
remote sensing

Article

Looking for Change? Roll the Dice and Demand Attention

Foivos I. Diakogiannis 1,2,*,†,‡ , François Waldner 3,‡ and Peter Caccetta 2,‡

����������
�������

Citation: Diakogiannis, F.I.;

Waldner, F.; Caccetta, P. Looking for

Change? Roll the Dice and Demand

Attention. Remote Sens. 2021, 13, 3707.

https://doi.org/10.3390/rs13183707

Academic Editors: Qi Wang, Damian

Wierzbicki and Kamil Krasuski

Received: 28 June 2021

Accepted: 9 September 2021

Published: 16 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 International Centre for Radio Astronomy Research, University of Western Australia,
Perth, WA 6021, Australia

2 Data61, CSIRO, Kensington, Perth, WA 6151, Australia; peter.caccetta@data61.csiro.au
3 CSIRO Agriculture & Food, Brisbane, St. Lucia, QLD 4067, Australia; Franz.WALDNER@ec.europa.eu
* Correspondence: foivos.diakogiannis@uwa.edu.au
† Current address: 3 Ken & Julie Michael Building, 7 Fairway, Crawley, Perth, WA 6009, Australia.
‡ These authors contributed equally to this work.

Abstract: Change detection, i.e., the identification per pixel of changes for some classes of interest
from a set of bi-temporal co-registered images, is a fundamental task in the field of remote sensing.
It remains challenging due to unrelated forms of change that appear at different times in input
images. Here, we propose a deep learning framework for the task of semantic change detection in
very high-resolution aerial images. Our framework consists of a new loss function, a new attention
module, new feature extraction building blocks, and a new backbone architecture that is tailored for
the task of semantic change detection. Specifically, we define a new form of set similarity that is based
on an iterative evaluation of a variant of the Dice coefficient. We use this similarity metric to define a
new loss function as well as a new, memory efficient, spatial and channel convolution Attention layer:
the FracTAL. We introduce two new efficient self-contained feature extraction convolution units: the
CEECNet and FracTALResNet units. Further, we propose a new encoder/decoder scheme, a network
macro-topology, that is tailored for the task of change detection. The key insight in our approach
is to facilitate the use of relative attention between two convolution layers in order to fuse them.
We validate our approach by showing excellent performance and achieving state-of-the-art scores
(F1 and Intersection over Union-hereafter IoU) on two building change detection datasets, namely,
the LEVIRCD (F1: 0.918, IoU: 0.848) and the WHU (F1: 0.938, IoU: 0.882) datasets.

Keywords: semantic segmentation; change detection; deep learning; attention; convolutional neural
networks; dice similarity

1. Introduction

Change detection is one of the core applications of remote sensing. The goal of change
detection is to assign binary labels (“change” or no “change”) to every pixel in a study
area based on at least two co-registered images taken at different times. The definition
of “change” varies across applications and includes, for instance, urban expansion [1],
flood mapping [2], deforestation [3], and cropland abandonment [4]. Changes of multiple
land-cover classes, i.e., semantic change detection, can also be addressed simultaneously [5].
It remains a challenging task due to various forms of change owed to varying environmental
conditions that do not constitute a change for the objects of interest [6].

A plethora of change-detection algorithms has been devised and summarised in
several reviews [7–10]. In recent years, computer vision has further pushed the state of
the art, especially in applications where the spatial context is paramount. The rise of
computer vision, especially deep learning, is related to advances and democratisation of
powerful computing systems, increasing amounts of available data, and the development
of innovative ways to exploit data [5].

The starting point of the approach presented in this work is the hypothesis that human
intelligence identifies differences in images by looking for change in objects of interest at a

Remote Sens. 2021, 13, 3707. https://doi.org/10.3390/rs13183707 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8788-8174
https://orcid.org/0000-0002-5599-7456
https://orcid.org/0000-0002-9693-7927
https://doi.org/10.3390/rs13183707
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13183707
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13183707?type=check_update&version=2

Remote Sens. 2021, 13, 3707 2 of 40

higher cognitive level [6]. We understand this because the time required for identifying
objects that changed between two images increases with time when the number of changed
objects increases [11]. That is, there is strong correlation between the processing time and
the number of individual objects that changed. In other words, the higher the complexity
of the changes, the more time is required to detect them. Therefore, simply subtracting
extracted features from images (which is a constant time operation) cannot account for the
complexities of human perception. As a result, the deep convolutional neural networks
proposed in this paper (e.g. Figure 1) address change detection without using bespoke
features subtraction. We rely on the attention mechanism to emphasise important areas
between two bi-temporal co-registered images.

tn

tp

fn

fp

Figure 1. Example of the proposed framework change detection performance on the LEVIRCD test
set [1] (architecture: mantis CEECNetV1). From left to right: input image at date 1, input image at
date 2, ground truth buildings change mask, and colour-coded the true negative (tn), true positive
(tp), false positive (fp), and false negative (fn) predictions.

1.1. Related Work
1.1.1. On Attention

The attention mechanism was first introduced by [12] for the task of neural machine
translation (i.e., language to language translation of sentences, e.g., English to French;
hereafter NMT). This mechanism addressed the problem of translating very long sentences
in encoder/decoder architectures. An encoder is a neural network that encodes a phrase to
a fixed-length vector. Then the decoder operates on this output and produces a translated
phrase (of variable length). It was observed that these types of architectures were not
performing well when the input sentences were very long [13]. The attention mechanism
provided a solution to this problem: instead of using all the elements of the encoder vector
on equal footing for the decoder, the attention provided a weighted view of them. That
is, it emphasised the locations of encoder features that were more important than others
for the translation, or stated another way, it emphasised some input words that were
more important for the meaning of the phrase. However, in NMT, the location of the
translated words is not in direct correspondence with the input phrase because of the
syntax changes. Therefore, Bahdanau et al. [12] introduced a relative alignment vector, eij,
that was responsible for encoding the location dependences: in language, it is not only the
meaning (value) of a word that is important but also its relative location in a particular
syntax. Hence, the attention mechanism that was devised was comparing the emphasis of
inputs at location i with respect to output words at locations j. Later, Vaswani et al. [14]
further developed this mechanism and introduced the scaled dot product self-attention
mechanism as a fundamental constituent of their Transformer architecture. This allowed
the dot product to be used as a similarity measure between feature layers, including feature
vectors that have a large dimensionality.

The idea of using attention for vision tasks soon passed to the community. Hu et al. [15] in-
troduced channel-based attention in their squeeze and excitation architecture. Wang et al. [16]
used spatial attention to facilitate non-local relationships across sequences of images.
Chen et al. [17] combined both approaches by introducing joint spatial and channel wise
attention in convolutional neural networks, demonstrating an improved performance on
image captioning datasets. Woo et al. [18] introduced the Convolution Block Attention

Remote Sens. 2021, 13, 3707 3 of 40

Module (CBAM), which is also a form of spatial and channel attention, and showed im-
proved performance on image classification and object detection tasks. To the best of our
knowledge, the most faithful implementation of multi-head attention [14] for convolution
layers is [19] (spatial attention).

Recently, there has been an effort to reduce the memory footprint of the attention
mechanism by introducing the concept of Linear attention [20]. This ideas was soon
extended to 2D for computer vision problems [21]. In addition to these, the attention used
in the recently introduced Visual Attention Transformer [22], which also helps in reducing
the memory footprint for computer vision tasks.

1.1.2. On Change Detection

Sakurada and Okatani [23] and Alcantarilla et al. [24] (see also [25]) were some of the
first to introduce fully convolutional networks for the task of scene change detection in
computer vision, and they both introduced street view change detection datasets. Sakurada
and Okatani [23] extracted features from convolutional neural networks and combined
them with super pixel segmentation to recover change labels in the original resolution.
Alcantarilla et al. [24] proposed an approach that chains multi-sensor fusion simultaneous
localisation and mapping (SLAM) with a fast 3D reconstruction pipeline that provides
coarsely registered image pairs to an encoder/decoder convolutional network. The output
of their algorithm is a pixel-wise change detection binary mask.

Researchers in the field of remote sensing picked up and evolved this knowledge
and started using it for the task of land cover change detection. In the remote sens-
ing community, the dual Siamese encoder and a single decoder is frequently adopted.
The majority of different approaches then modifies how the different features extracted
from the dual encoder are consumed (or compared) in order to produce a change detection
prediction layer. In the following, we focus on approaches that follow this paradigm and
are most relevant to our work. For a general overview of land cover change detection in
the field of remote sensing interested readers can consult [10,26]. For a general review on
AI applications of change detection to the field of remote sensing, see [27].

Caye Daudt et al. [5] presented and evaluated various strategies for land cover change
detection, establishing that their best algorithm was a joint multitasking segmentation and
change detection approach. That is, their algorithm simultaneously predicted the semantic
classes on each input image, as well as the binary mask of change between the two.

For the task of buildings change detection, Ji et al. [28] presented a methodology that
is a two-stage process, wherein the first part, they use a building extraction algorithm
from single date input images. In the second part, the binary masks that are extracted
are concatenated together and inserted into a different network that is responsible for
identifying changes between the two binary layers. In order to evaluate the impact of the
quality of the building extraction networks, the authors use two different architectures.
The first, one of the most successful networks to date for instance segmentation, the Mask-
RCNN [29] and the second the MS-FCN (multi scale fully convolutional network) that is
based on the original UNet architecture [30]. The advantage of this approach, according to
the authors, is the fact that they could use unlimited synthetic data for training the second
stage of the algorithm.

Chen et al. [31] used a dual attentive convolutional neural network, i.e., the feature
extractor was a siamese VGG16 pre-trained network. The attention module they used for
vision was both spatial and channel attention, and it was the one introduced in [14] but
with a single head. Training was performed with a contrastive loss function.

Chen and Shi [1] presented the STANet, which consists of a feature extractor based on
ResNet18 [32], and two versions of spatio-temporal attention modules: the Basic spatial-
temporal attention module (BAM) and the pyramid spatial-temporal attention module
(PAM). The authors introduced the LEVIRCD change detection dataset and demonstrated
excellent performance. Their training process facilitates a contrastive loss applied at the
feature pixel level. Their algorithm predicts binary change labels.

Remote Sens. 2021, 13, 3707 4 of 40

Jiang et al. [33] introduced the PGA-SiamNet that uses a dual Siamese encoder that
extracts features from the two input networks. They used VGG16 for feature extraction.
A key ingredient to their algorithm is the co-attention module [34] that was initially
developed for video object segmentation. The authors use it for fusing the extracted
features of each input image from the dual VGG16 encoder.

1.2. Our Contributions

In this work, we developed neural networks using attention mechanisms that empha-
sise areas of interest in two bi-temporal coregistered aerial images. It is the network that
learns what to emphasise, and how to extract features that describe change at a higher level.
To this end, we propose a dual encoder–single decoder scheme that fuses information of
corresponding layers with relative attention and extracts a segmentation mask as a final
layer. This mask designates change for classes of interest and can also be used for the
dual problem of class attribution of change. As in previous work, we facilitate the use
of conditioned multi-tasking [35] that proves crucial for stabilising the training process
and improving performance. In the multitasking setting, the algorithm first predicts the
distance transform of the change mask, then it reuses this information and identifies the
boundaries of the change mask, and, finally, re-uses both distance transform and bound-
aries to estimate the change segmentation mask. In summary, the main contributions of
this work are:

1. We introduce a new set similarity metric that is a variant of the Dice coefficient: the
Fractal Tanimoto similarity measure (Section 2.1). This similarity measure has the
advantage that it can be made steeper than the standard Tanimoto metric towards
optimality, thus providing a finer-grained similarity metric between layers. The level
of steepness is controlled from a depth recursion hyperparameter. It can be used both
as a “sharp” loss function when fine-tuning a model at the latest stages of training, as
well as a set similarity metric between feature layers in the attention mechanism.

2. Using the above set similarity as a loss function, we propose an evolving loss strategy
for fine-tuning the training of neural networks (Section 2.2). This strategy helps to
avoid overfitting and improves performance.

3. We introduce the Fractal Tanimoto Attention Layer (hereafter FracTAL), which is
tailored for vision tasks (Section 2.3). This layer uses the fractal Tanimoto similarity to
compare queries with keys inside the Attention module. It is a form of spatial and
channel attention combined.

4. We introduce a feature extraction building block that is based on the residual
neural network [32] and the fractal Tanimoto Attention (Section 2.4.2). The new
FracTALResNet converges faster to optimality than standard residual networks and
enhances performance.

5. We introduce two variants of a new feature extraction building block, the Compress-
Expand/Expand-Compress unit (hereafter CEECNet unit—Section 2.5.1). This unit
exhibits enhanced performance in comparison with standard residual units and the
FracTALResNet unit.

6. Capitalising on these findings, we introduce a new backbone encoder/decoder
scheme, a macro-topology—the mantis—that is tailored for the task of change detec-
tion (Section 2.5.2). The encoder part is a Siamese dual encoder, where the correspond-
ing extracted features at each depth are fused together with FracTALrelative attention.
In this way, information exchange between features extracted from bi-temporal images
is enforced. There is no need for manual feature subtraction.

7. Given the relative fusion operation between the encoder features at different levels,
our algorithm achieves state-of-the-art performance on the LEVIRCD and WHU
datasets without requiring the use of contrastive loss learning during training
(Section 3.2). Therefore, it is easier to implement with standard deep learning
libraries and tools.

