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Abstract: Accurate positioning of the shearer with a strapdown inertial navigation system (SINS)
is the key technology to realize the automation of the longwall face. Unfortunately, the existing
positioning methods have a strong dependence on the attitude accuracy of the SINS. The position
errors gradually increase with the drift of the SINS attitude. To reduce the dependence on the SINS
attitude and further increase the shearer positioning accuracy, this paper proposes a positioning
method based on SINS and light detection and ranging (LiDAR) with velocity and absolute position
constraints. A Kalman filter (KF) model based on these constraints was established. Simulation
analysis shows that the attitude calibration between the shearer body, SINS and LiDAR, and the
initial attitude alignment of the SINS are the keys to determining the shearer positioning accuracy.
Even if there are small horizontal bends in the running track of the shearer and the features have
small horizontal errors, an excellent positioning effect can still be obtained. In addition, four cutting
processes were simulated with a reciprocating travel of 44.6 m and an advance distance of 1.2 m.
Compared with the relative positioning method, the positioning accuracy of the proposed method
was improved by 37%, 63%, 76%, and 69% from the first to the fourth cutting cycle, respectively,
calculated by spherical error probable (SEP) values, and positioning accuracy had a lower dependence
on the installation deflection angles between the SINS, the LiDAR, and the SINS attitude accuracy.

Keywords: shearer positioning; strapdown inertial navigation system (SINS); light detection and
ranging (LiDAR); velocity constraint; absolute position constraint

1. Introduction

As a precious resource, coal still accounts for a large proportion of the world’s primary
energy consumption structure. However, the poor mining environment with high tempera-
tures, high gas quantities, high ground stresses, etc., poses a huge threat to the personal
safety of miners [1]. Pneumoconiosis is one of the diseases that threatens the health of
miners which is widespread in major coal-producing countries in the world. In Poland,
there was a total of 7340 cases of coal worker’s pneumoconiosis in 2000–2017 [2], while in
China the number was nearly 7949 in 2019 alone [3]. In addition, coal mine safety accidents
also directly threaten the safety of miners. According to statistics from China Energy
News, a total of 122 fatal accidents occurred in China’s coal mines in 2020, with 225 deaths.
Although the safety factor of coal mines in the United States, Australia and other countries
is high, mine accidents also occasionally occur. These shocking numbers prompt us to
explore safer and more efficient mining methods. Longwall mining technology has been
widely used in European countries such as Poland [4] and the Czech Republic [5], where
its advantages in mining have been fully proven. Automated mining and remote-control
technology based on the longwall face can keep miners away from dangerous areas [6].
The longwall mining process could be realistically automated by achieving three goals:
face alignment, creep control, and horizon control. Accurate three-dimensional positioning
of the shearer is the premise for these goals [7]. Therefore, it is very important to study
longwall shearer positioning for automated longwall mining.
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Shearer positioning methods include mainly the gear counting method, the wireless
transceiver method, and the autonomous positioning method [8]. The principle of the gear
counting method is to use the gear sensor to automatically count and then multiply the
gear revolutions by the gear perimeter to obtain the position of the shearer [9]. This method
can only calculate the one-dimensional position and has accumulative error. The wireless
transceiver method installs reference nodes and unmeasured nodes on the hydraulic
supports and the shearer, respectively. Information exchange between nodes is realized
by sending and receiving infrared rays [10] or radio waves [11]. The position of the
unmeasured node can be calculated by using the positions of reference nodes around the
shearer. However, the position accuracy of the reference nodes is difficult to guarantee in
real time because of the frequent movement of the hydraulic supports. Research on the
autonomous positioning method is carried out around the strapdown inertial navigation
system (SINS) [12–15]. Due to the unbounded error drift with time, the SINS cannot
be adopted independently to realize high-accuracy navigation for a long time duration.
Therefore, integrated navigation technology based on SINS is widely studied. A method
based on the motion constraint (MC)-aided SINS zero velocity update (ZUPT) model can
effectively restrain the accumulative error of the SINS [16]. This method does not require
additional physical sensors other than SINS. The azimuth maneuver of the vehicle is the
key to the ideal navigation result of this method. Hence, the poor azimuth maneuver of
the shearer limits the accuracy of this method. Research on SINS/wireless sensor network
(WSN) is also flourishing [8,17]. WSN consists of a mobile node and some anchor nodes.
The mobile node is installed on the shearer, and these anchor nodes are deployed under
the beams of the hydraulic supports. The accuracy of this method depends on the position
accuracy of the anchor nodes. However, it is inevitable that the position accuracy of the
anchor nodes will be affected by the intermittent movement of the hydraulic supports.
A method with SINS and an odometer (OD) has good autonomy and is more widely
used [13,18–20]. The method uses the dead reckoning (DR) algorithm, with the Euler
angles and velocity provided by the SINS and OD, respectively, to estimate the shearer
position. The positioning accuracy of the DR is determined mainly by the OD scale factor,
installation deflection angle between the SINS and vehicle, and attitude accuracy of the
SINS [21]. By quickly moving between two points with known positions, the OD scale
factor and installation deflection angle can be calibrated [22,23]. To further improve the
accuracy of the DR, a closed-path model is studied [24]. The premise of this model is that
the horizontal closing distance for each cycle can be considered a constant or measured by
a displacement sensor fixed in the hydraulic supports. Due to the movement errors of the
hydraulic supports and the creep of the longwall face, the position accuracy estimated by
the closed-path model will inevitably be affected. Since the conversion of OD and SINS
results requires the attitude of the SINS as an intermediate variable, positioning results
based on the SINS and OD highly depend on the accuracy of the attitude, especially the
heading angle accuracy. To further improve the performance and robustness of the shearer
positioning system, new technologies must be introduced.

