respectively. The blank sections indicate failed significance test.



Remote Sens. 2021, 13, 3719 10 of 20

Table 3. Most relevant indices and their correlation coefficients.

Tea Polyphenols Total Sugars Free Amino Acids Caffeine
VIs Correlations VIs Correlations VIs Correlations VIs Correlations

NDVI 0.462 WDRVI 0.782 BI 0.475 G 0.546
OSAVI 0.462 SIPI 0.783 NDVI 0.483 GNDVI 0.551
WDRVI 0.464 ED 0.791 OSAVI 0.483 V 0.565

R 0.471 NDVI 0.796 RVI 0.491 R 0.567
BI 0.499 OSAVI 0.796 WDRVI 0.491 B 0.571
V 0.523 B 0.8030 NDRE 0.5 SIPI 0.592

NDRE 0.534 BI 0.812 V 0.503 NDVI 0.593
G 0.543 R 0.8150 G 0.516 OSAVI 0.593

GNDVI 0.544 G 0.8150 GNDVI 0.52 RVI 0.596
ED 0.556 V 0.8270 ED 0.522 WDRVI 0.598

It can be seen from Figure 5 that there are significant differences in the correlation
analysis results between the spectral parameters and the quality parameters under the three
sampling methods, but most of the correlations have reached a significant level, which
indicates that the quality parameters of tea are clearly related to the spectral parameters.
The spectral response mechanism is consistent, which is the basis for steps in this study. In
addition, this also means that different spectral data grid sampling methods will affect the
strength of this connection and need to be considered.

Generally, the red (R), red-edge (ED), and near-infrared (NIR) bands are particularly
sensitive to the physical and chemical properties of plants. In this study, most spectral
features were significantly correlated with the quality parameters, and among the most
relevant indexes, almost all were related to R, ED, and NIR band data, which were used
to calculate and construct these indexes. This is consistent with previous research results,
which observed a strong correlation between the crop physical and chemical parameters
with the spectral characteristics.

3.2. Best Fit Sampling Method

The spectral feature parameters and quality parameters obtained by the EO, G, and M
sampling methods were trained to build models through the PLS, SVR, and RFR algorithms,
respectively. The final average prediction results of the three models for each sampling
method are shown in Figure 8, which indicates that the R2 values of the quality parameters
of the EO sampling method and the spectral characteristic model are highest, and the
overall RMSE is relatively low. This indicated that the EO sampling method used in this
study can effectively reduce the impact of soil and other background noise, improve the
data authenticity, and has an evidently positive effect on model prediction accuracy.
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3.3. Tea Varieties and Canopy Texture Features

Tea samples of more than 10 varieties were used in this study. Among these, Yinghong
No. 9, Huangdan, and Hongyan No. 12 were the main varieties. The texture features of
these three varieties were extracted using the texture information extraction method. The
consequent results are shown in Figure 9. The descriptive statistics of texture information
extracted by different varieties were evidently different. Particularly, the LBP texture
features were more different than those of GLCM. This shows that texture features can help
distinguish tea varieties, thereby promoting tea quality monitoring.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 22 

 

 

3.3. Tea Varieties and Canopy Texture Features 
Tea samples of more than 10 varieties were used in this study. Among these, Ying-

hong No. 9, Huangdan, and Hongyan No. 12 were the main varieties. The texture features 
of these three varieties were extracted using the texture information extraction method. 
The consequent results are shown in Figure 9. The descriptive statistics of texture infor-
mation extracted by different varieties were evidently different. Particularly, the LBP tex-
ture features were more different than those of GLCM. This shows that texture features 
can help distinguish tea varieties, thereby promoting tea quality monitoring. 

 
Figure 9. Distribution of texture features of different tea varieties. 

3.4. Best Fit Modeling Algorithm  
The EO method was used for sampling, and the predicted values of the tea quality 

parameters calculated using the three models trained by the PLS, SVR, and RFR algo-
rithms were compared with the measured values. The results are shown in Figure 10. Dif-
ferent best-fit model training methods were observed for predicting the results of various 
tea quality parameters. The PLS and SVR algorithms were the best fits for tea polyphenol 
prediction and least error, respectively. RFR was the best fit for the total sugar prediction 
model and had the smallest error. RFR was also the best fit for the free amino acid predic-
tion model and had the smallest error. Additionally, RFR was the best fit for the caffeine 

Figure 9. Distribution of texture features of different tea varieties.