Remote Sens. 2021, 13, 3707 5 of 40

Networks integrating the above-mentioned contributions yielded state-of-the-art
performance for the task of building change detection in two benchmark datasets for
change detection: the WHU [36] and LEVIRCD [1] datasets.

In addition to the previously mentioned sections, the following sections complete the
work. In Section 2.6, we describe the setup of our experiments. In Section 3.1, we perform an
ablation study of the proposed schemes. Finally, in Appendix C, we present various key ele-
ments of our architecture in MXNET/GLUON style pseudocode. A software implementation
of the models that relate to this work can be found on https://github.com/feevos/ceecnet,
(accessed on 6 September 2020).

2. Materials and Methods
2.1. Fractal Tanimoto Similarity Coefficient

In [35], we analysed the performance of the various flavours of the Dice coefficient
and introduced the Tanimoto with a complement coefficient. Here, we further expand our
analysis, and we present a new functional form for this similarity metric. We use it both as
a self-similarity measure between convolution layers in a new attention module and a loss
function for fine-tuning semantic segmentation models.

For two (fuzzy) binary vectors of equal dimension, p and l, whose elements lie in the
range (0, 1), the Tanimoto similarity coefficient is defined:

T(p, l) =
p · l

p2 + l2 − p · l (1)

Interestingly, the dot product between two fuzzy binary vectors is another similarity
measure of their agreement. This inspired us to introduce an iterative functional form of
the Tanimoto:

T 0 ≡ T(p, l) =
p · l

p2 + l2 − p · l (2)

T d =
T d−1(p, l)

T d−1(p, p) + T d−1(l, l)− T d−1(p, l)
(3)

For example, expanding Equation (2) for d = 2, yields:

T 2(p, l) =
p · l

(l2 − p · l + p2)
(

2− p·l
l2−p·l+p2

)2− p·l
(l2−p.l+p2)

(
2− p·l

l2−p·l+p2

)
 (4)

We can expand this for an arbitrary depth d, and then, we get the following simplified
version of the fractal Tanimoto similarity measure:

T d(p, l) =
p · l

2d(p2 + l2)− (2d+1 − 1)p · l (5)

This function (the simplified formula was obtained with MATHEMATICA 11) takes
values in the range (0, 1), and it becomes steeper as d increases. At the limit d → ∞, it
behaves like the integral of the Dirac δ function around point l,

∫
δ(p− l)dp. That is, the

parameter d is a form of annealing “temperature”. Interestingly, although the iterative
scheme was defined with d being an integer, for continuous values d ≥ 0, T d remains
bounded in the interval (0, 1). That is:

T d : <n ×<n → U ⊆ [0, 1] (6)

where n = dim(p) is the dimensionality of the fuzzy binary vectors p, l.

https://github.com/feevos/ceecnet

Remote Sens. 2021, 13, 3707 6 of 40

In the following, we will use the functional form of the fractal Tanimoto with comple-
ment [35], i.e.:

FT d(p, l) ≡ T
d(p, l) + T d(1− p, 1− l)

2
(7)

In Figure 2, we provide a simple example for a ground truth vector l = {0.4, 0.6} and
a continuous vector of probabilities p = {px, py}. On the top panel, we construct density
plots of the Fractal Tanimoto function with complement FT d. The gradient field lines that
point to the ground truth are overplotted. In the bottom panels, we plot the corresponding
3D representations. From left to right, the first column corresponds to d = 0, the second to
d = 3, and the third to d = 5. It is apparent that the effect of the d hyperparameter is to
make the similarity metric steeper towards the ground truth. For all practical purposes
(network architecture, evolving loss function), we use the average fractal Tanimoto loss
(last column) due to having steeper gradients away from optimality. In order to avoid
confusion between the depth d of the fractal Tanimoto loss function and the depth of the
fractal Attention layer (introduced in Section 2.3), we will designate the depth of the loss
function with the symbol D:

〈FT 〉D(p, l) ≡ 1
D

D−1

∑
i=0
FT i(p, l) (8)

The formula is valid for D >= 1; for D = 0, it reverts to the standard fractal Tanimoto
loss: FT D=0(p, l).

0.0 0.5 1.0
px

0.00

0.25

0.50

0.75

1.00

p y

0.480

0.
56

0

0.640

0.720

0.8000.880

0.0 0.5 1.0
px

0.200

0.300

0.400

0.500 0.600 0.
70

0

0.0 0.5 1.0
px

0.
10

0

0.200

0.
30

0

0.0 0.5 1.0
px

0.00

0.25

0.50

0.75

1.00

p y

0.2400.320

0.400

0.480

0.560

0.640

0.720

p
x py

0.00

0.25

0.50

0.75

1.00

p
x py

0.00

0.25

0.50

0.75

1.00

p
x py

0.00

0.25

0.50

0.75

1.00

p
x py

0.00

0.25

0.50

0.75

1.00

Figure 2. Fractal Tanimoto similarity measure. In the top row, we plot the two-dimensional density
maps for the FT similarity coefficient. From left to right, the depths are d ∈ {0, 3, 5}. The last column
corresponds to the average of values up to depth d = 5, i.e., 〈FT 〉5 = (1/5)∑d FT d. In the bottom
figure, we represent the same values in 3D. The horizontal contour plot at z = 1 corresponds to
the Laplacian of the FT . It is observed that as the depth, d, of the iteration increases, the function
becomes steeper towards optimality.

2.2. Evolving Loss Strategy

In this section, we describe a training strategy that modifies the depth of the fractal Tan-
imoto similarity coefficient, when used as a loss function, on each learning rate reduction.
For minimisation problems, the fractal Tanimoto loss is defined through: LD = 1− 〈FT 〉D.
In the following, when we refer to the fractal Tanimoto loss function, it should be under-
stood that this is defined through the similarity coefficient, as described above.

During training and until the first learning rate reduction, we use the standard Tani-
moto with complement FT 0(p, l). The reason for this is that for a random initialization
of the weights (i.e., for an initial prediction point in the space of probabilities away from
optimality), the gradients are steeper towards the best values for this particular loss func-

Remote Sens. 2021, 13, 3707 7 of 40

tion (in fact, for cross entropy are even steeper). This can be seen in Figure 2 in the bottom
row: clearly, for an initial probability vector p = {px, py} away from the ground truth
l = {0.4, 0.6}, the gradients are steeper for D = 0. As training evolves, and the value of
the weights approaches optimality, the predictions approach the ground truth, and the
loss function flattens out. With batch gradient descent (and variants), we are not really
calculating the true (global) loss function but rather a noisy approximate version of it. This
is because in each batch loss evaluation, we are not using all of the data for the gradients
evaluation. In Figure 3, we represent a graphical representation of the true landscape and
a noisy version of it for a toy 2D problem. In the top row, we plot the value of the FT 0

similarity as well as the average value of the loss functions for D = 0, . . . , 9 for the ground
truth vector l = {0.4, 0.6}. In the corresponding bottom rows, we have the same plot,
where we also added random Gaussian noise. In the initial phases of training, the average
gradients are greater than the local values due to noise. As the network reaches optimality,
the average gradient towards optimality becomes smaller and smaller, and the gradients
due to noise dominate the training. Once we reduce the learning rate, the step the optimiser
takes is even smaller; therefore, it cannot easily escape local optima (due to noise). What we
propose is to “shift gears”: once training stagnates, we change the loss function to a similar
but steeper one towards optimality that can provide gradients (on average) that can domi-
nate the noise. Our choice during training is the following set of learning rates and depths
of the fractal Tanimoto loss: {(lr : 10−3,D = 0), (lr : 10−4,D = 10), (lr : 10−5,D = 20)}.
In all evaluations of loss functions for D > 0, we use the average value for all D values
(Equation (8)).

2.3. Fractal Tanimoto Attention

Here, we present a novel convolutional attention layer based on the new similarity
metric and a methodology of fusing information from the output of the attention layer to
features extracted from convolutions.

2.4. Fractal Tanimoto Attention Layer

In the pioneering work of [14], the attention operator is defined through a scaled dot
product operation. For images, in particular, i.e., two-dimensional features, assuming that
q ∈ RCq×H×W is the query, k ∈ RC×H×W the key, and v ∈ RC×H×W its corresponding
value, the (spatial) attention is defined as (see also [37]):

o = softmax
(

q ◦1 k√
d

)
, ∈ RCq×C (9)

Att(q, k, v) = o ◦2 v, ∈ RCq×H×W (10)

Here d is the dimension of the keys, and the softmax operation is with respect to the
first (channel) dimension. The term

√
d is a scaling factor that ensures the Attention layer

scales well even with a large number of dimensions [14]. The operator ◦1 corresponds to
the inner product with respect to the spatial dimensions height, H, and width, W, while
◦2 is a dot product with respect to channel dimensions. This is more apparent in index
notation:

q ◦1 k ≡∑
jk

qijkkl jk ∈ RCq×C (11)

o ≡ softmax(q ◦1 k) ≡ oil

Att(q, k, v) ≡ Attikj ≡ o ◦2 v ≡∑
l

oilvlkj ∈ RCq×H×W

In this formalism, each channel of the query features is compared with each of the
channels of the key values. In addition, there is a 1-1 correspondence between keys and
values, meaning that a unique value corresponds to each key. The point of the dot product is
to emphasise the key-value pairs that are more relevant for the particular query. That is the

Remote Sens. 2021, 13, 3707 8 of 40

dot product selects the keys that are most similar to the particular query. It represents the
projection of queries on the keys space. The softmax operator provides a weighted “view”
of all the values for a particular set of queries, keys, and values or else a “soft” attention
mechanism. In the multi-head attention paradigm, multiple attention heads that follow
the principles described above are concatenated together. One of the key disadvantages of
this formulation when used in vision tasks (i.e., two dimensional features) is the very large
memory footprint that this layer exhibits. For 1D problems, such as Natural Language
Processing, this is not an issue in general.

Remote Sens. 2021, 1, 0 8 of 41

heads that follow the principles described above are concatenated together. One of the
key disadvantages of this formulation when used in vision tasks (i.e., two dimensional
features) is the very large memory footprint that this layer exhibits. For 1D problems, such
as Natural Language Processing, this is not—in general—an issue.

px py

0.0

0.2

0.4

0.6

0.8

1.0

px py

0.0

0.2

0.4

0.6

0.8

1.0

px py

0.0

0.2

0.4

0.6

0.8

1.0

px py

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Fractal Tanimoto similarity measure with noise. On the top row, from left to right is the FT 0(p, l) and
(1/10)∑9

i=0(FT i(p, l)). The bottom row is the same corresponding FT d(p, l) similarity measures, with Gaussian random
noise added. When the algorithmic training approaches optimality with the standard Tanimoto, local noise gradients tend
to dominate over the background average gradient. Increasing the slope of the background gradient at later stages of
training is a remedy to this problem.

Here we follow a different approach. We develop our formalism for the case where
the number of query channels, Cq is identical to the number of key channels, C. However,
if desired, our formalism can work for the general case where Cq 6= C.

Let q ∈ RC×H×W be the query features, k ∈ RC×H×W the keys and v ∈ RC×H×W the
values. In our formalism, it is a requirement for these operators to have values in [0, 1].
This can be easily achieved by applying the sigmoid operator. Our approach is a joint
spatial and channel attention mechanism. With the use of the Fractal Tanimoto similarity
coefficient, we define the spatial, �, and channel, �, similarity between the query, q, and
key, k, features according to:

Figure 3. Fractal Tanimoto similarity measure with noise. On the top row, from left to right, is
the FT 0(p, l), and (1/10)∑9

i=0(FT i(p, l)). The bottom row is the same corresponding FT d(p, l)
similarity measures with Gaussian random noise added. When the algorithmic training approaches
optimality with the standard Tanimoto, local noise gradients tend to dominate over the background
average gradient. Increasing the slope of the background gradient at later stages of training is a
remedy to this problem.

Here, we follow a different approach. We develop our formalism for the case where
the number of query channels, Cq, is identical to the number of key channels, C. However,
if desired, our formalism can work for the general case where Cq 6= C.

Let q ∈ RC×H×W be the query features, k ∈ RC×H×W the keys, and v ∈ RC×H×W the
values. In our formalism, it is a requirement for these operators to have values in [0, 1].
This can be easily achieved by applying the sigmoid operator. Our approach is a joint
spatial and channel attention mechanism. With the use of the Fractal Tanimoto similarity
coefficient, we define the spatial, �, and channel, �, similarity between the query, q, and
key, k, features according to:

T d
�(q, k) =

q � k
2d(q � q + k � k)− (2d+1 − 1)q � k

∈ RC (12)

Remote Sens. 2021, 13, 3707 9 of 40

T d
�(q, k) =

q � k
2d(q � q + k � k)− (2d+1 − 1)q � k

∈ RH×W (13)

where the spatial and channel products are defined as:

q � k = ∑
jk

qijkkijk ∈ RC

q � k = ∑
i

qijkkijk ∈ RH×W

It is important to note that the output of these operators lies numerically within the
range (0, 1), where 1 indicates identical similarity and 0 indicates no correlation between
the query and key. That is, there is no need for normalisation or scaling as is the case for
the traditional dot product similarity.

In our approach, the spatial and channel attention layers are defined with element-wise
multiplication (denoted by the symbol �):

Att�(q, k, v) = T d
�(q, k)� v

Att�(q, k, v) = T d
�(q, k)� v

It should be stressed that these operations do not consider that there is a 1-1 mapping
between keys and values. Instead, we consider a map of one-to-many; that is, a single key
can correspond to a set of values. Therefore, there is no need to use a softmax activation (see
also [38]). The overall attention is defined as the average of the sum of these two operators:

Att(q, k, v) = 0.5(Att� + Att�) (14)

In practice, we use the averaged fractal Tanimoto similarity coefficient with comple-
ment, 〈FT 〉d�/�, both for spatial and channel wise attention.