The light detection and ranging (LiDAR) technique is gradually attracting the attention
of scholars because of its excellent ranging performance. The description of laneway space
with self-localization is a key issue for mine rescue [25]. LiDAR is the core sensor for
simultaneous localization and mapping (SLAM) in rescue operations. An unmanned
rover equipped with LiDAR can be used for monitoring harmful gases in underground
mines to ensure workers keep away from danger [26]. Mine surveying and mapping is an
important part of digital mines. LiDAR is gradually becoming the main method of mine
surveying and mapping [27]. To improve production efficiency and safety, underground
mining vehicles such as load, haul, and dump trucks, need to implement autonomous
navigation, and LiDAR has become essential [28]. LiDAR is also installed on the AFC of
the longwall face for creep control [29]. A relative positioning method based on SINS and
LiDAR can realize longwall shearer positioning [30]. One of the sources of error in this
method is the installation deflection angle between the SINS and the LiDAR. The longer
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the longwall face, the higher the calibration accuracy of the required installation deflection
angle. Similar to the integrated system of the SINS and OD, this relative positioning method
also depends on the attitude accuracy of the SINS. To further improve the positioning
accuracy, a positioning method of the velocity and absolute position constraint-aided SINS
is proposed. A major novelty of this paper is to propose a positioning method that does not
require the SINS attitude, especially the heading angle, to participate in the establishment
of the measurement space model. Therefore, the positioning result is more stable and less
dependent on the SINS attitude. The research on the proposed positioning method is also
a continuation of our previous work in [30]. Thus, the purpose of this paper is to propose a
higher positioning accuracy method based on a SINS/LiDAR integrated navigation system
compared with [30]. Based on the velocity and absolute position constraints, a Kalman filter
(KF) model was built. The comparison results and analysis were presented by simulations
and experiment. The chief contributions and benefits of this study can be summarized
as follows.

(1) An absolute position constraint was introduced to reduce the influence of the instal-
lation deflection angle between the SINS and LiDAR and the SINS attitude on the
positioning accuracy of the shearer, compared with the relative positioning method.

(2) A calibration method of the heading installation angle between the SINS and the
LiDAR was proposed to improve the absolute position accuracy of the features.

(3) The horizontal advancing displacement of the hydraulic support can be measured
autonomously, and was obtained by the additional equipment in the traditional
positioning method.

This paper is organized as follows. Section 2 describes the mining process of the
longwall face. Section 3 presents the measurement models of velocity and the absolute
position constraints. Section 4 describes the error model of the integrated navigation.
Section 5 discusses the simulation analysis. Section 6 presents the experimental results and
analysis. The conclusions are drawn in Section 7.

2. Longwall Mining Process

A longwall panel is a large rectangular block of coal, as shown in Figure 1 [30]. A
typical panel is 1000–6000 m in length, and 150–350 m in width [24]. Before the extraction
of a panel, two horizontal and permanent roadways are excavated, with some coal pillars
left untouched to support the overlying strata [31]. The roadways, which are 5–6 m in
width, are on both sides of the panel. The roadway along one side of the panel is called
the maingate, and the roadway on the other side is called the tailgate [32]. At the end of
the roadways, the major pieces of mining equipment are installed across the back of the
panel, creating the longwall face. The coal is extracted by the longwall face. The goaf is the
area that has been extracted. A longwall face, which includes a shearer, some hydraulic
supports, and an armored face conveyor (AFC), carries out the tasks of coal breaking, coal
loading, and coal transportation.

The workflow of the longwall face is shown in Figure 2. The shearer rides on the AFC
and travels back and forth with the AFC as the track. The hydraulic supports, which are
used to support the roof and push the AFC toward the coal, are connected to the AFC and
arranged horizontally on the side of the AFC with equal spacing [33]. Figure 2a represents
the shearer movement to the left, accompanied by the movement of the AFC and some
hydraulic supports behind the shearer in the advancing direction. Figure 2b shows the
static state of the shearer after oblique cutting. The process of the oblique cutting refers
to the shearer cuts into the coal seam from the end through the curved section of the
AFC, and stops after entering the straight section of the AFC again. Oblique cutting is
the key process by which the shearer cuts into the coal seam. Figure 2c shows the reverse
movement of the shearer, the purpose of which is to mine the coal on the left. Figure 2d
depicts the movement of the shearer from the left end to the right, while the hydraulic
supports lagging behind the shearer will move toward the coal to force the AFC to bend.
Then, it returns to the state shown in Figure 2a.
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the LiDAR faces the hydraulic supports. The SINS body frame, denoted by the b -frame, 
which is implicitly predefined by the calibrated sensitive axes of the inertial sensors, orig-
inates at the sensitive center of the SINS, point bO , with the axes pointing right, forward, 
and upward, respectively. The shearer frame, denoted by the m -frame, is fixed to the 
shearer with the mx -axis pointing right, the my -axis pointing forward, and the mz -axis 
pointing upward. The LiDAR body frame, denoted by the s -frame, originates at the op-
tical center, point sO , with the axes pointing right, forward, and upward, respectively. 
The n -frame is the navigation frame, chosen as the local level east-north-up (ENU) coor-
dinate. 