3.4. Best Fit Modeling Algorithm

The EO method was used for sampling, and the predicted values of the tea quality
parameters calculated using the three models trained by the PLS, SVR, and RFR algorithms
were compared with the measured values. The results are shown in Figure 10. Different
best-fit model training methods were observed for predicting the results of various tea
quality parameters. The PLS and SVR algorithms were the best fits for tea polyphenol
prediction and least error, respectively. RFR was the best fit for the total sugar prediction
model and had the smallest error. RFR was also the best fit for the free amino acid
prediction model and had the smallest error. Additionally, RFR was the best fit for the
caffeine prediction model and had the smallest error. Thus, RFR was the best fitted
modeling algorithm for three of the four quality parameters. Based on the comprehensive
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goodness of fit and error factors of tea polyphenols, the best fitted modeling algorithm
was RFR.
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3.5. Effect of Texture Features on Model Accuracy

The EO and M sampling methods can destroy the texture information of the original
image; additionally, a standard whiteboard in the center of the image should be eliminated;
therefore, we used the G sampling method and selected the 1/9 image scale in the upper
right corner of the original image. While using this method, background objects, such as
soil, should be absent in the selected image. The modeling method selected the best RFR,
the accuracies of which before and after adding the texture features are shown in Figure 11.
After the integration of the tea polyphenol prediction model with texture features of LBP
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and GLCM, the result errors reduced, but the goodness of fit of the model did not improve.
Conversely, after the prediction model of total sugar was integrated with GLCM texture
features, the goodness of fit improved and the result errors increased. The LBP texture
features did not improve the model goodness of fit and reduced the prediction result errors,
whereas the goodness of fit and the prediction result errors of the model integrated with
texture features of both GLCM and LBP improved. The prediction model of free amino
acids integrated with texture features improved the goodness of fit and the accuracy of
prediction results. The goodness of fit of the caffeine prediction model did not significantly
improve after the integration of texture features, but GLCM texture features reduced
the prediction result errors. Overall, the tea quality parameter monitoring model that
integrated texture features showed higher prediction accuracy, with GLCM contributing
more to improving the model accuracy than LBP.
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Figure 11. Effect of texture features on regression results for tea polyphenols, total sugar, free amino
acids, and caffeine. The spectrum represents the near-use spectral features to be included in the
regression, GLCM represents the addition of GLCM texture features based on spectral features to be
included in the regression, and LBP represents the addition of LBP texture features based on spectral
features to be included in the regression. The graphs represent the addition of GLCM and GLCM
based on the spectral features. LBP texture features were included in the regression.
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4. Discussion
4.1. Ground Multispectral Images

RedEdge is a 5-discrete-narrowband frame multispectral sensor that is commonly
used in remote-sensing studies and precision agriculture [74–78]. It is considered stable and
reliable, and as an improved product of hyperspectral technology, its costs have reduced
drastically [25,26], thus broadening its applicability in tea quality monitoring. Previous
studies have typically integrated RedEdge-mx in unmanned aerial vehicles [74,75,77,78],
which means more complex data acquisition steps, lower spatial resolution, and more data
processing procedures. Close-range applications are limited [76]; however, the ground
portable handheld method proposed in this study can obtain reliable multi-spectral data
more easily and accurately compared to application with unmanned aerial vehicles.

However, a small proportion of ground objects that are not classified as tea in the
ground multispectral images can affect the final quality of the parameter monitoring results.
In order to reduce the influence of soil and shadow noise and improve the accuracy of the
final quality parameter monitoring results, this study used the EXG index to effectively
distinguish the background of green vegetation and soil for image enhancement [31,79–82].
The Ostu method was used for image segmentation [32,83–86] to enable the effective extrac-
tion of the tea areas from the original image that contains other features. In comparison, the
predicted results of the model using the EO sampling method were more accurate than the
models using the G and M sampling methods. This was because background factors, such
as soil, act as noise and interfere considerably with the sampling results of the G method;
furthermore, the M sampling method completely depends on human subjective judgment
and loses the objective representativeness of the sample. Conversely, the EO sampling
method ensures objectivity while reducing the impact of noise. Notably, in this study, noise
elimination is only applicable to green tea varieties. For tea images of other color varieties,
the noise and the tea area will still be mixed. Finding a vegetation index that can enhance
the characteristics of these nongreen tea varieties should help eliminate noise.

4.2. Vegetation Characteristics

Relative to the original spectral information, the vegetation index constructed by
fusing multispectral bands can highlight specific vegetation characteristics, and is widely
used to monitor plant physiological and biochemical parameters, such as biomass, total
nitrogen content, and chlorophyll content [87–89]. Additionally, some vegetation indices
can suppress the influence of soil noise [90,91]. Therefore, in this study, the vegetation
index was calculated to enhance the relationship between the spectral characteristics and
quality parameters, and eliminate the influence of soil and shadow noise. Correlation
analysis results show that the vegetation indices with the strongest correlations with tea
polyphenols, total sugars, amino acids, and caffeine were GNDVI (r = 0.544), BI (r = 0.812),
GNDVI (r = 0.52), and WDRVI (r = 0.598), thus confirming the necessity of vegetation index
calculation. In addition, the vegetation index showed the highest correlation (r ≥ 0.462)
with tea quality parameters and was correlated with R, ED, and NIR. In fact, ED has been
most widely used as a spectral feature for evaluating crop parameters [45,92–97], and NIR is
also a key component of most vegetation indices [98,99]. This indicates that the correlation
analysis results in this study are consistent with those of previous studies. However, the
vegetation index calculated in this study has certain limitations. The development of a
method that more strongly correlates vegetation with tea quality parameters can improve
the accuracy of tea quality monitoring results.