As stated previously, it is possible to extend the definitions of spatial and channel
products in a way where we compare each of the channels (respectively, spatial pixels)
of the query with each of the channels (respectively, spatial pixels) of the key. However,
this imposes a heavy memory footprint and makes deeper models, even for modern-day
GPUs, prohibitive. This will be made clear with an example of FracTALspatial similarity vs.
the dot product similarity that appears in SAGAN [39] self-attention. Let us assume that
we have an input feature layer of size (B× C× H ×W) = 32× 1024× 16× 16 (e.g., this
appears in the layer at depth 6 of UNet-like architectures, starting from 32 initial features).
From this, three layers are produced of the same dimensionalty, the query, the key, and
value. With the Fractal Tanimoto spatial similarity, T�, the output of the similarity of
query and keys is B× C× 1× 1 = 32× 1024× 1× 1 (Equation (12)). The corresponding
output of the dot similarity of spatial compoments in the self-attention is B× C × C →
32× 1024× 1024 (Equation (11)), having a C-times higher memory footprint.

In addition, we found that this approach did not improve the performance for the
case of change detection and classification. Indeed, one needs to question this for vision
tasks: the initial definition of attention [12] introduced a relative alignment vector, eij,
that was necessary because, for the task of NMT, the syntax of phrases changes from one
language to the other. That is, the relative emphasis with respect to location between two
vectors is meaningful. When we compare two images (features) at the same depth of a
network (created by two different inputs, as is the case for change detection), we anticipate
that the channels (or spatial pixels) will be in correspondence. For example, the RGB (or
hyperspectral) order of inputs, does not change. That is, in vision, the situation can be
different than NLP because we do not have a relative location change as it happens with
words in phrases.

We propose the use of the Fractal Tanimoto Attention Layer (hereafter FracTAL) for
vision tasks as an improvement over the scaled dot product attention mechanism [14] for
the following reasons:

Remote Sens. 2021, 13, 3707 10 of 40

1. The FT similarity is automatically scaled in the region (0, 1); therefore, it does not
require normalisation or activation to be applied. This simplifies the design and
implementation of Attention layers and enables training without ad hoc normalisa-
tion operations.

2. The dot product does not have an upper or lower bound; therefore, a positive value
cannot be a quantified measure of similarity. In contrast, FT has a bounded range of
values in (0, 1). The lowest value indicates no correlation, and the maximum value
perfect similarity. It is thus easier to interpret.

3. Iteration d is a form of hyperparameter, such as “temperature” in annealing. There-
fore, the FT can become as steep as we desire (by modification of the temperature
parameter d), even steeper than the dot product similarity. This can translate to finer
query and key similarity.

4. Finally, it is efficient in terms of the GPU memory footprint (when one considers that
it does both channel and spatial attention), thus allowing the design of more complex
convolution building blocks.

The implementation of the FracTALis given in Listing A.2. The multihead attention is
achieved using group convolutions for the evaluation of queries, keys, and values.

2.4.1. Attention Fusion

A critical part in the design of convolution building blocks enhanced with attention is
the way the information from attention is passed to convolution layers. To this aim, we pro-
pose fusion methodologies of feature layers with the FracTAL for two cases: self attention
fusion and a relative attention fusion, where information from two layers are combined.

2.4.2. Self Attention Fusion

We propose the following fusion methodology between a feature layer, L, and its
corresponding FracTALself-attention layer, A:

F = L + γL�A = L� (1 + γA) (15)

Here, F is the output layer produced from the fusion of L and the Attention layer, A,
� describes element wise multiplication, 1 is a layer of ones such as L, and γ a trainable
parameter initiated at zero. We next describe the reasons why we propose this type
of fusion.

The Attention output is maximal (i.e., close to 1) in areas on the features where it must
“attend” and minimal otherwise (i.e., close to zero). Directly multiplying element-wise the
FracTALattention layer A with the features, L, effectively lowers the values of features in
areas that are not “interesting”. It does not alter the value of areas that “are interesting”.
This can produce loss of information in areas where A “does not attend” (i.e., it does not
emphasize), which would otherwise be valuable at a later stage. Indeed, areas of the image
that the algorithm “does not attend” should not be perceived as empty space [11]. For this
reason, the “emphasised” features, L�A, are added to the original input L. Moreover,
L+ L�A is identical to L in spatial areas where A tends to zero and is emphasised in areas
where A is maximal.

In the initial stages of training, the attention layer, A, does not contribute to L due to
the initial value of the trainable parameter γ0 = 0. Therefore, it does not add complexity
during the initial phase of training, and it allows for an annealing process of the Attention
contribution (see also [31,39]). This property is particularly important when L is produced
from a known performant recipe (e.g., residual building blocks).

In Figure 4a, we present this fusion mechanism for the case of a Residual unit [32,40].
Here, the input layer, Xin, is subject to the residual block sequence of Batch normalisation,
convolutions, and ReLU activations and produces the Xout layer. A separate branch uses
the Xin input to produce the self attention layer A (see Listing A.2). Then we multiply
element-wise the standard output of the residual unit, Xin + Xout, with the 1 + γA layer.
In this way, at the beginning of training, this layer behaves as a residual layer, which has

Remote Sens. 2021, 13, 3707 11 of 40

excellent convergent properties of resnet at initial stages, and at later stages of training, the
Attention becomes gradually more active and allows for greater performance. A software
routine of this fusion for the residual unit, in particular, can be seen in Listing A.4 in the
Appendix C.

FracTAL

BatchNorm

ReLU

Conv2D

BatchNorm

ReLU

Conv2D

(a)

RelAtt122 RelAtt211

expand (nf/2,H,W)

compress (nf,H/2,W/2)

Conv2DN (nf/2,H,W)

Conv2DN (nf/2,H,W)

CE

Conv2DN (nf/2,H,W)

compress (nf/2,H,W)

expand (nf/4,2H,2W)

Conv2DN (nf/2,H,W)

EC

FracTAL

Conv2DN (nf,H,W)

(b)

Figure 4. Left panel (a): the FracTALResidual unit. This building block demonstrates the fusion of the residual block with
the self attention layer FracTALevaluated from the input features. Right panel (b): the CEECNet (Compress–Expand/Expand–
Compress) feature extraction units. The symbol] represents concatenation of features along the channel dimension (for
V1). For version V2, we replace all of the concatenation operations,], followed by the normalised convolution layer with
relative fusion attention layers, as described in Section 2.4.3 (see also Listing A.3).

2.4.3. Relative Attention Fusion

Assuming we have two input layers, L1 and L2, we can calculate the relative attention
of each with respect to the other. This is achieved by using the layer we want to “attend
to” as query and the layer we want to use as information for attention as a key and value.
In practical implementations, the query, the key, and the value layers result after the
application of a convolution layer to some input.

F1 = L1 � [1 + γ1A122(q(L1), k(L2), v(L2))] (16)

F2 = L2 � [1 + γ2A211(q(L2), k(L1), v(L1))] (17)

F = Conv2DN(concat([F1, F2])) (18)

Here, the γ1,2 parameters are initialized at zero, and the concatenation operations
are performed along the channel dimension. Conv2DN is a two-dimensional convolution
operation followed by a normalisation layer, e.g., BatchNorm [41]). An implementation of
this process in MXNET/GLUON pseudocode style can be found in Listing A.3.

The relative attention fusion presented here can be used as a direct replacement of
concatenation followed by a convolution layer in any network design.

Remote Sens. 2021, 13, 3707 12 of 40

2.5. Architecture

We break down the network architecture into three component parts: the micro-
topology of the building blocks, which represents the fundamental constituents of the
architecture; the macro-topology of the network, which describes how building blocks are
connected to one another to maximise performance; and the multitasking head, which is
responsible for transforming the features produced by the micro- and macro-topologies
into the final prediction layers where change is identified. Each of the choices of micro- and
macro-topology has a different impact on the GPU memory footprint. Usually, selecting
very deep macro-topology improves performance, but then this increases the overall
memory footprint and does not leave enough space for using an adequate number of
filters (channels) in each micro-topology. There is obviously a trade off between the micro-
topology feature extraction capacity and the overall network depth. Guided by this, we
seek to maximise the feature expression capacity of the micro-topology for a given number
of filters, perhaps at the expense of consuming computational resources.

2.5.1. Micro-Topology: The CEECNet Unit

The basic intuition behind the construction of the CEEC building block is that it provides
two different, yet complementary, views for the same input. The first view (the CE block—
see Figure 4b) is a “summary understanding” operation (performed in lower resolution
than the input—see also [42–44]). The second view (the EC block) is an “analysis of
detail” operation (performed in higher spatial resolution than the input). It then exchanges
information between these two views using relative attention, and it finally fuses them
together by emphasising the most important parts using the FracTAL.

Our hypothesis and motivation for this approach is quite similar to the scale-space
analysis in computer vision [45]: viewing input features at different scales allows the
algorithm to focus on different aspects of the inputs and thus perform more efficiently.
The fact that by merely increasing the resolution of an image, its content information does
not increase is not relevant here: guided by the loss function, the algorithm can learn
to represent at higher resolution features that otherwise would not be possible in lower
resolutions. We know this from the successful application of convolutional networks in
super-resolution problems [46] as well as (variational) autoencoders [47,48]: in both of
these paradigms, deep learning approaches manage to meaningfully increase the resolution
of features that exist in lower spatial dimension layers.

In the following, we define the volume V of features of dimension (C, H, W) as the product
of the number of their channels (or filters), C (or n f), with their spatial dimensions, height, H,
and width, W, i.e., V = n f · H ·W. Here, C is the number of channels, H and W the spatial
dimensions, height and width, respectively. For example, for each batch dimension, the output
volume of a layer of size (C, H, W) = (32, 256, 256) is V = 32× 2562 = 2097152. The two
branches consist of: a “mini ∪-Net” operation (CE block), which is responsible for summarising
information from the input features by first compressing the total volume of features into half
its original size and then restoring it. The second branch, a “mini ∩-Net” operation (EC block),
is responsible for analysing the input features in higher detail: it initially doubles the volume of
the input features by halving the number of features and doubling each spatial dimension. It
subsequently compresses this expanded volume to its original size. The input to both layers is
concatenated with the output, and then a normed convolution restores the number of channels
to their original input value. Note that the mini ∩-Net is nothing more than the symmetric (or
dual) operation of the mini ∪-Net.

The outputs of the EC and CE blocks are fused together with relative attention fusion
(Section 2.4.3). In this way, the exchange of information between the layers is encouraged.
The final emphasised outputs are concatened together, thus restoring the initial number of
filters, and the produced layer is passed through a normed convolution in order to bind the
relative channels. The operation is concluded with a FracTALresidual operation and fusion
(similar to Figure 4a), where the input is added to the final output and emphasised by the

Remote Sens. 2021, 13, 3707 13 of 40

self attention on the original input. The CEECNet building block is described schematically
in Figure 4b.

The compression operation, C, is achieved by applying a normed convolution layer of
stride equal to 2 (k = 3, p = 1, s = 2) followed by another convolution layer that is identical
in every aspect, except the stride that is now s = 1. The purpose of the first convolution
is to both resize the layer and extract features. The purpose of the second convolution
layer is to extract features. The expansion operation, E, is achieved by first resizing the
spatial dimensions of the input layer using Bilinear interpolation, and then the number
of channels is brought to the desired size by the application of a convolution layer (k = 3,
p = 1, s = 1). Another identical convolution layer is applied to extract further features. The
full details of the convolution operations used in the EC and CE blocks can be found on
Listing A.5.

2.5.2. Macro-Topology: Dual Encoder, Symmetric Decoder

In this section, we present the macro-topology (i.e., backbone) of the architecture
that uses either the CEECNet or the FracTALResNet units as building blocks. We start by
stating the intuition behind our choices and continue with a detailed description of the
macro-topology. Our architecture is heavily influenced by the ResUNet-a model [35]. We
will refer to this macro-topology as the mantis topology.

In designing this backbone, a key question we tried to address is how we can facilitate
exchange of information between features extracted from images at different dates. The
following two observations guided us:

1. We make the hypothesis that the process of change detection between two images
requires a mechanism similar to human attention. We base this hypothesis on the
fact that the time required for identifying objects that changed in an image correlates
directly with the number of changed objects. That is, the more objects a human needs
to identify between two pictures, the more time is required. This is in accordance
with the feature-integration theory of Attention [11]. In contrast, subtracting features
extracted from two different input images is a process that is constant in time, inde-
pendent of the complexity of the changed features. Therefore, we avoid using ad hoc
feature subtraction in all parts of the network.

2. In order to identify change, a human needs to look and compare two images multiple
times, back and forth. We need things to emphasise on image at date 1, based
on information on image at date 2 (Equation (16)) and, vice versa, (Equation (17)).
Furthermore, then we combine both of these pieces of information together (Equation
(18)). That is, exchange information with relative attention (Section 2.4.3) between
the two at multiple levels. A different way of stating this as a question is: what
is important on input image 1 based on information that exists on image 2, and
vice versa?

