
remote sensing  

Article

GIS-Based Forest Fire Risk Model: A Case Study in Laoshan
National Forest Park, Nanjing

Pengcheng Zhao 1, Fuquan Zhang 1,*, Haifeng Lin 1 and Shuwen Xu 2

����������
�������

Citation: Zhao, P.; Zhang, F.; Lin, H.;

Xu, S. GIS-Based Forest Fire Risk

Model: A Case Study in Laoshan

National Forest Park, Nanjing. Remote

Sens. 2021, 13, 3704.

https://doi.org/10.3390/rs13183704

Academic Editors: Rosa Lasaponara

and Jagannath Aryal

Received: 9 July 2021

Accepted: 13 September 2021

Published: 16 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China;
2019070272@njupt.edu.cn (P.Z.); haifeng.lin@njfu.edu.cn (H.L.)

2 National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China;
swxu@mail.xidian.edu.cn

* Correspondence: zfq@njfu.edu.cn

Abstract: Fire risk prediction is significant for fire prevention and fire resource allocation. Fire risk
maps are effective methods for quantifying regional fire risk. Laoshan National Forest Park has
many precious natural resources and tourist attractions, but there is no fire risk assessment model.
This paper aims to construct the forest fire risk map for Nanjing Laoshan National Forest Park. The
forest fire risk model is constructed by factors (altitude, aspect, topographic wetness index, slope,
distance to roads and populated areas, normalized difference vegetation index, and temperature)
which have a great influence on the probability of inducing fire in Laoshan. Since the importance
of factors in different study areas is inconsistent, it is necessary to calculate the significance of each
factor of Laoshan. After the significance calculation is completed, the fire risk model of Laoshan can
be obtained. Then, the fire risk map can be plotted based on the model. This fire risk map can clarify
the fire risk level of each part of the study area, with 16.97% extremely low risk, 48.32% low risk,
17.35% moderate risk, 12.74% high risk and 4.62% extremely high risk, and it is compared with the
data of MODIS fire anomaly point. The result shows that the accuracy of the risk map is 76.65%.

Keywords: environmental preservation; forest fire; GIS; fire risk map; prediction

1. Introduction

Forests are not only important strategic resources for social development, but also have
great influence on the protection of species diversity [1]. Climate and human activities are
important factors that can cause forest fires, such as temperature, precipitation, sacrifice [2,3].
Combustibles are also significant for fires, which are trees and turf in the forest. Different
trees have different probabilities of fire ignition due to the difference in moisture content [4].
In the past ten years, forest fires have occurred frequently, causing huge losses to forest
resources, biology, and property [5,6]. Recently, with the rise of Geographic Information
System (GIS) and computer science, forest fire risk prediction is becoming popular in the
evolving fire management scenarios [7,8]. The combination of these two technologies can
accurately predict regional fires.

The forest coverage area of china is 195.45 million hectares, and the coverage of forest
accounts for 21.6% of the land area. The area of natural forest is about 122 million hectares,
and the area of plantation forest is 72 million hectares. According to the data of the China
Forestry Statistics Bureau, an average of 6000 fires occurred annually, causing hundreds of
thousands of hectares of forest to have burned and tens of billions of dollars of financial
losses in ten years from 2004 to 2014 [9]. Accurate fire risk maps and good fire warning
equipment can help firefighting agencies allocate fire prevention resources throughout
the forest in advance and take emergency measures to control the fire within a small area.
Then, more forest resources and human property can be better protected [10,11].

The fire risk map is made based on the geographic information of the study area,
combined with advanced tools and methods, which has a great impact on fire prevention
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and control. The geographic information acquisition of the study area is mainly in view of
the regional image of remote sensing. The data required for fire analysis can be obtained
by analyzing and extracting the images. Topography, meteorological factor, vegetation,
and human activities are recognized as four types of fire ignition factors [12–19].