Spectral images have wide applications and integration with maps. It not only provides
the spectral information of the target, but also obtains the spatial information [100–102].
In remote sensing image classification, the spatial location, shape, and texture characteristics
of ground objects are particularly important [103–105]. In previous studies, some scholars
have used remote sensing image texture information for machine classification, and have
achieved good results [55,59,106–108], but few studies have been conducted using the
texture information for regression. Samples of different tea varieties were used in this
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study. Based on the relationship between genotype and expressiveness, the difference in
texture features can help distinguish different varieties, thereby improving the estimation
accuracy of quality parameters. Therefore, in this study, the texture features of GLCM and
LBP were extracted from the multispectral image. As a classic texture feature extraction
method, GLCM is widely used in machine vision, and its performance has been recognized
by scholars [109–113]. In this study, 16-level grayscale and a step size of 1 were set
when extracting GLCM texture features. Although the number of calculations is large, it
can improve the detailed texture. The default direction was set because the distribution
direction of the leaf canopy of tea leaves is random, and the difference caused by the
direction parameter settings of different sliding windows is very small. In this study, the
LBP texture feature extraction method, which was developed for better facial recognition,
and has gradually been applied in facial recognition [114,115] and agriculture [116], was
applied. In this study, the texture features of GLCM and LBP were combined with spectral
features to estimate tea quality parameters. The subsequent results confirmed that the
texture information can improve the accuracy of estimating the tea quality parameters, but
its effect was not significant. This could be attributed to many reasons. First, to preserve
the original image texture information, the upper right corner of the original image was
used to extract the texture features, thus promoting the influence of noise, such as soil and
shadows, in some images on the texture feature. Second, the 15 texture features selected
in this study included GLCM and LBP, but the texture features that were actually closely
related to the tea quality parameters were excluded. Finally, texture features and spectral
features were input to the model for training simultaneously with dependent variables,
and other feature integration methods, such as constructing hierarchical models, were
not applied.

4.3. Modeling Methods

The PLS, SVR, and RFR algorithms are regression modeling methods that have been
proven to be concise, stable, and effective in recent studies [67–70]. Among them, PLS is
considered the simplest and does not require many parameters in the training process.
Moreover, inputting variables can eliminate the multicollinearity in the x independent
variables and reduce the data dimension. The obtained descriptive variables are the best
choice for predicting the dependent variable y [117–120]. For fair comparison, in this
study, the radial basis function kernel and other default parameters were set in the SVR
model training, and 500 decision trees and other default parameters were set in the RFR
model training. The PLS, SVR, and RFR algorithms took 6.063, 23.617, and 3.032 s to train
with the same data in MATLAB, respectively. In this study, the RFR was the best model
algorithm and had the highest operating efficiency. These characteristics facilitate the
development and promotion of subsequent corresponding technologies and equipment.
The analysis results did not indicate a considerable difference in the goodness of fit of
the three models of tea polyphenols, total sugars, free amino acids, and caffeine. The
R2 of all the quality parameter monitoring models were between 0.33 and 0.85. The
SVR model of tea polyphenols using the EO sampling method had R2 > 0.4, whereas the
RF model incorporated the texture features of LBP. According to the characteristics of
SVR [121], the reason for the former is that the SVR model of tea polyphenols is under-
fitting, whereas the latter is because when the monitoring model fuses with LBP texture
features, soil and shadow noise interfere; thus, the application of LBP texture features
yields negligible improvement in the accuracy of tea polyphenols monitoring. Generally
speaking, the R2 value achieved is similar to results in previous research [122]. In this
study, the RMSE differed considerably between the models, with a higher RMSE for PLS
than the other two methods. This was because the PLS is a linear regression, and most data
in practical situations do not show a simple linear relationship [65]. Therefore, the error
of the prediction results of the linear models is higher than that of the nonlinear machine
learning models.
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5. Conclusions

This study investigated the application of low-cost, high-efficiency, high-precision,
and easily applicable tea quality monitoring methods. R, ED, and NIR were the sensitive
bands of tea quality parameters and are also sensitive to most other plants. The EO sam-
pling method based on feature enhancement of the EXG index and the binary segmentation
of the Ostu method assisted in acquiring more accurate and representative spectral sam-
pling results. Compared with the G and M sampling methods, the EO method avoids soil,
shadow, and human subjectivity. The influence of the above-mentioned factors facilitated
the improvement of the prediction accuracy of the tea quality monitoring model. Further-
more, the GLCM and LBP texture features of the tea canopy image showed differences
in the different tea varieties. To a certain extent, they improved the prediction accuracy
of the of tea quality monitoring model, with the GLCM texture features contributing to a
higher model accuracy than the LPB does. Among the four tea quality parameters of tea
polyphenols, total sugars, free amino acids, and caffeine, the monitoring effect of total sugar
was best (R2 = 0.85 and RMSE = 0.16). Among the three modeling methods (PLS, SVR,
and RFR), the RFR method showed the highest prediction accuracy. The proposed method
can assist in developing universally acceptable portable tea quality monitoring equipment
suitable for monitoring multiple tea varieties and can improve the tea monitoring efficiency
and accuracy.
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