Figure 2. Working diagram of a longwall face. (a) Top view of the longwall face when the shearer
is located at the left end. (b) Schematic diagram of the shearer after cutting into the coal seam.
(c) Schematic diagram of the shearer returning to the left end. (d) Schematic diagram of the shearer
at the right end.

In order to facilitate the research on the movement characteristics of the shearer, the
trajectory of the shearer was sorted according to Figure 2. Ideally, the track of the shearer is
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mainly in the form of a straight line and a broken line, as shown in Figure 3. The shearer
runs in the sequence of A-B-C-D-E-F-G-H-I-J-K-L-M-N. A cutting cycle refers to the process
in which the shearer moves from one end of the longwall face to the other to complete a
complete cut. Trajectories AB, EF, IJ, and MN correspond to the cutting cycle in Figure 3.
The distance between two adjacent cutting cycles is defined as the cutting depth. The
cutting depth can be regarded as a constant, which is usually 0.8–1.2 m.
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Figure 3. The simplified shearer trajectory.

3. Measurement Model Analysis of Velocity and Absolute Position
3.1. System Description

As shown in Figure 4, both the SINS and the LiDAR are installed on the shearer,
and the LiDAR faces the hydraulic supports. The SINS body frame, denoted by the
b-frame, which is implicitly predefined by the calibrated sensitive axes of the inertial
sensors, originates at the sensitive center of the SINS, point Ob, with the axes pointing right,
forward, and upward, respectively. The shearer frame, denoted by the m-frame, is fixed to
the shearer with the xm-axis pointing right, the ym-axis pointing forward, and the zm-axis
pointing upward. The LiDAR body frame, denoted by the s-frame, originates at the optical
center, point Os, with the axes pointing right, forward, and upward, respectively. The
n-frame is the navigation frame, chosen as the local level east-north-up (ENU) coordinate.
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As shown in Figure 4, point i is the point from the hydraulic support that is detected
by the LiDAR. The coordinate ls

i of point i in the s-frame can be expressed as:

ls
i =

[
xs ys zs ]T =

[
−ρi sin θi ρi cos θi 0

]T, (1)



Remote Sens. 2021, 13, 3708 6 of 20

where ρi represents the range between the origin Os of the LiDAR and point i, θi represents
the angle between the vector ls

i and ys-axis, and ρi and θi are output by the LiDAR.

3.2. Velocity Constraint

When the shearer moves along the longwall face and is limited by the AFC, there is
no motion normal to the face under ideal conditions. Here, the velocity along the zm-axis
is regarded as zero. This velocity constraint can be expressed as a mathematical model
as follows:

vm
z = 0, (2)

where vm
z denotes the shearer velocity along the zm-axis.

When the measuring errors are considered, the velocity provided by the velocity
constraint is:

ṽm
z = vm

z + wm
z , (3)

where wm
z denotes the measurement noise of vm

z .

3.3. Absolute Position Constraint
3.3.1. Feature Description

The leg is an important part of a hydraulic support, as shown in Figure 5 [31]. The
leg in the supported state includes upright and inclined forms. The upright leg is used as
the research object in this paper. The green dots indicate the detection results of the leg
by the LiDAR which conform to the circle model. The red center of the circle from the i-th
hydraulic support is the feature i, defined in this paper. Multiple features can be obtained
from a packet of LiDAR data. The absolute position of the feature i is defined, consisting of
latitude L, longitude λ, and altitude h, as mi,k at time tk. Mi:i+N−1,k =

{
mi,k, · · · , mi+N−1,k

}
and Li:i+N−1,k =

{
ls
i,k, · · · , ls

i+N−1,k

}
are the absolute position and relative position sets of

all features provided by LiDAR at tk, respectively.
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3.3.2. Calculation of the Absolute Position of the Features

Figure 2 shows that with the continuous advancement of the longwall face, the
hydraulic supports can move intermittently. Therefore, the absolute position of the features
can also change intermittently. The process of calculating the absolute position of the
features is divided into two steps: initial assignment and position update. Note that the
calculation of the feature position is performed when the shearer is located at both ends of
the longwall face.

• Initial assignment of the absolute position of the features.