Topography is a primary factor that effects the fire ignition because topographic factors
influence the distribution of local climate (e.g., sunlight, temperature, etc.) [12–14]. Affected
by the convective heat and the radiant heat, fires may spread rapidly along the steep and
upward slope, but slow in areas with downward slope [12]. The speed and direction of the
wind could be influenced by the aspect, which may result in unintended fire spreading
direction [18]. Due to differences in temperature and vegetation, the probability of fire
occurrence may be different in different altitudes[13]. The topographic wetness index (TWI)
indicates the effects of topography and soil characteristics on soil moisture distribution to
some extent [15]. The forest fire can be affected by hydrological conditions [16,20]. Recently,
TWI has been found as one of the effective factors to predict the fire occurrence [20]. Aspect,
altitude, slope, and TWI can be extracted from Digital Elevation Model (DEM) data.

Meteorological factor, such as temperature, is a significant inducement of fire igni-
tion [17]. A high temperature will result in a low soil moisture or even drought, which
makes forests prone to fire [18–20]. Normalized Difference Vegetation Index (NDVI) is
widely chosen to indicate the vegetation distribution which is commonly considered as a
proxy of fuel for the analysis of fire occurrence [14].

The occurrence of fire is related to human behavior and activities [21,22]. Most of the
fires caused by human activities are accidental fires. For example, fire may be induced
by cigarette butts thrown by pedestrians near the road. Thus, the area where roads and
human settlements are located has a high probability of unintended fire ignition, compared
with the roadless areas and uninhabited areas [12,20,23].

The methods of establishing a fire model include: logistic regression [20], fuzzy
analysis [24–27], neural network [28], etc. Generally, those methods need historical fire
data to validate the accuracy of the model. However, not all areas have complete historical
fire data, and the above methods based on incomplete historical fire data will result in
inaccurate fire risk maps in some areas [29,30]. Therefore, we need to design a Fire Risk
Index (FRI) model for the study area where it lacks of historical data. Based on FRI, a forest
fire risk map can be constructed, so that an accurate fire risk map can be obtained in the
area that lacks data.

The probability assessment model is often used for cartographical forest fire modeling,
which is used with GIS. After the FRI has been determined, and the map can be drawn,
the accuracy of the generated map need to be verified. Since the study area lacks of fire
data, we need to find a method to extract the fire data of the area. In this paper, we select
MODerate-resolution Imaging Spectroradiometer (MODIS) temperature anomaly/fire
products to obtain the location of the fire points by calculating the Normalized Difference
Thermal Index (NDTI) of the data. The fire location obtained by this method can be used as
fire data. Compared with the real fire data, the accuracy of fire location extraction is over
90% [31]. In our study, we extract fire locations based on the data from 2013 to 2016. We
extracted 304 fire points in Laoshan Forest Park. These fire points are used to analyze the
accuracy of the fire risk model.

Nanjing Laoshan National Forest Park is a famous tourist attraction, which is the
largest national forest park in Jiangsu Province. It has many precious animal and plant
resources. Currently, the way of fire prevention in the study area is mainly depending on
human patrol and watchtower monitoring methods [32]. The patrol paths are mainly based
on practical experience. Recently, the number of fires has gradually increased in China, it is
urgent to update and optimize fire management methods. The fire risk map is recognized
as an effective tool to allocate fire management resources. This paper aims to construct a
forest fire risk model so that the fire department can improve the fire management ability
based on the generated fire risk map.
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The fire risk model is constructed with GIS and a multi-layer hierarchical analy-
sis [33,34]. The multi-layer analytic method can evaluate the impact of various factors
on fire occurrence in a more precise manner [35]. Four types of factors (topography, me-
teorological factor, vegetation, and human activities) are considered in the multi-layer
analytic process. First, we conduct a pairwise analysis of the factors contained in each type
of fire-inducing factor, and then analyze the importance of each type, so that the results
obtained are more reasonable than single-layer analysis [20,23,35].