Given the above, we now proceed in detailing the mantis macro-topology (with
CEECNetV1 building blocks, see Figure 5). The encoder part is a series of building blocks,
where the size of the features is downscaled between the application of each subsequent
building block. Downscaling is achieved with a normed convolution with stride, s = 2,
without using activations. There exist two encoder branches that share identical parameters
in their convolution layers. The input to each branch is an image from a different date,
and the role of the encoder is to extract features at different levels from each input image.
During the feature extraction by each branch, each of the two inputs is treated as an
independent entity. At successive depths, the outputs of the corresponding building block
are fused together with the relative attention methodology, as described in Section 2.4.3, but
they are not used until later in the decoder part. Crucially, this fusion operation suggests
to the network that the important parts of the first layer will be defined by what exists on
the second layer (and vice versa), but it does not dictate how exactly the network should
compare the extracted features (e.g., by demanding the features to be similar for unchanged
areas, and maximally different for changed areas—we tried this approach, and it was not

Remote Sens. 2021, 13, 3707 14 of 40

successful). This is something that the network will have to discover in order to match its
predictions with the ground truth. Finally, the last encoder layers are concatenated and
inserted into the pyramid scene pooling layer (PSPPooling—[35,49]).

HEAD (segm, bound, dist)

CEECNet (20nf,H/20,W/20)

CEECNet (22nf,H/22,W/22)

Resize (2dnf,H/2d-1,W/2d-1)

CEECNet (2dnf,H/2d,W/2d)

Conv2DN (nf,H,W)

CEECNet (2dnf,H/2d,W/2d)

CEECNet (20nf,H/20,W/20)

Conv2DN 1/2

CEECNet (21nf,H/21,W/21)

Conv2DN 1/2

CEECNet (22nf,H/22,W/22)

Conv2DN 1/2

PSPPooling (2dnf,H/2d,W/2d)

FUSE (20nf,H/20,W/20)

FUSE (21nf,H/21,W/21)

FUSE (22nf,H/22,W/22)

FUSE (2d-1nf,H/2d-1,W/2d-1)

Conv2DN (2d-1nf,H/2d-1,W/2d-1)

CEECNet (2d-1nf,H/2d-1,W/2d-1)

Resize (22-1nf,H/22,W/22)

Conv2DN (22nf,H/22,W/22)

Input2 (C,H,W)

Conv2DN (nf,H,W)

CEECNet (20nf,H/20,W/20)

Conv2DN 1/2

CEECNet (21nf,H/21,W/21)

Conv2DN 1/2

CEECNet (22nf,H/22,W/22)

Conv2DN 1/2

Input1 (C,H,W)

Conv2DN (22nf,H/22,W/22)

Conv2DN (20nf,H/20,W/20)

Conv2DN (2d-1nf,H/2d-1,W/2d-1)

FUSE (20nf,H/20,W/20)

Figure 5. The mantis CEECNetV1 architecture for the task of change detection. The Fusion operation
(FUSE) is described with MXNET/GLUON style pseudocode in detail on Listing A.3.

In the (single) decoder part, the network extracts features based on the relative in-
formation that exist in the two inputs. Starting from the output of the PSPPooling layer
(middle of network), we upscale lower resolution features with bilinear interpolation
and combine them with the fused outputs of the decoder with a concatenation operation
followed by a normed convolution layer, in a way similar to the ResUNet-a [35] model.
The mantis CEECNetV2 model replaces all concatenation operations followed by a normed
convolution with a Fusion operation, as described in Listing A.3.

The final features extracted from this macro-topology architecture is the final layer
from the CEECNet unit that has the same spatial dimensions as the first input layers, as well
as the Fused layers from the first CEECNet unit operation. Both of these layers are inserted
into the segmentation HEAD.

2.5.3. Segmentation HEAD

The features extracted from the features extractor (Figure 5) are inserted into a condi-
tioned multitasking segmentation head (Figure 6) that produces three layers: a segmen-
tation mask, a boundary mask, and a distance transform mask. This is identical with the
ResUNet-a “causal” segmentation head, which has shown great performance in a variety
of segmentation tasks [35,50], with two modifications.

Remote Sens. 2021, 13, 3707 15 of 40

The first modification relates to the evaluation of boundaries: instead of using a
standard sigmoid activation for the boundaries layer, we are inserting a scaling parameter,
γ, that controls how sharp the transition from 0 to 1 takes place, i.e.,

sigmoidcrisp(x) = sigmoid(x/γ), γ ∈ [ε, 1] (19)

Here ε = 10−2 is a smoothing parameter. The γ coefficient is learned during training.
We inserted this scaling after noticing in initial experiments that the algorithm needed
improvement close to the boundaries of objects. In other words, the algorithm was having
difficulty separating nearby pixels. Numerically, we anticipate that the distance between
the values of activations of neighbouring pixels is small due to the patch-wise nature of
convolutions. Therefore, a remedy to this problem is making the transition boundary
sharper. We initialise training with γ = 1.

The second modification to the segmentation HEAD relates to balancing the number
of channels of the boundaries and distance transform predictions before re-using them in
the final prediction of segmentation change detection. This is achieved by passing them
through a convolution layer that brings the number of channels to the desired number.
Balancing the number of channels treats the input features and the intermediate predictions
as equal contributions to the final output. In Figure 6, we present schematically the
conditioned multitasking head and the various dependencies between layers. Interested
users can refer to [35] for details on the conditioned multitasking head.

Figure 6. Conditioned multitasking segmentation HEAD. Here, features 1 and 2 are the outputs of
the mantis CEECNet features extractor. The symbol] represents concatenation along the channels
dimension. The algorithm first predicts the distance transform of the classes (regression), then re-uses
this information to estimate the boundaries, and finally, both of these predictions are re-used for the
change prediction layer. Here, Chng Segm stands for the change segmentation layer and mtsk for
multitasking predictions.

2.6. Experimental Design

In this section, we describe the setup of our experiments for the evaluation of the pro-
posed algorithms on the task of change detection. We start by describing the two datasets

Remote Sens. 2021, 13, 3707 16 of 40

we used (LEVIRCD [1] and WHU [36]) as well as the data augmentation methodology
we followed. Then we proceed in describing the metrics used for performance evaluation
and the inference methodology. All models mantis CEECNetV1, V2, and mantis FracTAL
ResNet have an initial number of filters equal to nf = 32, and the depth of the encoder
branches was equal to 6. We designate these models with D6nf32.

2.6.1. LEVIRCD Dataset

The LEVIR-CD change detection dataset [1] consists of 637 pairs of VHR aerial images
of resolution 0.5m per pixel. It covers various types of buildings, such as villa residences,
small garages, apartments, and warehouses. It contains 31,333 individual building changes.
The authors provide a train/validation/test split, which standardises the performance
process. We used a different split for training and validation; however, we used the
test set the authors provide for reporting performance. For each tile from the training
and validation set, we used ∼47% of the area for training and the remaining ∼53% for
validation. For a rectangle area with sides of length a and b, this is achieved by using as
training area the rectangle with sides a′ = 0.6838 a and b′ = 0.6838 b, i.e., training area =
0.68382 ab ≈ 0.47 ab. Then val area = 1.− train area ≈ 0.53total area. From each of
these areas, we extracted chips of size 256× 256. These are overlapping in each dimension
with stride equal to 256/2 = 128 pixels.

2.6.2. WHU Building Change Detection

The WHU building change dataset [36] consists of two aerial images (2011 and 2016)
that cover an area of ∼20 km2, which was changed from 2011 (earthquake) to 2016. The
images resolution is 0.3 m spatial resolution. The dataset contains 12,796 buildings. We
split the triplets of images and ground truth change labels into three areas with ratio 70%
for training and validation and 30% for testing. We further split the 70% part into ∼47%
area for training and ∼53% area for validation, in a way similar to the split we followed
for each tile of the LEVIRCD dataset. The splitting can be seen in Figure 7. Note that the
training area is spatially separated from the test area (the validation area is in between
the two). The reason for the rather large train/validation ratio is for us to ensure there
is adequate spatial separation between training and test areas, thus minimising spatial
correlation effects.

Figure 7. Train–validation–test split of the WHU dataset. The yellow (dash-dot line) rectangle
represents the training data. The area between the magenta (solid line) and the yellow (dash-dot)
rectangles represents the validation data. Finally, the cyan rectangle (dashed) is the test data. The
reasoning for our split is to include in the validation data both industrial and residential areas and
isolate (spatially) the training area from the test area in order to avoid spurious spatial correlation
between training/test sites. The train–validation–test ratio split is train:val:test ≈ 33:37:30.

Remote Sens. 2021, 13, 3707 17 of 40

2.6.3. Data Preprocessing and Augmentation

We split the original tiles into training chips the size of F2 = 2562 by using a sliding
window methodology with stride s = F/2 = 128 pixels (the chips are overlapping in half
the size of the sliding window). This is the maximum size we can fit to our architecture
due to GPU memory limitations that we had at our disposal (NVIDIA P100 16GB). With
this batch size, we managed to fit a batch size of 3 per GPU for each of the architectures we
trained. Due to the small batch size, we used GroupNorm [51] for all normalisation layers.

The data augmentation methodology we used during training our network was the
one used for semantic segmentation tasks as described in [35]. That is, random rotations
with respect to a random centre with a (random) zoom in/out operation. We also imple-
mented random brightness and random polygon shadows. In order to help the algorithm
explicitly on the task of change detection, we implemented time reversal (reversing the
order of the input images should not affect the binary change mask) and random identity
(we randomly gave as input one of the two images, i.e., null change mask). These latter
transformations were implemented at a rate of 50%.

2.6.4. Metrics

In this section, we present the metrics we used for quantifying the performance of our
algorithms. With the exception of the Intersection over Union (IoU) metric, for the evalua-
tion of all other metrics, we used the PYTHON library PYCM as described in [52]. The statis-
tical measures we used in order to evaluate the performance of our modelling approach
are pixel-wise precision, recall, F1 score, Matthews Correlation Coefficient (MCC) [53], and
the Intersection over union. These are defined through:

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2
precision× recall
precision + recall

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

IoU =
TP

TP + FN + FP

2.6.5. Inference

In this section, we provide a brief description of the model selection after training
(i.e., which epochs will perform best on the test set) as well as the inference methodology
we followed for large raster images that exceed the memory capacity of modern-day GPUs.

2.6.6. Inference on Large Rasters

Our approach is identical to the one used in [35], with the difference that now we are
processing two input images. Interested readers that want to know the full details can refer
to Section 3.4 of [35].

During inference on test images, we extract multiple overlapping windows the size of
256× 256 with a step (stride) size of 256/4 = 64 pixels. The final prediction “probability”,
per pixel, is evaluated as the average “probability” over all inference windows that overlap
on the given pixel. In this definition, we refer to “probability” as the output of the softmax
final classification layer, which is a continuous value in the range (0, 1). It is not a true
probability in the statistical sense; however, it does express the confidence of the algorithm
in obtaining the inference result.

With this overlapping approach, we make sure that the pixels that are closer to the
edges and correspond to boundary areas for some inference windows appear closer to the
centre area of the subsequent inference windows. For the boundary pixels of the large
raster, we apply reflect padding before performing inference [30].

Remote Sens. 2021, 13, 3707 18 of 40

2.6.7. Model Selection Using Pareto Efficiency

For monitoring the performance of our modelling approach, we usually rely on the
MCC metric on the validation dataset. We observed, however, that when we perform
simultaneously learning rate reduction and 〈FT 〉D depth increase, the MCC initially
decreases (indicating performance drop), while the 〈FT 〉D similarity is (initially) strictly
increasing. After training starts to stabilise around some optimality region (with the
standard noise oscillations), there are various cases where the MCC metric and the 〈FT 〉D
similarity coefficient do not agree on which is the best model. To account for this effect and
avoid losing good candidate solutions, we evaluate the average of the inference output of a
set of the best candidate models. These best candidate models are selected according to the
models that belong to the Pareto front of the most-evolved solutions. We use all the Pareto
front [54] model’s weights as acceptable solutions for inference. A similar approach was
followed for the selection of hyperparameters for optimal solutions in [50].

In Figure 8, we plot, in the top panel, the evolution of the MCC and 〈FT 〉D for D = 30.
Clearly, these two performance metrics do not always agree. For example, the 〈FT 〉30 is
close to optimality in the approximate epoch ∼250, while the MCC is clearly suboptimal.
We highlight the two solutions that belong to the pareto front with filled circles (cyan
dots). In the bottom panel, we plot the correspondence of the MCC values with the 〈FT 〉30

similarity metric. The two circles show the corresponding non-dominated Pareto solutions
(i.e., best candidates).

0.9832

0.9834

M
C

C

250 275 300 325 350 375 400 425
epoch

0.6975

0.6980

〈F
T
〉30

0.9828 0.9830 0.9832 0.9834 0.9836 0.9838
MCC

0.6970

0.6975

0.6980

0.6985

0.6990

〈F
T
〉30

260

280

300

320

340

360

380

400

ep
o

ch

Figure 8. Pareto front selection after the last reduction in the learning rate. The bottom panel
designates with open cyan circles the two points that are equivalent in terms of quality prediction
when both MCC and 〈FT 〉 are taken into account. The top two panels show the corresponding
evolutions of these measures during training. There, the Pareto optimal points are designated with
full circle dots (cyan).

3. Results

In this section, we first present an ablation study of the various modules and tech-
niques we introduce. Then, we report the quantitative performance of the models we de-
veloped for the task of change detection on the LEVIRCD [1] and WHU [36] datasets. All of
the inference visualisations are performed with models having the proposed FracTALdepth
d = 5, although this is not always the best performant network.