Ideally, the hydraulic supports are equally spaced and placed parallel to the AFC at
the initial time t0. Hence, the feature numbered i is assigned as follows:

mi,0 = p0 + CCn0
b0

Cb0
s0 ls0

q,0 + CCn0
b0

Cb0
m0Sm0

i/q,0, (4)
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C =

 sec L/(RN + h) 0 0
0 1/(RM + h) 0
0 0 1

, (5)

Sm0
i/q,0 = [0 (i− q)d1 0]T, (6)

where mi,0 denotes the absolute position of the feature numbered i at t0; p0 denotes the
shearer position at t0; Cb0

s0 is the attitude matrix at t0; Cb0
s0 is the direction cosine matrix

from the s-frame to the b-frame at t0; ls0
q,0 ≈ [−lx 0 0]T represents the coordinate of the

feature numbered q in s-frame at t0, which is the closest to the shearer; Cb0
m0 is the direction

cosine matrix from the m-frame to the b-frame at t0; RN and RM denote the transverse
and meridian radii of the curvature; and d1 represents the distance between two adjacent
hydraulic supports.

Due to the limited daily mining range of the shearer, C can be considered not to change
during the mining process.

• Update of the absolute position of the features.

According to the introduction of Section 2, the hydraulic supports lagging behind the
shearer can move. Thus, when the shearer moves in the next cutting cycle, the absolute
position of the features has changed. Therefore, the absolute position of the features needs
to be updated. The following takes the update of the position of the feature i as an example
for a detailed description.

As shown in Figure 6, tk1 and tk2 represent the two moments before and after
feature i moves, respectively. The features j · · · r are the common points of tk1 and
tk2, and they are stationary at these two moments. Set Lj:r,k1 =

{
ls
j,k1, · · · , ls

r,k1

}
and

Lj:r,k2 =
{

ls
j,k2, · · · , ls

r,k2

}
. The relationship between Lj:r,k1 and Lj:r,k2 is as follows

Lj:r,k1 = R1Lj:r,k2 + T1, (7)

where R1 and T1 represent the rotation and translation matrix of the s-frame between tk1
and tk2, which can be solved using iterative closest point (ICP) [34].
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The updated position of the feature i can be expressed as:

mi,k2 = mi,k1 + CCnk1
bk1

Cb
s (R1ls

i,k2 + T1 − ls
i,k1), (8)

where Cnk1
bk1

represents the attitude matrix at tk1.
Combining Equations (4) and (8), the position of the feature i can be re-expressed as:

mi = mi,0 + ∑ CCn
b Cb

s Ds
i,N , (9)
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Ds
i,N = R1ls

i,k2 + T1 − ls
i,k1, (10)

where Ds
i,N denotes the displacement of feature i during the N-th advancement in the s-

frame; ideally, ∑ CCn
b Cb

s Ds
i,N is equivalent to CCn0

b0
Cb0

m0 [Nd2 0 0]T, and d2 is the cutting depth.
Equations (6)–(10) represent the calculation update of the absolute position of the features.
Considering the measurement error in practice, the relevant variables can be re-

expressed as:

p̃0 = p0 + δp0

C̃
b0
s0
= [I− (δα×)]Cb0

s0 , C̃
b0
m0

= [I− (δβ×)]Cb0
m0

C̃
n
b = [I− (φn×)]Cn

b , C̃
n0
b0

= [I− (φn0×)]Cn0
b0

l̃
s0
q,0 ≈ ls0

q,0 + ws0
q,0, S̃

m0
i/q,0 = Sm0

i/q,0 + wm0
i/q,0, D̃

s0
i,N = Ds0

i,N + ws0
i,N

, (11)

where p̃0 denotes the shearer position with error at t0; δp0 and φn0 = [φn0
x φn0

y φn0
z ]

T denote
the initial position error and misalignment of C̃

n0
b0

, respectively; δα = [δαx δαy δαz]
T is the

residual calibration error of the mounting angle α between the s-frame and the b-frame;
δβ = [δβx δβy δβz]

T is the residual calibration error of the mounting angle β between the
m-frame and the b-frame; φn denotes the misalignment of C̃

n
b ; I is the third-order unit

matrix; and ws0
q,0, wm0

i/q,0, and ws0
i,N are the noise vectors of ls0

q,0, Sm0
i/q,0, and Ds0

i,N , respectively.
Once the SINS and LiDAR are mounted on a shearer, the installation relationship

between the b-frame, s-frame, and m-frame is fixed. Ideally, the three frames are reconciled.
Hence, Cb

s = Cb0
s0 = I and Cb

m = Cb0
m0 = I. The residual mounting angle errors δα and δβ are

inevitable in actual situations, but they can be regarded as constant vectors.
Substituting (11) into (9), the feature i position with measurement error can be obtained:

m̃i = mi + δmi

≈ mi + δp0 + CCn0
b0

lb0
q,0 × δα + Cln0

q,0 ×φn0+,

CCn0
b0

Sb0
i/q,N × δβ + CSn0

i/q,N ×φn0 + wi

(12)

where lb0
q,0 = Cb0

s0 ls0
q,0, ln0

q,0 = Cn0
b0

Cb0
s0 ls0

q,0, Sm0
i/q,N = [Nd2 (i− q)d1 0]T, Sb0

i/q,N = Cb0
m0Sm0

i/q,N,

Sn0
i/q,N = Cn0

b0
Cb0

m0Sm0
i/q,N , and wi is the measurement noise of mi.