After the weight of each factor that indicates the importance of fire ignition obtained
by multi-layer analysis, the fire risk model can be constructed. At last, we conduct crossing
between the area of the Laoshan forest risk map obtain by FRI with the heat spots [23],
and the accuracy of our model is close to 77%. The environment of each study area
is different, so each fire risk model is unique for a specific area [26,36,37]. The main
contributions are as follows:

• It is the first time to construct a fire risk model with actual geographic information for
Nanjing Laoshan National Forest Park.

• For each influencing factor, the weights were calculated by multi-layer hierarchical
analysis. The weight has passed the verification of consistency ratio, which proves the
rationality of weight allocation.

• The validation result shows that the prediction accuracy of our model is close to 77%,
which proves that the proposed model has good performance.

2. Study Area and Data Used
2.1. Study Area

We use Nanjing Laoshan National Forest Park as the study area, which is located
in northwestern Nanjing. The map is shown in Figure 1. The Laoshan park is located
118.30◦ East and 30.05◦ North and covers an area of approximately 80 km2. As early
as in 1991, it was named as National Forest Park by the former Ministry of Forestry,
and later as “Jiangsu Province Science Education Base”, “Jiangsu Province Environmental
Education Base” and “National AAA Scenic Spot”. It is known as the “natural oxygen bar”.
The altitude of Laoshan park is ranging from 4.5 to 414.7 m. The climate in Laoshan park is
warm and humid. The average annual temperature is 15.3◦ and an annual precipitation
of 1000 mm. The area belongs to subtropical monsoon climate. The area has a frost-free
period of 228 days. There are seven springs that have been exploited and utilized, such as
Wuliu Spring and Pearl Spring. The amount of water ranges from 1000 to 2000 tons, and is
rich in minerals and radioactive substances, so it has medical value. The natural vegetation
type of Laoshan Mountain is a mixed forest of deciduous broad-leaved and evergreen
broad-leaved. There are 148 species of ferns and seed plants. The forest coverage rate is
80%, and the forest volume is 330 thousand cubic meters. There have been few large-scale
fires in Laoshan National Forest Park, so it lacks fire data. The latest fire occurred in a
subway station near the park. The cause of the fire was an electric vehicle battery.

a

b

China

NanJing
LaoShan

c

Figure 1. Laoshan National Forest Park is located in Nanjing, Jiangsu Province, China. (a) Jiangsu
Province, China. (b) Laoshan, Nanjing. (c) Longitude and Latitude of Laoshan.
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2.2. Data Used

A 30 m-resolution DEM data can be downloaded from Geospatial Data Cloud (GDC)
(http://www.gscloud.cn, accessed on 10 January 2021). Altitude, TWI, aspect, and slope
can be extracted from DEM by ArcGIS 10.5. The scale of DEM data is 1:25,000.

The MODIS data can be used to extract the location of fire points, which can be
found by Terra and Aqua satellites which belong to the National Aeronautics and Space
Administration (NASA) . These satellites monitor active fire data four times a day. MODIS
is a 7-day composite data. In this paper, the active fire data that we used from NASA
(https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 15 March 2021) covered 3 years
(2013–2016). We converted the MODIS data into a 30m grid in order to match other raster
layers. In this paper, a total of 304 fire points were extracted from the MODIS data. Around
80% of fires every year occurred from July to September, whereas 20% occurred in March
and November. Compared with the map of Laoshan, the location of fire points mainly in
tourist attractions and areas with high foot traffic near the forest.

We use Landsat-8 data to extract the temperature and NDVI. The selected data are
7-day satellite data. The temperature inversion method was used to eliminate the influence
of clouds in the image and get the temperature of the study area.