Remote Sens. 2021, 13, 3707 19 of 40

3.1. FracTALUnits and Evolving Loss Ablation Study

In this section, we present the performance of the FracTAL ResNet [32,40] and CEECNet
units we introduced against ResNet and CBAM [18] baselines as well as the effect of
the evolving LD = 1 − 〈FT 〉D loss function on training a neural network. We also
present a qualitative and quantitative analysis on the effect of the depth parameter in the
FracTALbased on the mantis FracTALResNet network.

3.1.1. FracTALBuilding Blocks Performance

We construct three identical networks in the macro-topological graph (backbone) but
different in micro-topology (building blocks). The first two networks are equipped with
two different versions of CEECNet: the first is identical with the one presented in Figure 4b.
The second is similar to the one in Figure 4b, with all concatenation operations that are
followed by normed convolutions being replaced with Fusion operations, as described in
Listing A.3. The third network uses as building blocks the FracTALResNet building blocks
(Figure 4a). Finally, the fourth network uses standard residual units as building blocks,
as described in [32,40] (ResNet V2). All building blocks have the same dimensionality of
input and output features. However, each type of building block has a different number of
parameters. By keeping the dimensionality of input and output layers identical to all layers,
we believe the performance differences of the networks will reflect the feature expression
capabilities of the building blocks we compare.

In Figure 9, we plot the validation loss for 300 epochs of training on CIFAR10 dataset [55]
without learning rate reduction. We use cross entropy loss and Adam optimizer [56]. The
backbone of each of the networks is described in Table A1. It can be seen that the con-
vergence and performance of all building blocks equipped with the FracTALoutperform
standard Residual units. In particular, we find that the performance and convergence prop-
erties of the networks follow: ResNet 〈 FracTALResNet 〈 CEECNetV1 〈 CEECNetV2. The
performance difference between FracTALResNet and CEECNetV1 will become more clearly
apparent in the change detection datasets. The V2 version of CEECNet that uses Fusion
with relative attention (cyan solid line) instead of concatenation (V1—magenta dashed
line) for combining layers in the Compress-Expand and Expand-Compress branches has
superiority over V1. However, it is a computationally more intensive unit.

0 50 100 150 200 250 300
epoch

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

va
lid

at
io

n
ac

c

CEECNet V2

CEECNet V1

FracTAL ResNet

ResNetV2

Figure 9. Comparison of the V1 and V2 versions of CEECNet building blocks with a FracTALResNet
implementation and a standard ResNet V2 building blocks. The models were trained for 300 epochs
on CIFAR10 with standard cross entropy loss.

3.1.2. Comparing FracTALwith CBAM

Having shown the performance improvement over the residual unit, we proceed
in comparing the FracTALproposed attention with a modern attention module and, in
particular, the Convolution Block Attention Module (CBAM) [18]. We construct two net-
works that are identical in all aspects except the implementation of the attention used.

Remote Sens. 2021, 13, 3707 20 of 40

We base our implementation on a publicly available repository that reproduces the results
of [18]—written in PYTORCH (https://github.com/luuuyi/CBAM.PyTorch, accessed on
1 February 2021)—that we translated into the MXNET framework. From this implemen-
tation, we use the CBAM-resnet34 model, and we compare it with a FracTAL-resnet34
model, i.e., a model that is identical to the previous one, with the exception that we replaced
the CBAM attention with the FracTAL(attention). Our results can be seen in Figure 10, where
a clear performance improvement is evident merely by changing the attention layer used.
The improvement is of the order of 1%, from 83.37% (CBAM) to 84.20% (FracTAL), suggesting
that the FracTALhas better feature extraction capacity than the CBAM layer.

0 200 400 600 800 1000
epoch

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

va
lid

at
io

n
ac

cu
ra

cy

FracTAL

CBAM

Figure 10. Performance improvement of the FracTAL-resnet34 over CBAM-resnet34: replacing
the CBAM attention layers with FracTALones for two otherwise identical networks results in 1%
performance improvement.

3.1.3. Evolving Loss

We continue by presenting experimental results on the performance of the evolving
loss strategy on CIFAR10 using two networks: one with standard ResNet building blocks
and one with CEECNetV1 units. The macro-topology of the networks is identical to the
one in Table A1. In addition, we also demonstrate performance differences on the change
detection task by training the mantis CEECNetV1 model on the LEVIRCD dataset with
static and evolving loss strategies for FracTALdepth, d = 5.

In Figure 11a, we demonstrate the effect of this approach: we train the network on
CIFAR10 with standard residual blocks (top panel [32,40]) under the two different loss
strategies. In both strategies, we reduce the initial learning rate by a factor of 10 at epochs
250 and 350. In the first strategy, we train the networks with FT D=0. In the second strategy,
we evolve the depth of the fractal Tanimoto loss function: we start by training with FT D=0,
and on the two subsequent learning rate reductions, we use 〈FT 〉D=15 and 〈FT 〉D=30. In
the top panel, we plot the validation accuracy for the two strategies. The performance gain
following the evolving depth loss is ∼0.25% in validation accuracy. In the bottom panel,
we plot the validation accuracy for the CEECNetV1 -based models. Here, the evolution
strategy is same as above with the difference that we use different depths for the FT loss
(to observe potential differences). These are D ∈ {0, 10, 20}. Again, the difference in the
validation accuracy is ∼ +0.22% for the evolving loss strategy.

https://github.com/luuuyi/CBAM.PyTorch

Remote Sens. 2021, 13, 3707 21 of 40

0.86

0.88

0.90

0.92

0.94

va
lid

at
io

n
ac

cu
ra

cy

ResNet units

evolving depth ∈ {0, 15, 30}
static depth = 0

0 100 200 300 400 500 600
epoch

0.88

0.89

0.90

0.91

0.92

0.93

0.94

va
lid

at
io

n
ac

cu
ra

cy

CEECNetV1 units

evolving depth ∈ {0, 10, 20}
static depth = 0

(a)

0 100 200 300 400 500 600
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

va
lid

at
io

n
ac

cu
ra

cy

depth=0

depth=3

depth=6

(b)

Figure 11. Experimental results with the evolving loss strategy for the CIFAR10 dataset. Left panel (a): Training of two
classification networks with static and evolving loss strategies. The two networks have identical macro-topologies but
different micro-topologies. The first network (top) uses standard Residual units for its building blocks, while the second
(bottom) uses CEECNetV1 units. The networks are trained with a static FT (D = 0) loss strategy and an evolving one. We
increase the depth D of the LD = 1− 〈FT 〉D(p, l) loss function with each learning rate reduction. The vertical dashed
lines designate epochs where the learning rate was scaled to 1/10th of its original value. The validation accuracy is mildly
increased, although there is a clear difference. Right panel (b): Training on CIFAR10 of a network with standard ResNet
building blocks and fixed depth, D, of the LD = 1− 〈FT D〉 loss. The vertical dashed lines designate epochs where the
learning rate was scaled to 1/10th of its original value. As the depth of iteration, D, increases (D remains constant for each
experiment), the convergence speed of the validation accuracy degrades.

We should note that we observed performance degradation by using the LD = 1−〈FT 〉D
loss for D > 1 for training (from random weights). This is evident in Figure 11b where we
train from scratch on CIFAR10 three identical models with a different depth for the FT D

function: D = (0, 3, 6). It is seen that as the hyperparameter D increases, the performance of
the validation accuracy degrades. We consider that this happens due to the low value of the
gradients away from optimality, as it requires the network to train longer to reach the same
level of validation accuracy. In contrast, the greatest benefit we observed by using this training
strategy is that the network can avoid overfitting after the learning rate reduction (provided
that the slope created by the choice of depth D is significant) and has the potential to reach
higher performance.

Next, we perform a test on evolving vs. static loss strategy on the LEVIR CD change
detection dataset, using the CEECNetV1 units, as can be seen in Table 1. The CEECNetV1
unit, trained with the evolving loss strategy, demonstrates +0.856% performance increase
on the Interesection over Union (IoU) and a +0.484% increase in MCC. Note that, for the
same FracTALdepth, d = 5, the FracTALResNet network trained with the evolving loss
strategy performs better than the CEECNetV1 that is trained with the static loss strategy
(D = 0), while it falls behind the CEECNetV1 trained with the evolving loss strategy. We
should also note that performance increment is larger in comparison to the classification
task on CIFAR10, reaching almost ∼1% for the IoU.

3.1.4. Performance Dependence on FracTALDepth

In order to understand how the FracTALlayer behaves with respect to different
depths, we train three identical networks, the mantis FracTALResNet (D6nf32), using
FracTALdepths in the range d ∈ {0, 5, 10}. The performance results on the LEVIRCD
dataset can be seen in Table 1. It seems the three networks perform similarly (they all
achieve SOTA performance on the LEVIRCD dataset), with the d = 10 having top perfor-
mance (+0.724% IoU), followed by the d = 0 (+0.332%IoU), and, lastly, the d = 5 network
(baseline). We conclude that the depth d is a hyperparameter dependent on the problem at

Remote Sens. 2021, 13, 3707 22 of 40

task that users of our method can choose to optimise against. Given that all models have
competitive performance, it seems that the proposed depth d = 5 is a sensible choice.

Table 1. Model comparison on the LEVIR building change detection dataset. We designate with bold font the best values,
with underline the second best, and with round brackets, () the third best model. All of our frameworks (D6nf32) use
the mantis macro-topology and achieve state-of-the-art performance. Here, evo represents evolving loss strategy, sta
represents static loss strategy, and the depth d refers to the FT similarity metric of the FracTAL(attention) layer. In the last
column, we provide the number of trainable parameters for each model.

Model FracTALFracTALFracTAL Depth Loss Strategy Precision Recall F1 MCC IoU Model Params

Chen and Shi [1] - - 83.80 91.00 87.30 - - -

CEECNetV1 d = 5 sta, D ∈ {0, 10, 20, 30} 93.36 89.46 91.37 90.94 84.10 49.2 M
CEECNetV1 d = 5 evo, D ∈ {0, 10, 20, 30} 93.73 (89.93) (91.79) (91.38) (84.82) 49.2 M
CEECNetV2 d = 5 evo, D ∈ {0, 10, 20, 30} 93.81 89.92 91.83 91.42 84.89 92.4 M

FracTALResNet d = 0 evo, D ∈ {0, 10, 20, 30} 93.50 89.79 91.61 91.20 84.51 20.1 M
FracTALResNet d = 5 evo, D ∈ {0, 10, 20, 30} 93.60 89.38 91.44 91.02 84.23 20.1 M
FracTALResNet d = 10 evo, D ∈ {0, 10, 20, 30} (93.63) 90.04 91.80 91.39 84.84 20.1 M

In Figure 12, we visualise the features of the last convolution before the multitask-
ing segmentation head for FracTALdepth d = 0 (left panel) and d = 10 (right panel).
The features at different depths appear similar, all identifying the regions of interest clearly.
To the human eye, according to our opinion, the features for depth d = 10 appear slightly
more refined in comparison to the features corresponding to depth d = 0 (e.g., by com-
paring the images in the corresponding bottom rows). The entropy of the features for
d = 0 (entropy: 15.9982) is negligibly higher (+0.00625 %) than for the case d = 10 (entropy:
15.9972), suggesting both features have the same information content for these two models.
We note that, from the perspective of information compression (assuming no loss of infor-
mation), lower entropy values are favoured over higher values, as they indicate a better
compression level.

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

(a) FracTALdepth d = 0.

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0.5

0.0

0.5

1.0

(b) FracTALdepth d = 10.

Figure 12. Visualization of the last features (before the multitasking head) for the mantisFracTALResNet models of
FracTALdepth d = 0 (left pannel) and d = 10 (right pannel). The features appear similar. For each panel, the top left first
three images are the input image at date t1, the input image at date t2, and the ground truth mask.

Remote Sens. 2021, 13, 3707 23 of 40

3.2. Change Detection Performance on LEVIRCD and WHU Datasets
3.2.1. Performance on LEVIRCD

For this particular dataset, a fixed test set is provided, and a comparison with meth-
ods that other authors followed is possible. Both FracTAL ResNet and CEECNet (V1, V2)
outperform the baseline [1] with respect to the F1 score by ∼5%.

In Figure 13 (see also Figure 1), we present the inference of the CEECNet V1 algorithm
for various images from the test set. For each row, from left to right, we have input
image at date 1, input image at date 2, ground truth mask, inference (threshold = 0.5), and
algorithm’s confidence heat map (this should not be confused with statistical confidence).
It is interesting to note that the algorithm has zero doubt in areas where buildings exist
in both input images. That is, it is clear our algorithm identifies change in areas covered
by buildings and not building footprints. In Table 1, we present numerical performance
results of both FracTALResNet as well as CEECNet V1 and V2. All metrics, precision, recall,
F1, MCC, and IoU are excellent. The mantis CEECNet for FracTALdepth d = 5 outperforms
the mantis FracTAL ResNet by a small numerical margin; however, the difference is clear.
This difference can also be seen in the bottom panel of Figure 16. We should also note
that the numerical difference on, say, the F1 score, does not translate to equal portions
of quality difference in images. For example, a 1% difference in the F1 score may have
a significant impact on the quality of inference. We further discuss this in Section 4.1.
Overall, the best model is mantis CEECNet V2 with FracTALdepth d = 5. Second best is
the mantis FracTALResNet with FracTALdepth d = 10. Among the same set of models
(mantis FracTALResNet), it seems that depth d = 10 performs best; however, we do not
know if this generalises to all models and datasets. We consider that FracTALdepth d is
a hyperparameter that needs to be fine-tuned for optimal performance, and, as we have
shown, the choice d = 5 is a sensible one as in this particular dataset, it provided us with
state-of-the-art results.