After expanding Equation (12), we can get:

δmi ≈ δp0 + CCn0
b0


(i− q)d1(δβz + φb0

z )

lx(δαz + φb0
z )− Nd2(δβz + φb0

z )

−lx(δαy + φb0
y ) + Nd2(δβy + φb0

y )− (i− q)d1(δβx + φb0
x )

+ wi, (13)

where φb0 = Cb0
n0 φn0 = [φb0

x φb0
y φb0

z ]
T

.
The near-level longwall face is studied in this paper. Thus, the level attitude angles

of the shearer can be regarded as small quantities. We can get the relationship: φn0
z ≈ φb0

z .
According to the method proposed in [22,23], δβz + φn0

z and δβx can be calibrated in
advance. Hence, the position measurement model of feature i can be re-expressed as:

m̃i ≈ mi + δp0 + C


0

lx(δαz + φb0
z )

−lx(δαy + φb0
y ) + Nd2(δβy + φb0

y )− (i− q)d1φb0
x

+ wi, (14)

• Shearer absolute position calculation.
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Analogous to the calculation of R1 and T1 in Equation (7), the sets Lj:r,k =
{

ls
j,k, · · · , ls

r,k

}
and Mj:r,k =

{
mn

j,k, · · · , mn
r,k

}
are established at tk, and the following relationship is obtained:

Mj:r,k = R2Lj:r,k + T2, (15)

where mn
j,k = (Ĉ− 1)(mj,k − p0), mn

r,k = (Ĉ− 1)(mr,k − p0), and R2 and T2 represent the
rotation and translation matrix between Lj:r,k and Mj:r,k, respectively.

The position measurement model of the shearer provided by LiDAR is:

pLiDAR = p0 + CT2, (16)

To reduce the influence of R2Lj:r,k on T2, the element of set Lj:r,k should be selected
closer to LiDAR. After that, Mj:r,k becomes the main factor affecting T2 and pLiDAR.
Equation (14) shows that the height information of feature i is affected by many error
factors, so only the horizontal information is used when the position measurement is
established. At the same time, considering that the error term lx(δαz + φb0

z ) is often small,
the error-contaminated position of the shearer can be approximated as:

p̃LiDAR(1 : 2) ≈ pLiDAR(1 : 2) + δp0(1 : 2)+wLiDAR(1 : 2), (17)

where χ(1 : 2) denotes the first two elements of vector χ, and wLiDAR is the noise vector
of pLiDAR.

It is worth noting that in the actual working environment, a large shift error of the
hydraulic support may lead to a decrease in the position accuracy of the corresponding
feature, which in turn affects the navigation result. Therefore, in each cutting cycle, when a
new feature is detected, it is necessary to determine whether the distance from the adjacent
feature meets the requirement to achieve the effect of troubleshooting.

4. Integrated Navigation Model
4.1. State Space Model

The state equation of the Kalman filter can be expressed as:

.
x(t) = FI x(t) + Gw(t), (18)

where FI and G are the transition matrix and the distribution matrix of processing the
white noise, respectively, as are detailed in [35]; w(t) is the white noise vector; and h x(t)
is a 15-dimensional error state vector with reference to the traditional model of the KF,
defined as:

x(t) = [(φn)T (δvn)T (δp)T (εb)
T
(∇b)

T
]
T

, (19)

where δvn is the velocity error; δp is the position error; and εb and ∇b are the white noises
of the gyros and accelerometers, respectively.

In order to perform computer calculations, the continuous Kalman filter needs to be
discretized. The discretization form of Equation (18) can be expressed as:

Xk = Φk/k−1Xk−1 + Γk−1Wk−1, (20)

where Xk and Xk−1 denote the discretized state vector at tk and tk−1, respectively; Φk/k−1 is
the one-step state transition matrix, Φk/k−1 ≈ exp(FI TS); Γk−1 is the system noise driving
matrix, Γk−1 ≈ (I15 + 0.5FI TS)G; TS is the computation period; I15 is the 15th-order unit
matrix; and Wk−1 is the system noise, which satisfies:{

E[Wk] = 0

E[WkWT
j ] = Qkδkj

, (21)
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where Qk is the system noise variance matrix.

4.2. Measurement Space Model

The observation equation can be expressed as:
z(t) =

[
p̃SINS(1 : 2)− p̃LiDAR(1 : 2)

ṽm
z/SINS − ṽm

z

]
= H(t)x(t) + ν(t)

H(t) =

[
HLiDAR(1 : 2, :)

Hv(3, :)

] , (22)

where p̃SINS is the position of the shearer calculated by the SINS; ν(t) is the measurement

noise; HLiDAR = [03×6 I 03×6]; Hv =
[
−(Cb

m)
T
(Cb

n)
T
(vn×) (Cb

m)
T
(Cb

n)
T

03×9

]
; HLiDAR(1 :

2, :); is the first two rows of matrix HLiDAR; and Hv(3, :) is the third row of matrix Hv.
The initial position error δp0 is the common error term of p̃SINS and p̃LiDAR, which

will be offset by the difference between them, so it is not considered in the establishment of
the measurement model.

The discretized measurement equation can be expressed as:{
Zk = HkXk + Vk

E[VkVT
j ] = Rkδkj

, (23)

where Zk is the measurement after discretization; Hk is the measurement matrix after
discretization; Vk is the measurement noise sequence; and Rk is the variance matrix of the
measurement noise sequence.