3. Methods

In this section, we analyze each factor and draw a base map for each one. Each
factor has its unique way of affecting the occurrence of forest fires. The fire occurrence is
affected by topographic factors (e.g., altitude, slope, aspect, TWI), meteorological factor
(e.g., temperature), human activity factors (e.g., distance to roads and populated areas),
and vegetation factor (e.g., NDVI). Based on the expert’s experience and the literature,
these factors are divided into different categories and assigned acceptable risk levels.
Variables that appear in the literature are obtained according to the expert’s analysis.
According to the literature and the study area, each factor has been split into five levels [38]:
extremely low, low, moderate, high, extremely high [27,39–41]. Then, we use the analytic
hierarchy process to assign appropriate weights to the eight factors. Finally, the accuracy
of the fire risk model can be verified by conducting a crossing between the areas of the fire
risk map with the heat map constructed by fire points. The specific process is shown in
Figure 2.

Defining the aim and architecture of the model

Data collection and entry into GIS

Criterion weights 
of factors using 

Analytical 
Hierarchy 

Process(AHP)

Layering and 
rating of 

individual 
factors(LRIF)

Fire risk index model

Forest fire risk map

Comparison of the forest fire risk map with fire points

Final result visualization

Result and validation

Study area research and data collection

Forest fire related factors

Human activity factors

Topographic factors

Vegetation factors

Meteorological factors

Distance to road
Distance to populated areas

Altitude
Slope

Aspect
Topographic wetness index(TWI)

Normalized difference 
vegetation index(NDVI)

Temperature

Data processing and weight calculating

Figure 2. The process of fire risk model construction, which consists of data collection, data processing
and weight calculating, result and validation.

http://www.gscloud.cn
https://ladsweb.modaps.eosdis.nasa.gov/
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3.1. Layering and Rating of Fire Ignition Factors
3.1.1. Topographic Factors

Regional topography influences the probability of fire occurrence, such as altitude,
orientation, and hydrological conditions [42]. Therefore, we can get the information of alti-
tude, slope, aspect, and TWI from DEM, and these factors have been selected as influencing
factors of fire [43]. Four types of DEM data are divided into the following categories:

• (a) Altitude: The altitude data are reclassified to generate a new classification standard,
which is divided into the following levels: extremely high, high, moderate, low,
extremely low. The corresponding weight is allocated to the five classes [44]. It is
shown in Table 1. The result of altitude is obtained through the elevation extraction of
DEM data by ArcGIS10.5, and Figure 3 shows the based map of altitude.

0 4 8 Km

Ü

118° 40’0"E118° 35’0"E118° 30’0"E118° 25’0"E

32° 10’0"N

32° 0’0"N

Legend

Altitude (m)

< 100

100 - 200

200 - 300

300 - 400

> 400

Legend

Distance to populated areas (m)

< 400

400 - 800

800 - 1200

1200 - 1600

> 1600

(a) (b) (d)(c) (e) (f) (g)(h)

0 84 km

Figure 3. The base map of altitude in Laoshan. Each level is determined by the fire risk classification.

Table 1. Fire risk classification of altitude.

Altitude (m) Weight Risk

<100 5 Extremely high
100–200 4 High
200–300 3 Moderate
300–400 2 Low

>400 1 Extremely low

• (b) Slope: The slope of the study area is calculated by the slope function that comes
with ArcGIS. Meanwhile, we also calculate the slope as a percentage. Figure 4 is
the base map of the slope. The slope data is reclassified to generate a new standard,
the classification standard is the same as that of altitude. The weight is allocated to
the five classes in Table 2.

Table 2. Fire risk classification of slope.

Slope (◦) Slope (%) Weight Risk

>30 >58 5 Extremely high
20–30 36–58 4 High
10–20 18–36 3 Moderate
5–10 9–18 2 Low
<5 <9 1 Extremely low
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Legend
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Figure 4. The base map of slope in Laoshan. Each level is determined by the fire risk classification.

• (c) Aspect: The aspect matrix was calculated using the DEM. The aspect was classified
into eight classes [19,45], which is shown in Table 3. In the northern hemisphere,
the sunny slope has higher temperature and is prone to fire. Except for the tropic of
cancer, the sun in other latitudes is in the south. Therefore, based on this characteristic,
the slopes are divided into five grades. Figure 5 shows the base map of aspect and the
weight of aspect has been listed in Table 4.