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13. Cont.

Remote Sens. 2021, 13, 3707 24 of 40

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13. Examples of inferred change detection on some test tiles from the LEVIRCD dataset of the
mantis CEECNetV1 model (evolving loss strategy, FracTALdepth d = 5). For each row, from left to
right, input image date 1, input image date 2, ground truth, change prediction (threshold 0.5), and
confidence heat map.

3.2.2. Performance on WHU

In Table 2, we present the results of training the mantis network with FracTALResNet
and CEECNetV1 building blocks. Both of our proposed architectures outperform all other
modelling frameworks, although we need to stress that each of the other authors followed
a different splitting strategy of the data. However, with our splitting strategy, we used only
32.9% of the total area for training. This is significantly less than the majority of all other
methods we report here, and we should anticipate a significant performance degradation
in comparison with other methods. In contrast, despite the relatively smaller training set,
our method outperforms other approaches. In particular, Ji et al. [28] used 50% of the
raster for training and the other half for testing (Figure 10 in their manuscript). In addition,
there is no spatial separation between training and test sites, as it exists in our case, and this
should work in their advantage. Furthermore, the use of a larger window for training (their
extracted chips are of spatial dimension 512× 512) increases in principle the performance
because it includes more context information. There is a trade-off here though, in that using
a larger window size reduces the number of available training chips; therefore, the model
sees a smaller number of chips during training. Chen et al. [31] randomly split their training
and validation chips. This should improve performance because there is a tight spatial
correlation for two extracted chips that are in geospatial proximity. Cao et al. [57] used as
a test set ∼20% of the total area of the WHU dataset; however, they do not specify the
splitting strategy they followed for the training and validation sets. Finally, Liu et al. [58]
used approximately ∼10% of the total area for the reporting test score performance. They
also do not mention their splitting strategy.

Table 2. Model comparison on the WHU building change detection dataset. We designate with bold
font the best values, with underline the second best, and with round brackets, (), the third best
model. Ji et al. [28] presented two models for extracting buildings prior to estimating the change
mask. These were the Mask-RCNN (in table: M1) and MS-FCN (in table: M2). Our models consume
input images of a size of 256× 256 pixels. With the exception of [58] that uses the same size, all other
results consume inputs of a size of 512× 512 pixels.

Model FracTALFracTALFracTAL Depth Loss Strategy Precision Recall F1 MCC IoU

Ji et al. [28] M1 - - 93.100 89.200 (91.108) - (83.70)
Ji et al. [28] M2 - - 93.800 87.800 90.700 - 83.00
Chen et al. [31] - - 89.2 (90.5) 89.80 - -
Cao et al. [57] - - (94.00) 79.37 86.07 - -
Liu et al. [58] - - 90.15 89.35 89.75 - 81.40

FracTALResNet d = 5 evo, D ∈ {0, 10, 20, 30} 95.350 90.873 93.058 92.892 87.02
CEECNetV1 d = 5 evo, D ∈ {0, 10, 20, 30} 95.571 92.043 93.774 93.616 88.23

Remote Sens. 2021, 13, 3707 25 of 40

In Figure 14, we plot a set of examples of inference on the WHU dataset. The corre-
spondence of the images in each row is identical to Figure 13, with the addition that we
denote with blue rectangles the locations of changed buildings (true positive predictions)
and missed changes from our model (false negative) with red squares. It can be seen that
the most difficult areas are the ones that are heavily populated/heavily built up, and the
changes are small area buildings. In Figure A1, we plot from left to right, the test area
on date 1, the test area on date 2, the ground truth mask, and the confidence heat map of
these predictions.

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 14. A sample of change detection on windows the size of 1024× 1024 from the WHU dataset. Inference is with
the mantis CEECNetV1 model. The ordering of the inputs, for each row, is as in Figure 13. We indicate with blue boxes
successful findings and with red boxes missed changes on buildings.

In this table, we could not include [33] that report performance results evaluated only
on the changed pixels and not the complete test images. Thus, they are missing out all false

Remote Sens. 2021, 13, 3707 26 of 40

positive predictions that can have a dire impact on the performance metrics. They report
precision: 97.840, recall: 97.01, F1: 97.29, and IoU: 97.38.

3.3. The Effect of Scaled Sigmoid on the Segmentation HEAD

Starting from an initial value γ = 1 of the scaled sigmoid boundary layer, the fully
trained model mantis CEECNetV1 learns the following parameters that control how “crisp”
the boundaries should be, or else, how sharp the decision boundary should be:

γLVR
sigmoid = 0.610

γWHU
sigmoid = 0.625

The deviation of these coefficients from their initial values demonstrates that the
network indeed finds it useful to modify the decision boundary. In Figure 15, we plot the
standard sigmoid function (γ = 1) and the sigmoid functions recovered after training on
the LEVIRCD and WHU datasets.

The algorithm in both cases learns to modify the decision boundary by making it
sharper. This means that for two nearby pixels, one belonging to a boundary and the other
to a background class, the numerical distance between them needs to be smaller to achieve
class separation in comparison with standard sigmoid. Otherwise, a small δx change is
sufficient to transition between the boundary and no-boundary classes.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

0.0

0.2

0.4

0.6

0.8

1.0

s
i
g
m
o
i
d

(x
/γ

)

γWHU = 0.610

γLVR = 0.624

γ = 1

Figure 15. Trainable scaling parameters, γ, for the sigmoid activation, i.e., sigmoid(x/γ), that are
used in the prediction of change mask boundary layers.

4. Discussion

In this section, we comment on the qualitative performance of the models we developed
for the task of change detection on the LEVIRCD [1] and WHU [36] datasets. The comparison
between CEECNet V1 and FracTALResNet models is for the case of FracTALdepth d = 5.

4.1. Qualitative CEECNet and FracTALPerformance

Although both CEECNet V1 and FracTALResNet achieve a very high MCC (Figure 16),
the superiority of CEECNet for the same FracTALdepth d = 5 is evident in the inference
maps in both the LEVIRCD (Figure 17) and WHU (Figure 18) datasets. This confirms
their relative scores (Tables 1 and 2) and the faster convergence of CEECNet V1 (Figure 9).
Interestingly, CEECNet V1 predicts change with more confidence than FracTALResNet
(Figures 17 and 18), even when it errs, as can be seen from the corresponding confidence
heat maps. The decision on which of the models one should use is a decision to be made
with respect to the relative “cost” of training each model, available hardware resources,
and the performance target goal.

Remote Sens. 2021, 13, 3707 27 of 40

0.925

0.945

0.965

0.985

M
C

C

WHU

CEECNet V1

FracTAL ResNet

0 50 100 150 200 250 300 350
epoch

0.970

0.975

0.980

0.985

M
C

C

LEVIR-CD

CEECNet V1

FracTAL ResNet

Figure 16. mantis CEECNetV1 vs. mantis FracTALResNet (FracTALdepth, d = 5) evolution per-
formance on change detection validation datasets. The top panel corresponds to the LEVIRCD
dataset. The bottom panel to the WHU dataset. For each network, we followed the evolving loss
strategy: there are two learning rate reductions followed by two scaling ups of the 〈FT 〉d loss
function. All four training histories avoid overfitting, thanks to making the loss function sharper
towards optimality.

4.2. Qualitative Assesment of the Mantis Macro-Topology

A key ingredient of our approach on the task of change detection is that we emphasise
the importance of avoiding using the difference of features to identify changes. Instead, we
propose the exchange of information between features extracted from images at different
dates with the concept of relative attention (Section 2.5.2) and fusion (Listing A.3). In this
section, our aim is to gain insight into the behaviour of the relative attention and fusion
layers and compare them with the features obtained by the difference of the outputs of
convolution layers of images at different dates. We use the outputs of layers of a trained
mantis FracTALResNet model, trained on LEVIRCD with FracTALdepth d = 10.

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

Figure 17. Cont.

Remote Sens. 2021, 13, 3707 28 of 40

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

Figure 17. Samples of relative quality change detection on test tiles of size 1024× 1024 from the LEVIRCD dataset. For
each row from left to right: input image date 1, input image date 2, ground truth, and confidence heat maps of mantis
CEECNetV1 and mantis FracTALResNet, respectively.

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

Figure 18. Cont.

Remote Sens. 2021, 13, 3707 29 of 40

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

date 1 date 2 Ground Truth mantis-CEECNet mantis-ResNet

0.0

0.2

0.4

0.6

0.8

1.0

Figure 18. As in Figure 17 for sample windows of size 2048× 2048 from the WHU dataset.

In Figure 19, we visualise the features of the first relative attention layers (channels = 32,
spatial size 256× 256, ratt12 (left panel) and ratt21 (right panel) for a set of image patches
belonging to the test set (size: 3× 256× 256). Here, the notation ratt12 indicates that the
query features come from the input image at date t1, while the key/value features are ex-
tracted from the input image at date t2. Similar notation is applied for the relative attention,
ratt21. Starting from the top left corner, we provide the input image at date t1, the input image
at date t2, and the ground truth mask of change, and after that, we visualise the features as
single channel images. Each feature (i.e., image per channel) is normalised in the range of
(−1, 1) for visualisation purposes. It can be seen that the algorithm emphasises from the early
stages (i.e., first layers) to structures containing buildings and boundaries of these. In particular,
the ratt12 (left panel) emphasises boundaries of buildings that exist on both images. It also
seems to represent all buildings that exist in both images. The ratt21 layer (right panel) seems
to emphasise the buildings that exist on date 1 more but not on date 2. In addition, in both
relative attention layers, emphasis on roads and pavements is given.

In Figure 20, we visualise the difference of features of the first convolution layers
(channels = 32, spatial size 256 × 256—left panel) and the fused features (right panel)
obtained using the relative attention and fusion methodology (Listing A.3). Some key
differences between the two is that we observe that there is less variability within channels
in the output of the fusion layer in comparison with the difference of features. In order to
quantify the information content of the features, we calculated the Shanon entropy of the
features for each case, and we found that the fusion features have half the entropy (11.027)
in comparison with the entropy of the difference features (20.97). A similar entropy ratio
was found for all images belonging to the test set. This means that the fusion features are
less “surprising” than the difference features. This may suggest that the fusion provides a
better compression of information in comparison with the difference of layers, assuming
both layers have the same information content. It may also mean that the fusion layers
have less information content than the difference features, i.e., they are harmful for the
change detection process. However, if this was the case, our approach would fail to achieve
state-of-the-art performance on the change detection datasets. Therefore, we conclude that
the lower entropy value translates to better encoding of information in comparison with
the difference of layers.

Remote Sens. 2021, 13, 3707 30 of 40

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

(a) Relative attention units ratt12.

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

(b) Relative attention units ratt21.

Figure 19. Visualization of the relative attention units, ratt12 (left pannel) and ratt21 (right pannel), for the mantis
FracTALResNet with FracTALdepth, d = 10. These come from the first feature extractors (channels = 32, filter spatial size
256× 256). Here, ratt12 is the relative attention where for query we use input at date t1, and the key/value filters are
created from input at date t2. In the top left rows for each panel, we have input image at date t1, input image at date t2, and
ground truth building change labels, followed by the visualisation of each of the 32 channels of the features.

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

(a) Filter differences.

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

(b) Filter fusions.
Figure 20. For the same model as in Figure 19, we plot the difference of the first feature extractor blocks (left panel) vs.
the first Fusion feature extraction block (right pannel). The entropy of the fusion features is half that of the difference
channels. This means there is less “surprise” in the fusion filters in comparison with the difference of filters for the same
trained network.

5. Conclusions

In this work, we propose a new deep learning framework for the task of semantic
change detection on very high-resolution aerial images, presented here for the case of
changes in buildings. This framework is built on top of several novel contributions that
can be used independently in computer vision tasks. Our contributions are:

1. A novel set similarity coefficient, the fractal Tanimoto coefficient, that is derived from
a variant of the Dice coefficient. This coefficient can provide finer detail of similarity
at a desired level (up to a delta function), and this is regulated by a temperature-like
hyperparameter, d (Figure 2).

2. A novel training loss scheme, where we use an evolving loss function, that changes ac-
cording to learning rate reductions. This helps avoid overfitting and allows for a small
increase in performance (Figure 11a,b). In particular, this scheme provided a ∼0.25%
performance increase in validation accuracy on CIFAR10 tests, and performance
increase of ∼0.9% on IoU and ∼0.5% on MCC on the LEVIRCD dataset.

Remote Sens. 2021, 13, 3707 31 of 40

3. A novel spatial and channel attention layer, the fractal Tanimoto Attention Layer
(FracTAL—see Listing A.2), that uses the fractal Tanimoto similarity coefficient as
a means of quantifying the similarity between query and key entries. This layer is
memory efficient and scales well with the size of input features.

4. A novel building block, the FracTALResNet (Figure 4a), that has a small memory foot-
print and excellent convergent and performance properties that outperform standard
ResNet building blocks.

5. A novel building block, the Compress/Expand–Expand/Compress (CEECNet) unit
(Figure 4b), that has better performance than the FracTALResNet (Figure 16), which
comes, however, at a higher computational cost.