5. Simulation Analysis

To assess the performance of the proposed positioning method, multiple simulations
are performed in this section. Affected by mining conditions and the control accuracy of
the longwall equipment, the size of the longwall face required will often be different, the
AFC may bend, and the hydraulic support may move inaccurately. The above situations
are reflected mainly in the simulation trajectory shape and feature distribution. Therefore,
we will carry out the simulations from three aspects: different trajectory lengths, different
trajectory curvatures, and different feature distribution errors.

5.1. Simulations under Different Lengths of the Trajectories

In order to ensure the consistency between the simulation and experiment (mentioned
in Section 6), we designed the sensor specifications with reference to the MTi-G-700 and
LMS 500 used in the experiment. The sensor specifications are listed in Table 1 [36,37]. The
sample rates of the SINS and LiDAR are 100 Hz and 25 Hz, respectively. The initial attitude
error of the SINS was φn

0 = [ 0.3◦ 0.3◦ 1◦ ]
T, which is set according to the literature [36].

The residual errors δβx and δβz after precalibration were −0.05◦ and −0.98◦, respectively.

Table 1. Specifications of the sensors.

Gyroscope Accelerometer LiDAR

Bias
Stability

Random
Walk

Bias
Stability

Random
Walk

Systematic
Error

Statistical
Error

10◦/h 0.6◦/
√

h 15 ug 60 ug/
√

Hz 0.025 m 0.007 m
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Figure 7 shows the trajectory shape and feature distribution. In Figure 7a, we designed
50 m, 100 m, and 150 m trajectories for simulation verification. The shearer moved in the
direction indicated by the arrows. The operating speed of the shearer was approximately
0.12 m/s. In Figure 7b, the red dots represent the features in the first cutting cycle, which
were distributed on the straight line l1 at equal intervals with d1 = 1.8 m. The distance lx
between the straight line l1 and the path of the first cutting cycle was 4 m. The blue dots
were the features in the second cutting cycle, which were generated after the red features
were advanced. The advancing distance d2 was 1.2 m.
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Equation (13) shows that δαz has an impact on the positioning effect. For the three
different simulation trajectories, let δαz take δαz1 : δαz = −1◦, δαz2 : δαz = 0◦, and
δαz3 : δαz = 1◦ in turn, and the corresponding positioning errors are shown in Figure 8.
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In Figure 8, it can be seen that east and height errors have nothing to do with δαz, and
the errors increase first, and then decrease with the reciprocating movement of the shearer.
The largest east and height errors occurred at the end of each cutting cycle, which increases
as the lengths of the trajectories increased. According to the existing theoretical analysis,
δβz + φn0

z and δβx are the key error sources that produce east and height errors, respectively.
Fortunately, the east and height errors show approximately periodic changes. A reasonable
calibration of δβz + φn0

z and δβx is bound to control these errors within an acceptable range.
The north errors have different bias effects with the change of δαz, regardless of the length
of the trajectory. This phenomenon is consistent with the mathematical model of Equation
(13). The term related to δαz in Equation (13) is lx(δαz + φn0

z ). Once the assembly of the
SINS and LiDAR is complete, lx can be treated as a random constant. The offset of the north
error is determined mainly by δαz + φn0

z . Therefore, reducing δαz + φn0
z as much as possible

can improve the north position accuracy. A calibration method for αz is proposed in this
paper, which can effectively reduce the overall error δαz + φn0

z . The specific calibration
process is as follows:

• Assuming that the shearer moves from point A to point B on the longwall face, the
true positions of A and B can be recorded as pA = [λA LA hA]

T and pB = [λB LB hB]
T.
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• The two sets of features in the adjacent sampling period provided by the LiDAR are
used as the input of the ICP algorithm, and the position increment in this period can be
obtained according to the output. The process is also known as LiDAR odometry [34].

• When the shearer moves to B, the position obtained by the dead reckoning algorithm

based on the SINS and LiDAR odometry can be recorded as p̃B = [λ̃B L̃B h̃B]
T

.
• Define ∆pAB = [(λB − λA) cos LA LB − LA 0]T and ∆p̃AB = [(λ̃B − λA) cos LA L̃B

−LA 0]T, then αz can be expressed as αz =
∆pAB(1)∆p̃AB(2)−∆pAB(2)∆p̃AB(1)

|∆pAB ||∆p̃AB |
.

In order to verify the effect of the above calibration method, we carried out a series
of simulation tests. Assume that the shearer moved quickly on a longwall face. Set φn0

z to
−1◦,−0.5◦,0◦,0.5◦, and 1◦ in turn, and record the residual error δαz after calibration. The
results are listed in Table 2. Table 2 shows that the proposed calibration method has a
significant effect on reducing the overall error of δαz + φn0

z , which is the result we expect.

Table 2. Calibration simulation test results.