Table 3. Classification of aspect.

Aspect Degre

N-NE 0◦–45◦

NE-E 45◦–90◦

E-SE 90◦–135◦

SE-S 135◦–180◦

S-SW 1 180◦–225◦

SW-W 225◦–270◦

W-NW 270◦–315◦

NW-N 315◦–360◦

0 4 8 Km
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118° 40’0"E118° 35’0"E118° 30’0"E118° 25’0"E

32° 10’0"N

32° 0’0"N

Legend
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East

North

Southeast

South

Southwest

West

Northwest

Legend

Distance to populated areas (m)

< 400
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800 - 1200

1200 - 1600

> 1600
(a) (b) (d)(c) (e) (f) (g)(h)

0 84 km

Figure 5. The base map of aspect in Laoshan. Each level is determined by the fire risk classification.
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Table 4. Fire risk classification of aspect.

Aspect Weight Risk

S 5 Extremely high
SE and E 4 High

NE 3 Moderate
N 2 Low

W, NW, SW and FLAT 1 Extremely low

• (d) TWI: TWI is a hydrological analysis of DEM data. It considers the effects of
topography and soil characteristics on soil moisture distribution [15]. Firstly, according
to the actual topographic needs, the topography of the study area is filled with
depressions. After filling depressions, the direction of water flow and the total amount
of water flow needs to be calculated. Finally, the topographic humidity index is
calculated based on the above-mentioned data. These calculations are completed
in ArcGIS 10.5. The topographic wetness index has an important influence on fire
occurrence and spread. Dry areas are prone to fire and spread rapidly, while wet areas
are hard to cause fires [16,20]. Figure 6 shows the base map of TWI and the weight of
factors is listed in Table 5.

0 4 8 Km

Ü

118° 40’0"E118° 35’0"E118° 30’0"E118° 25’0"E

32° 10’0"N

32° 0’0"N

Legend
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400 - 800

800 - 1200

1200 - 1600

> 1600

(a) (b) (d)(c) (e) (f) (g)(h)

Legend

TWI

< 7

7 - 8

8 - 9

9 - 10

>10
0 84 km

Figure 6. The base map of TWI in Laoshan. Each level is determined by the fire risk classification.

Table 5. Fire risk classification of TWI.

TWI Weight Risk

<7 5 Extremely high
7–8 4 High
8–9 3 Moderate

9–10 2 Low
>10 1 Extremely low

3.1.2. Meteorological Factor

Meteorological factor [17] is a significant inducement of fire ignition. The temperature
has a great impact on regional hydrology [18]. The high-temperature areas are more prone
to fire [19].

Temperature data can usually be obtained from the Meteorological Bureau or extracted
by Landsat data. Due to the lack of temperature data in our study area. We use atmospheric
correction methods to derive surface temperature data. The infrared radiation is composed
of the upward radiation of the atmosphere, the downward radiation, and the atmospheric
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radiation when it reaches the ground. The infrared heat radiation value can be calculated
by the following formula :

Lλ = [εB(Ts + (1− ε)L ↓)]τ + L ↑ (1)

where ε = surface specific emissivity, B(Ts) = blackbody thermal radiation brightness,
Ts = the real surface temperature (K), τ = atmospheric transmittance in thermal infrared
band. L ↓ and L ↑ are downward radiation and upward radiation, respectively. B(Ts) can
be calculated as follows:

B(Ts) = [Lλ − L ↑ −τ(1− ε)L ↓)]/τε (2)

where Ts = the function of Planck’s formula.

Ts = k2/Ln(k1/B(Ts) + 1) (3)

where k1 = 774.89W/(m2 ∗ um ∗ sr), k2 = 1321.08 K.
Firstly, it is necessary to calculate the radiometric calibration of remote sensing data.