6. A corollary that follows from the introduced building blocks is a novel fusion method-
ology of layers and their corresponding attentions, both for self and relative attention,
that improves performance (Figure 16). This methodology can be used as a direct
replacement for concatenation in convolution neural networks.

7. A novel macro-topology (backbone) architecture, the mantis topology (Figure 5), that
combines the building blocks we developed and is able to consume images from two
different dates and produce a single change detection layer. It should be noted that
the same topology can be used in general segmentation problems, where we have
two input images to a network that are somehow correlated and produce a semantic
map. Moreover, it can be used for the fusion of features coming from different inputs
(e.g., Digital Surface Maps and RGB images).

Altogether, all of the proposed networks that were presented in this contribution,
mantis FracTALResNet and mantis CEECNetV1 and V2, outperform other proposed net-
works and achieve state-of-the-art results on the LEVIRCD [1] and the WHU [36] building
change detection datasets (Tables 1 and 2). Note that there does not exist a standardised
test set for the WHU dataset; therefore, relative performance is indicative but not absolute:
it depends on the train/test split that other researchers have performed. However, we only
used 32.9% of the area of the provided data for training (which is much less than what
other methods we compared against have used), and this demonstrated the robustness and
generalisation abilities of our algorithm.

In comparison with state-of-the-art architectures that use atrous dilated convolutions,
the proposed architectures do not require fine-tuning the dilation rates. Therefore, they are
simpler and easier to set up and train.

In this work, we did not experiment with deeper architectures, which would surely
improve performance (e.g., D7nf32 models usually perform better), or with hyperparameter
tuning. Finally, we should point out that the methods presented here have been successfully
applied recently for the task of semantic segmentation (field boundary detection [59]).

Author Contributions: Conceptualisation, F.I.D., F.W. and P.C.; methodology, F.I.D., F.W. and P.C.;
software, F.I.D. All authors have read and agreed to the published version of the manuscript.

Funding: The project was funded by CSIRO.

Acknowledgments: This project was supported by resources and expertise provided by CSIRO
IMT Scientific Computing. The authors acknowledge the support of the MXNET community. The
authors would like to thank Pan Chen for carefully reading the manuscript and providing feedback.
The authors acknowledge the contribution of the anonymous referees, whose questions helped to
improve the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. CIFAR10 Comparison Network Characteristics

In Table A1, we present in detail the characteristics of the layers that we used to compare
on the CIFAR10 dataset. All building blocks use kernel size = 3 and padding = 1 (SAME).

Remote Sens. 2021, 13, 3707 32 of 40

Table A1. CEECNetV1 vs. CEECNetV2 vs. FracTALResNet vs. ResNet building blocks comparison.
All Building Blocks use kernel size k = 3, padding p = 1 (SAME), and stride s = 1. The transition
convolutions that half the size of the features use the same kernel size and padding; however,
the stride is s = 2. In the following, we indicate with nf the number of output channels of the
convolution layers and with nh the number of heads in the multihead FracTALmodule.

LayersLayersLayers Proposed Models ResNetResNetResNet

Layer 1 BBlock[nf = 64, nh = 8] BBlock[nf = 64]

Layer 2 BBlock[nf = 64, nh = 8] BBlock[nf = 64]

Layer 3 Conv2DN(nf = 128, s = 2) Conv2DN(nf = 128, s = 2)

Layer 4 BBlock[nf = 128, nh = 16] BBlock[nf = 128]

Layer 5 BBlock[nf = 128, nh = 16] BBlock[nf = 128]

Layer 6 Conv2DN(nf = 256, s = 2) Conv2DN(nf = 256, s = 2)

Layer 7 BBlock[nf = 256, nh = 32] BBlock[nf = 256]

Layer 8 BBlock[nf = 256, nh = 32] BBlock[nf = 256]

Layer 9 ReLU ReLU

Layer 10 DenseN(nf = 4096) DenseN(nf = 4096)

Layer 11 ReLU ReLU

Layer 12 DenseN(nf = 512) DenseN(nf = 512)

Layer 13 ReLU ReLU

Layer 14 DenseN(nf = 10) DenseN(nf = 10)

Appendix B. Inference across WHU Test Set

The inference for the best performing model, the mantis CEECNetV1 D6nf32 model,
can be seen in Figure A1. The predictions match very closely the ground truth.

0.0

0.2

0.4

0.6

0.8

1.0

Figure A1. Inference across the whole test area over the NZBLDG CD dataset using the man-
tisCEECNetV1 D6nf32 model. From left to right: 2011 input image, 2016 input image, ground
truth, prediction (threshold 0.5), and confidence heat map.

Appendix C. Algorithms

Here, we present the implementation of the FracTALassociated modules with MXNET

style pseudocode. In all the listings presented, Conv2DN is a sequential combination of a 2D
convolution followed by a normalisation layer. When the batch size is very small, due to
GPU memory normalisation (e.g., smaller than 4 data per GPU), the normalisation used
was Group Normalisation [51]. Practically, in all mantis CEECNet realisations for change
detection, we used GroupNorm.

Appendix C.1. Fractal Tanimoto Attention 2D Module

Listing A.1. MXNET/GLUON style pseudocode for the fractal Tanimoto coefficient, predefined for
spatial similarity.

from mxnet.gluon import nn

class FTanimoto(nn.Block):

Remote Sens. 2021, 13, 3707 33 of 40

def __init__(self,depth=5, axis=[2,3],**kwards):
super().__init__(**kwards)
self.depth = depth

self.axis=axis

def inner_prod(self, prob, label):

prdct = prob*label #dim:(B,C,H,W)
prdct = prdct.sum(axis=self.axis,keepdims=True)

return prdct #dim:(B,C,1,1)

def forward(self, prob, label):

a = 2.**self.depth
b = −(2.*a−1.)

tpl= self.inner_prod(prob,label)

tpp= self.inner_prod(prob,prob)

tll= self.inner_prod(label,label)

denum = a*(tpp+tll)+b*tpl
ftnmt = tpl/denum

return ftnmt #dim:(B,C,1,1)

Listing A.2. MXNET/GLUON style pseudocode for the fractal Tanimoto Attention module.

from mxnet import nd as F

from mxnet.gluon import nn

class FTAttention2D(nn.Block):

def __init__(self, nchannels , nheads, **kwards):
super().__init__(**kwards)

self.q = Conv2DN(nchannels ,groups=nheads)

self.k = Conv2DN(nchannels ,groups=nheads)

self.v = Conv2DN(nchannels ,groups=nheads)

spatial/channel similarity

self.SpatialSim = FTanimoto(axis=[2,3])

self.ChannelSim = FTanimoto(axis=1)

self.norm = nn.BatchNorm()

def forward(self, qin, kin, vin):

query, key, value

q = F.sigmoid(self.q(qin))#dim:(B,C,H,W)

k = F.sigmoid(self.k(vin))#dim:(B,C,H,W)

vs. = F.sigmoid(self.v(kin))#dim:(B,C,H,W)

att_spat = self.ChannelSim(q,k)#dim:(B,1,H,W)

v_spat = att_spat*v #dim:(B,C,H,W)

att_chan = self.SpatialSim(q,k)#dim:(B,C,1,1)

v_chan = att_chan*v #dim:(B,C,H,W)

v_cspat = 0.5*(v_chan+v_spat)
v_cspat = self.norm(v_cspat)

return v_cspat #dim:(B,C,H,W)

Remote Sens. 2021, 13, 3707 34 of 40

Listing A.3. MXNET/GLUON style pseudocode for the Relative Attention Fusion module.

import mxnet as mx

from mxnet import nd as F

class Fusion(nn.Block):

def __init__(self, nchannels , nheads, **kwards):
super().__init__(**kwards)
self.fuse = Conv2DN(nchannels ,

kernel=3,

padding=1,

groups=nheads)

self.att12 = FTAttention2D(nchannels ,nheads)

self.att21 = FTAttention2D(nchannels ,nheads)

self.gamma1 = self.params.get(’gamma1’,

shape=(1,),

init=mx.init.Zero())

self.gamma2 = self.params.get(’gamma2’,

shape=(1,),

init=mx.init.Zero())

def forward(self, input1,input2):

ones = nd.ones_like(input1)

Attention on 1, for k,v from 2

qin = input1

kin = input2

vin = input2

att12 = self.att12(qin,kin,vin)

out12 = input1*(ones+self.gamma1*att12)

Attention on 2, for k,v from 1

qin = input2

kin = input1

vin = input1

att21 = self.att21(qin,kin,vin)

out21 = input2*(ones+self.gamma2*att21)

out = nd.concat(out12,out21,dim=1)

out = self.fuse(out)

return out

Appendix C.2. FracTALResNet

In this Listing, the ResBlock consists of the sequence of BatchNorm, ReLU, Conv2D,
BatchNorm, ReLU, and Conv2D. The normalisation can change to GroupNorm for a small
batch size.

Listing A.4. MXNET/GLUON style pseudocode for the Residual Attention Fusion module.

import mxnet as mx

from mxnet import nd as F

class FTAttResUnit(nn.Block):

def __init__(self, nchannels , nheads, **kwards):
super().__init__(**kwards)
Residual Block: sequence of

(BN,ReLU,Conv,BN,ReLU,Conv)

Remote Sens. 2021, 13, 3707 35 of 40

self.ResBlock = ResBlock(nchannels ,

kernel=3,

padding=1)

self.att = FTAttention2D(nchannels ,nheads)

self.gamma = self.params.get(’gamma’,

shape=(1,),

init=mx.init.Zero())

def forward(self, input):

out = self.ResBlock(input)#dim:(B,C,H,W)

qin = input

vin = input

kin = input

att = self.attention(qin,vin,kin)#dim:(B,C,H,W)

att = self.gamma * att
out = (input + out)*(F.ones_like(out)+att)
return out

Appendix C.3. CEECNet Building Blocks

In this section, we provide the implementation of the CEECNetV1 unit with pseudocode.

Listing A.5. MXNET/GLUON style pseudocode for the CEECNetV1 unit.

import mxnet as mx

from mxnet import nd as F

class CEECNet_unit_V1(nn.Block):

def __init__(self, nchannels , nheads, **kwards):
super().__init__(**kwards)
Compress−Expand
self.conv1= Conv2DN(nchannels/2)

self.compr11= Conv2DN(nchannels ,k=3,p=1,s=2)

self.compr12= Conv2DN(nchannels ,k=3,p=1,s=1)

self.expand1= ExpandNComb(nchannels/2)

Expand Compress

self.conv2= Conv2DN(nchannels/2)

self.expand2= Expand(nchannels/4)

self.compr21= Conv2DN(nchannels/2,k=3,p=1,s=2)

self.compr22= Conv2DN(nchannels/2,k=3,p=1,s=1)

self.collect= Conv2DN(nchannels ,k=3,p=1,s=1)

self.att= FTAttention2D(nchannels ,nheads)

self.ratt12= RelFTAttention2D(nchannels ,nheads)

self.ratt21= RelFTAttention2D(nchannels ,nheads)

self.gamma1 = self.params.get(’gamma1’,

shape=(1,),

init=mx.init.Zero())

self.gamma2 = self.params.get(’gamma2’,

shape=(1,),

init=mx.init.Zero())

self.gamma3 = self.params.get(’gamma3’,

Remote Sens. 2021, 13, 3707 36 of 40

shape=(1,),

init=mx.init.Zero())

def forward(self, input):

Compress−Expand
out10 = self.conv1(input)

out1 = self.compr11(out10)

out1 = F.relu(out1)

out1 = self.compr12(out1)

out1 = F.relu(out1)

out1 = self.expand1(out1,out10)

out1 = F.relu(out1)

Expand−Compress
out20 = self.conv2(input)

out2 = self.expand2(out20)

out2 = F.relu(out2)

out2 = self.compr21(out2)

out2 = F.relu(out2)

out2 = F.concat([out2,out20],axis=1)

out2 = self.compr22(out2)

out2 = F.relu(out2)

attention

att = self.gamma1*self.att(input)

relative attention 122

qin = out1

kin = out2

vin = out2

ratt12 = self.gamma2*self.ratt12(qin,kin,vin)

relative attention 211

qin = out2

kin = out1

vin = out1

ratt21 = self.gamma3*self.ratt21(qin,kin,vin)

ones1 = F.ones_like(out10)# nchannels/2

out122= out1*(ones1+ratt12)
out211= out2*(ones1+ratt21)
out12 = F.concat([out122,out211],dim=1)

out12 = self.collect(out12)

out12 = F.relu(out12)

Final fusion

ones2 = F.ones_like(input)

out = (input+out12)*(ones2+att)

return out

The layers Expand and ExpandNCombine are defined through Listings A.6 and A.7.