φn0
z (◦) −1.00 −0.50 0 0.50 1.00

δαz(◦) 1.08 0.56 0.07 −0.41 −0.90
δαz + φn0

z (◦) 0.08 0.06 0.07 0.09 0.10

5.2. Simulations under Different Trajectory Curvatures

When the hydraulic support fails to move as required, the AFC is bound to bend,
and the maximum bending error is often required to be controlled within 0.1 m [19].
The movement trajectory of the shearer can often reflect the shape of AFC. Therefore,
we designed three trajectories, as shown in Figure 9. The maximum bending errors
corresponding to Traj 1, Traj 2, and Traj 3 were 0, 0.05, and 0.1 m, respectively. The sensor
parameters, φn

0 , δβx, and δβz were the same as those mentioned in Section 5.1. After
calibration, δαz was −0.87◦. The feature distribution was the same as shown in Figure 7b.
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Figure 10 presents the positioning errors under different trajectory curvatures. It can
be seen from Figure 10 that the 3D positioning errors corresponding to Traj 1, Traj 2 and
Traj 3 are almost the same. This result shows that only a small horizontal bending of the
longwall face will not have a major impact on the positioning effect.
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5.3. Simulations under Different Feature Distributions

When the hydraulic supports are not moved as required, their corresponding features
will not be arranged according to the ideal situation. In order to ensure the continuous
advancement of the longwall face, the control accuracy of the hydraulic support is usually
required to be within 0.05 m [38]. Considering that the control systems of different hydraulic
supports are independent of each other, we can consider that their corresponding features
are superimposed random errors at the ideal position. As shown in Figure 11, we generated
a set of random sequences smaller than a, and superimposed them on the ideal feature
positions to simulate the inaccurate movement of the hydraulic supports. In other words,
the actual features are distributed in the square shaded area with the ideal feature as the
center and 2a as the side length.
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Set a 1 : a = 0 m, a 2 : a = 0.005 m, a 3 : a = 0.01 m, a 4 : a = 0.02 m, and
a 5 : a = 0.04 m in turn to verify the influence of different feature distributions on the
positioning results. The simulation trajectory was selected as Traj 1, shown in Figure 9. The
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sensor parameters, φn
0 , δβx, δβz, and δαz were the same as those mentioned in Section 5.2.

The positioning errors are shown in Figure 12. We can see that even though the fluctuation
ranges of the errors in the east and north directions will increase with the increase of a, the
maximum errors are still maintained in the small ranges. The height error is not related to
the change in a. Thus, the positioning method proposed in this paper is still suitable for
small hydraulic support displacement errors.

Remote Sens. 2021, 13, 3708 16 of 21 
 

 

5.2. The positioning errors are shown in Figure 12. We can see that even though the fluc-
tuation ranges of the errors in the east and north directions will increase with the increase 
of a , the maximum errors are still maintained in the small ranges. The height error is not 
related to the change in a . Thus, the positioning method proposed in this paper is still 
suitable for small hydraulic support displacement errors. 

 
Figure 12. Positioning errors under different feature distributions. 

6. Experimental Setup 
6.1. Experimental Composition and Design 

In order to further evaluate the performance of the positioning method proposed in 
this paper, an experimental verification was performed. Figure 13 shows the composition 
of the experimental platform. In Figure 13a, the movement of a mobile carrier was con-
trolled to simulate the operation of the shearer, and a series of cylinders was used to sim-
ulate the arrangement of the legs of the hydraulic support. As shown in Figure 13b, the 
proposed integrated navigation system, including the SINS (Xsens MTi-G-700) and the 
LiDAR (SICK LMS 500), was installed on the mobile carrier. The parameters of MTi-G-700 
and LMS 500 are detailed in Section 5.1. A GPS receiver equipped with an antenna was 
also placed on the mobile carrier. Through network differential technology, the GPS re-
ceiver can output positions with centimeter-level positioning accuracy. The network dif-
ferential results mainly provide an evaluation basis for the test. In Figure 13c, the cylinder 
was placed on the base, and the distance between the cylinders was 1.8 m. The advance-
ment of the hydraulic support was simulated by moving the cylinder between two bases 
with a distance of 1.2 m. 

 
(a) 

Figure 12. Positioning errors under different feature distributions.

6. Experimental Setup
6.1. Experimental Composition and Design

In order to further evaluate the performance of the positioning method proposed in
this paper, an experimental verification was performed. Figure 13 shows the composition of
the experimental platform. In Figure 13a, the movement of a mobile carrier was controlled
to simulate the operation of the shearer, and a series of cylinders was used to simulate the
arrangement of the legs of the hydraulic support. As shown in Figure 13b, the proposed
integrated navigation system, including the SINS (Xsens MTi-G-700) and the LiDAR (SICK
LMS 500), was installed on the mobile carrier. The parameters of MTi-G-700 and LMS
500 are detailed in Section 5.1. A GPS receiver equipped with an antenna was also placed
on the mobile carrier. Through network differential technology, the GPS receiver can
output positions with centimeter-level positioning accuracy. The network differential
results mainly provide an evaluation basis for the test. In Figure 13c, the cylinder was
placed on the base, and the distance between the cylinders was 1.8 m. The advancement of
the hydraulic support was simulated by moving the cylinder between two bases with a
distance of 1.2 m.
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As shown in Figure 14, four cutting processes were simulated. ∆ and O represent
the start and end of the trajectory, respectively. The maximum moving distance of the
mobile carrier in the longitudinal direction was approximately 44.6 m, and the horizontal
advancing distance was about 1.2 m. Its speed was 0.1–0.15 m/s.
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6.2. Experimental Results and Data Analysis

To fully evaluate the advantages of the proposed positioning method, the proposed
method was compared with the relative positioning method in the literature [30], and the
positioning errors are shown in Figure 15. Figure 15a,b describe the positioning errors
without and with calibration of α, respectively. The values of α before and after calibration
were [0 0 0]T and [0.56◦ 0 − 1.21◦]T. Regardless of whether measurements were taken
before or after the calibration of α, the positioning accuracy of the proposed method is
better than the positioning accuracy of the relative method. It can also be seen from
Figure 15 that the east and height errors of the relative positioning method without the
calibration of α show an increasing–decreasing trend, while those of the proposed method
are always stable. The reasons for the above phenomenon are discussed below.
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Figure 15. Comparison of positioning errors between the proposed positioning method and relative
positioning method: (a) positioning errors without calibration of α; (b) positioning errors with
calibration of α.

The literature [30] shows that when δαz and δαx are present, positioning errors will
occur in the east and height, respectively. With the reciprocating movement of the shearer,
the east and height errors show an increasing–decreasing trend. The maximum errors can
be expressed as δαzSmax and δαxSmax, where Smax represents the maximum longitudinal
movement distance. The positioning error caused by δαz for the proposed method is
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approximately δαzlx, which can be regarded as a constant, while the positioning error has
nothing to do with δαx. Usually, Smax is much larger than lx, so the influence of δα on the
proposed method will be much smaller than on the relative method.

In addition, it can also be seen from Figure 15b that the east error of the relative
positioning method with the calibration of α shows a gradual divergence trend. This is
mainly affected by the drift of the SINS heading angle. The position errors of the proposed
method are generally stable. This result fully proves that the proposed method can reduce
the dependence of positioning accuracy on the SINS heading angle accuracy.

The spherical error probable (SEP) is a universal evaluation method of 3D positioning
accuracy [22], which can be expressed as:

SEP = 0.51(σE + σN + σH), (24)

where σE, σN , and σH are the east, north, and height root-mean-square errors, respectively.
In Figure 15, “first” through “fourth” represent the four cutting cycle time periods of

the shearer, and the remaining time periods correspond to the oblique cutting process of
the shearer. The SEP value in each cutting cycle was calculated, and the results are listed
in Table 3. The SEP value of the proposed method in each cutting cycle was less than that
of the relative method, regardless of whether or not α was calibrated. Compared with the
SEP value of the relative positioning method with the calibration of α, the SEP value of
the proposed method with the calibration of α was reduced by 37%, 63%, 76%, and 69%
from the first to the fourth cutting cycle, respectively. It further shows that the positioning
accuracy of the proposed method is better than the relative positioning method. The SEP
value of the relative method with the calibration of α decreased by 84%, 69%, 69% and
61%, respectively, as compared to the relative method without the calibration of α, while
the SEP value of the proposed method decreased by 46%, 30%, 21%, and 6%, respectively.
The positioning accuracy of the relative method before and after calibration was improved
more than the proposed method, which further verified that the positioning accuracy of
the proposed method was less sensitive to the mounting angle α.

Table 3. SEP in each cutting cycle.

Cutting Cycle SEP (m)

Relative method without calibration

First 0.450
Second 0.512
Third 0.576

Fourth 0.600

Proposed method without calibration

First 0.084
Second 0.083
Third 0.056

Fourth 0.079

Relative method with calibration

First 0.071
Second 0.157
Third 0.181

Fourth 0.237

Proposed method with calibration

First 0.045
Second 0.058
Third 0.044

Fourth 0.074

7. Conclusions

In this paper, we propose a positioning method based on SINS and LiDAR to solve the
problem of shearer positioning. According to the motion characteristics of the longwall face,
position and velocity measurement models were derived. Based on these measurement
models, a 15-dimensional state Kalman filter was established. After a series of simulation
analyses, we drew some meaningful conclusions. First, the pitch and azimuth residual
mounting angles (δβx and δβz) between the m-frame and b-frame were the main error
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sources causing the normal and lateral positioning errors, respectively. The maximum
errors varied with the trajectory length. The azimuth residual mounting angle δαz between
the s-frame and b-frame was one of the main error sources that caused the longitudinal
positioning error, which is approximately constant. Therefore, accurate calibration of δβx,
δβz and δαz is a prerequisite to ensure high positioning accuracy. Second, when compared
with the horizontal curvature of the shearer running track, the inaccuracy of the feature
distribution had a greater impact on the positioning effect. When the feature had a small
shift error, the proposed positioning method could still achieve high accuracy. In addition,
we also conducted experimental verification. The results show that the positioning errors
of the proposed method are more stable and better than those of the relative positioning
method. It is further verified that the proposed method can effectively improve the
positioning accuracy of the shearer and has a low dependence on SINS attitude accuracy
and the calibration accuracy of the mounting angle α.

The environment around the shearer is extremely complex and harsh. In the long-
term mining process, it is inevitable that data loss or even sensor failure will occur. In
future work, we will carry out research on sensor fault diagnosis and positioning accuracy
maintenance under extreme conditions.
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