Remote Sens. 2021, 13, 3707 37 of 40

Listing A.6. MXNET/GLUON style pseudocode for the Expand layer used in the CEECNetV1 unit.

import mxnet as mx

from mxnet import nd as F

class Expand(nn.Block):

def __init__(self, nchannels , nheads, **kwards):
super().__init__(**kwards)
self.conv1 = Conv2DN(nchannels ,k=3, p=1,

groups=nheads)

self.conv2 = Conv2DN(nchannels ,k=3, p=1,

groups=nheads)

def forward(self, input):

out = F.BilinearResize2D(input,

scale_height=2,

scale_width=2)

out = self.conv1(out)

out = F.relu(out)

out = self.conv2(out)

out = F.relu(out)

return out

Listing A.7. MXNET/GLUON style pseudocode for the ExpandNCombine layer used in the
CEECNetV1 unit.

import mxnet as mx

from mxnet import nd as F

class ExpandNCombine(nn.Block):

def __init__(self, nchannels , nheads, **kwards):
super().__init__(**kwards)
self.conv1 = Conv2DN(nchannels ,k=3, p=1,

groups=nheads)

self.conv2 = Conv2DN(nchannels ,k=3, p=1,

groups=nheads)

def forward(self, input1,input2):

input1 has lower spatial dimensions

out1 = F.BilinearResize2D(input1,

scale_height=2,

scale_width=2)

out1 = self.conv1(out1)

out1 = F.relu(out1)

out2= F.concat([out1,input2],dim=1)

out2 = self.conv2(out2)

out2 = F.relu(out2)

return out2

Appendix D. Software Implementation and Training Characteristics

The networks mantis CEECNet and FracTALResNet were built and trained using the
MXNET deep learning library [60] under the GLUON API. Each of the models was trained
with a batch size of ∼256 on 16 nodes containing 4 NVIDIA Tesla P100 GPUs, each in
CSIRO HPC facilities. Due to the complexity of the network, the batch size in a single
GPU iteration cannot be made larger than ∼4 (per GPU). The models were trained in a

Remote Sens. 2021, 13, 3707 38 of 40

distributed scheme using the ring allreduce algorithm and, in particular, its implementation
on HOROVOD [61] for the MXNET [60] deep learning library. For all models, we used the
Adam [56] optimiser, with momentum parameters (β1, β2) = (0.9, 0.999). The learning rate
was reduced by an order of magnitude whenever the validation loss stopped decreasing.
Overall, we reduced the learning rate three times. The depth, D, of the evolving loss
function was increased every time the learning rate was reduced. The depths of the 〈FT 〉D
that we used were D ∈ {0, 10, 20, 30}. The training time for each of the models presented
here was approximately 4 days.

References
1. Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection.

Remote Sens. 2020, 12, 1662. [CrossRef]
2. Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.P.; Bates, P.D.; Mason, D.C. A change detection approach to flood mapping

in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2417–2430. [CrossRef]
3. Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Del Bon Espírito-Santo, F.; Hansen, M.; Carroll, M. Rapid

assessment of annual deforestation in the Brazilian Amazon using MODIS data. Earth Interact. 2005, 9, 1–22. [CrossRef]
4. Löw, F.; Prishchepov, A.V.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J. Mapping cropland abandonment

in the Aral Sea Basin with MODIS time series. Remote Sens. 2018, 10, 159. [CrossRef]
5. Caye Daudt, R.; Le Saux, B.; Boulch, A.; Gousseau, Y. Multitask learning for large-scale semantic change detection. Comput. Vis.

Image Underst. 2019, 187, 102783. [CrossRef]
6. Varghese, A.; Gubbi, J.; Ramaswamy, A.; Balamuralidhar, P. ChangeNet: A Deep Learning Architecture for Visual Change

Detection. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14
September 2018.

7. Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [CrossRef]
8. Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review ArticleDigital change detection methods in ecosystem

monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [CrossRef]
9. Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change

detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [CrossRef]
10. Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to

object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [CrossRef]
11. Treisman, A.M.; Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 1980, 12, 97–136. [CrossRef]
12. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014,

arxiv:1409.0473.
13. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder

Approaches. arXiv 2014, arXiv:1409.1259.
14. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
15. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. arXiv 2017, arXiv:1709.01507.
16. Wang, X.; Girshick, R.B.; Gupta, A.; He, K. Non-local Neural Networks. arXiv 2017, arXiv:1711.07971.
17. Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Chua, T. SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks

for Image Captioning. arXiv 2016, arXiv:1611.05594.
18. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.;
Springer International Publishing: Cham, Switzerland, 2018; pp. 3–19.

19. Bello, I.; Zoph, B.; Vaswani, A.; Shlens, J.; Le, Q.V. Attention Augmented Convolutional Networks. arXiv 2019, arXiv:1904.09925.
20. Katharopoulos, A.; Vyas, A.; Pappas, N.; Fleuret, F. Transformers are RNNs: Fast Autoregressive Transformers with Linear

Attention. arXiv 2020, arXiv:2006.16236.
21. Li, R.; Su, J.; Duan, C.; Zheng, S. Multistage Attention ResU-Net for Semantic Segmentation of Fine-Resolution Remote Sensing

Images. arXiv 2020, arXiv:2011.14302.
22. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image is Worth 16× 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.
23. Sakurada, K.; Okatani, T. Change Detection from a Street Image Pair using CNN Features and Superpixel Segmentation.

In Proceedings of the BMVC, Swansea, UK, 7–10 September 2015.
24. Alcantarilla, P.F.; Stent, S.; Ros, G.; Arroyo, R.; Gherardi, R. Street-View Change Detection with Deconvolutional Networks. Robot.

Sci. Syst. 2016. [CrossRef]
25. Guo, E.; Fu, X.; Zhu, J.; Deng, M.; Liu, Y.; Zhu, Q.; Li, H. Learning to Measure Change: Fully Convolutional Siamese Metric

Networks for Scene Change Detection. arXiv 2018, arXiv:1810.09111.

http://doi.org/10.3390/rs12101662
http://dx.doi.org/10.1109/TGRS.2012.2210901
http://dx.doi.org/10.1175/EI139.1
http://dx.doi.org/10.3390/rs10020159
http://dx.doi.org/10.1016/j.cviu.2019.07.003
http://dx.doi.org/10.1080/0143116031000139863
http://dx.doi.org/10.1080/0143116031000101675
http://dx.doi.org/10.1016/j.rse.2015.01.006
http://dx.doi.org/10.1016/j.isprsjprs.2013.03.006
http://dx.doi.org/10.1016/0010-0285(80)90005-5
http://dx.doi.org/10.1007/s10514-018-9734-5

Remote Sens. 2021, 13, 3707 39 of 40

26. Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160.
[CrossRef]

27. Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change Detection Based on Artificial Intelligence: State-of-the-Art and
Challenges. Remote Sens. 2020, 12, 1688. [CrossRef]

28. Ji, S.; Shen, Y.; Lu, M.; Zhang, Y. Building Instance Change Detection from Large-Scale Aerial Images using Convolutional Neural
Networks and Simulated Samples. Remote Sens. 2019, 11, 1343. [CrossRef]

29. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. arXiv 2017, arXiv:1703.06870.
30. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,

arXiv:1505.04597.
31. Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Huang, H.; Zhu, J.; Liu, Y.; Li, H. DASNet: Dual Attentive Fully Convolutional Siamese

Networks for Change Detection in High-Resolution Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021,
14, 1194–1206. [CrossRef]

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
33. Jiang, H.; Hu, X.; Li, K.; Zhang, J.; Gong, J.; Zhang, M. PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network

for Remote Sensing Orthoimagery Building Change Detection. Remote Sens. 2020, 12, 484. [CrossRef]
34. Lu, X.; Wang, W.; Ma, C.; Shen, J.; Shao, L.; Porikli, F. See More, Know More: Unsupervised Video Object Segmentation with

Co-Attention Siamese Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019.

35. Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely
sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [CrossRef]

36. Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite
Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [CrossRef]

37. Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning. 2020. Available online: https://d2l.ai (accessed on
1 January 2021).

38. Kim, Y.; Denton, C.; Hoang, L.; Rush, A.M. Structured Attention Networks. arXiv 2017, arXiv:1702.00887.
39. Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. arXiv 2018, arXiv:1805.08318.
40. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. arXiv 2016, arXiv:1603.05027.
41. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,

arXiv:1502.03167.
42. Newell, A.; Yang, K.; Deng, J. Stacked Hourglass Networks for Human Pose Estimation. arXiv 2016, arXiv:1603.06937.
43. Liu, J.; Wang, S.; Hou, X.; Song, W. A deep residual learning serial segmentation network for extracting buildings from remote

sensing imagery. Int. J. Remote Sens. 2020, 41, 5573–5587. [CrossRef]
44. Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going deeper with nested U-structure for

salient object detection. Pattern Recognit. 2020, 106, 107404. [CrossRef]
45. Lindeberg, T. Scale-Space Theory in Computer Vision; Kluwer Academic Publishers: Norwell, MA, USA, 1994; ISBN 978-0-7923-

9418-1.
46. Wang, Z.; Chen, J.; Hoi, S.C.H. Deep Learning for Image Super-resolution: A Survey. arXiv 2019, arXiv:1902.06068.
47. Tschannen, M.; Bachem, O.; Lucic, M. Recent Advances in Autoencoder-Based Representation Learning. arXiv 2018,

arXiv:1812.05069.
48. Kingma, D.P.; Welling, M. An Introduction to Variational Autoencoders. arXiv 2019, arXiv:1906.02691.
49. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the CVPR, Honolulu, HI, USA,

21–26 July 2017.
50. Waldner, F.; Diakogiannis, F.I. Deep learning on edge: Extracting field boundaries from satellite images with a convolutional

neural network. Remote Sens. Environ. 2020, 245, 111741. [CrossRef]
51. Wu, Y.; He, K. Group Normalization. arXiv 2018, arXiv:1803.08494.
52. Haghighi, S.; Jasemi, M.; Hessabi, S.; Zolanvari, A. PyCM: Multiclass confusion matrix library in Python. J. Open Source Softw.

2018, 3, 729. [CrossRef]
53. Matthews, B. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA)

Protein Struct. 1975, 405, 442–451. [CrossRef]
54. Emmerich, M.T.; Deutz, A.H. A Tutorial on Multiobjective Optimization: Fundamentals and Evolutionary Methods. Nat. Comput.

Int. J. 2018, 17, 585–609. [CrossRef] [PubMed]
55. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; Citeseer: Princeton, NJ, USA, 2009.
56. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
57. Cao, Z.; Wu, M.; Yan, R.; Zhang, F.; Wan, X. Detection of Small Changed Regions in Remote Sensing Imagery Using Convolutional

Neural Network. IOP Conf. Ser. Earth Environ. Sci. 2020, 502, 012017. [CrossRef]
58. Liu, Y.; Pang, C.; Zhan, Z.; Zhang, X.; Yang, X. Building Change Detection for Remote Sensing Images Using a Dual Task

Constrained Deep Siamese Convolutional Network Model. arXiv 2019, arXiv:1909.07726.

http://dx.doi.org/10.1007/s12145-019-00380-5
http://dx.doi.org/10.3390/rs12101688
http://dx.doi.org/10.3390/rs11111343
http://dx.doi.org/10.1109/JSTARS.2020.3037893
http://dx.doi.org/10.3390/rs12030484
http://dx.doi.org/10.1016/j.isprsjprs.2020.01.013
http://dx.doi.org/10.1109/TGRS.2018.2858817
https://d2l.ai
http://dx.doi.org/10.1080/01431161.2020.1734251
http://dx.doi.org/10.1016/j.patcog.2020.107404
http://dx.doi.org/10.1016/j.rse.2020.111741
http://dx.doi.org/10.21105/joss.00729
http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1007/s11047-018-9685-y
http://www.ncbi.nlm.nih.gov/pubmed/30174562
http://dx.doi.org/10.1088/1755-1315/502/1/012017

Remote Sens. 2021, 13, 3707 40 of 40

59. Waldner, F.; Diakogiannis, F.I.; Batchelor, K.; Ciccotosto-Camp, M.; Cooper-Williams, E.; Herrmann, C.; Mata, G.; Toovey, A.
Detect, Consolidate, Delineate: Scalable Mapping of Field Boundaries Using Satellite Images. Remote Sens. 2021, 13, 2197.
[CrossRef]

60. Chen, T.; Li, M.; Li, Y.; Lin, M.; Wang, N.; Wang, M.; Xiao, T.; Xu, B.; Zhang, C.; Zhang, Z. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv 2015, arXiv:1512.01274.

61. Sergeev, A.; Balso, M.D. Horovod: Fast and easy distributed deep learning in TensorFlow. arXiv 2018, arXiv:1802.05799.

http://dx.doi.org/10.3390/rs13112197

	Introduction
	Related Work
	On Attention
	On Change Detection

	Our Contributions

	Materials and Methods
	Fractal Tanimoto Similarity Coefficient
	Evolving Loss Strategy
	Fractal Tanimoto Attention
	Fractal Tanimoto Attention Layer
	Attention Fusion
	Self Attention Fusion
	Relative Attention Fusion

	Architecture
	Micro-Topology: The CEECNet Unit
	Macro-Topology: Dual Encoder, Symmetric Decoder
	Segmentation HEAD

	Experimental Design
	LEVIRCD Dataset
	WHU Building Change Detection
	Data Preprocessing and Augmentation
	Metrics
	Inference
	Inference on Large Rasters
	Model Selection Using Pareto Efficiency

	Results
	FracTALUnits and Evolving Loss Ablation Study
	FracTALBuilding Blocks Performance
	Comparing FracTALwith CBAM
	Evolving Loss
	Performance Dependence on FracTALDepth

	Change Detection Performance on LEVIRCD and WHU Datasets
	Performance on LEVIRCD
	Performance on WHU

	The Effect of Scaled Sigmoid on the Segmentation HEAD

	Discussion
	Qualitative CEECNet and FracTALPerformance
	Qualitative Assesment of the Mantis Macro-Topology

	Conclusions
	CIFAR10 Comparison Network Characteristics
	Inference across WHU Test Set
	Algorithms
	Fractal Tanimoto Attention 2D Module
	FracTALResNet
	CEECNet Building Blocks

	Software Implementation and Training Characteristics
	References