Since the cloud influences the accuracy of remote sensing data extraction, atmospheric
correction is needed. Then, we can extract the vegetation coverage, and the surface specific
emissivity is calculated by vegetation coverage. Finally, the temperature of the study
area is retrieved by the surface specific emissivity and the relative radiance ratio [46,47].
Temperature is retrieved from Landsat-8 by ENVI, and we use ArcGIS 10.5 to construct the
base map of temperature. The base map is shown in Figure 7. Table 6 lists the weight of
different temperature levels.

0 4 8 Km

Ü
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> 31
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0 84 km

Figure 7. The base map of temperature in Laoshan. Each level is determined by the fire risk classification.

Table 6. Fire risk classification of temperature.

Temperature (◦C) Weight Risk

>31 5 Extremely high
29–31 4 High
27–29 3 Moderate
25–27 2 Low
<25 1 Extremely low

3.1.3. Vegetation Factor

There are many trees in the forest, and wood is flammable, so vegetation has a
great influence on fire ignition. The moisture content of each vegetation is different, and
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the probability of each kind of vegetation being ignited is not the same. Therefore, it is
necessary to analyze the vegetation coverage in the study area [48,49]. Since it is difficult to
obtain the specific types of vegetation cover in the study area, we use NDVI as a substitute.

NDVI can eliminate the radiation changes related to atmospheric conditions, such
as the solar altitude angle, topography, and cloud. The vegetation index is normalized
so that the result is between −1 and 1, which can eliminate the excessive fluctuation of
the result caused by the large difference in the data. Non-linear transformation can be
used to enhance the low-value part of NDVI and suppress the high value, and reduce the
sensitivity of NDVI to areas with high vegetation density. NDVI is the best indicator for
evaluating vegetation growth and coverage.

We use bands 4 and 5 in Landsat-8 images to extract NDVI, and it can be calculated
as follows:

NDVI = (Band5− Band4)/(Band5 + Band4) (4)

where Band 5 is the near-infrared band (0.76–0.9 µm), Band 4 is the red band (0.63–0.69 µm) [20].
According to the classification criteria and weight [20,50], NDVI can be divided into the
following five levels and the weight is listed in Table 7. The base map of NDVI is shown
in Figure 8.
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Ü
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Figure 8. The base map of NDVI in Laoshan. Each level is determined by the fire risk classification.

Table 7. Fire risk classification of NDVI.

NDV I Weight Risk

<0 5 Extremely high
0–0.15 4 High

0.15–0.3 3 Moderate
0.3–0.45 2 Low

>0.45 1 Extremely low

3.1.4. Human Activity Factors

Most forest fires are related to human behavior, cigarette butts thrown by people or
residual fires from sacrifices may cause forest fires [23,51]. In tourist spots or populated
areas, human activities are prone to generating fire sources that trigger forest fires [20,52].
Therefore, roads and populated areas can be taken as ignition factors. According to previous
researches, combined with the actual situation of Laoshan forest park and the layout of
roads and population, 300 m is chosen as the distribution limit of road distance, and the
closer to roads, the higher the risk of fire. Due to the frequent activities of residents in
the populated areas, the affected area is higher than roads, so the influence area of the
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residence is defined as 400 m. Figures 9 and 10 show the base map of distance to roads and
populated areas. The weight of factors is listed in Tables 8 and 9.
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Figure 9. The base map of distance to roads in Laoshan. Each level is determined by the fire
risk classification.
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Figure 10. The base map of distance to populated areas in Laoshan. Each level is determined by the
fire risk classification.

Table 8. Fire risk classification of distance to roads.

Distance to Roads (m) Weight Risk

<300 5 Extremely high
300–600 4 High
600–900 3 Moderate

900–1200 2 Low
>1200 1 Extremely low
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Table 9. Fire risk classification of distance to populated areas.

Populated Areas Weight Risk

<400 5 Extremely high
400–800 4 High

800–1200 3 Moderate
1200–1600 2 Low

>1600 1 Extremely low

3.2. Generation of Weights for the Fire Risk Model

We choose Analytic Hierarchy Process (AHP) [53] to evaluate the weight distribution
of each factor. By prioritizing the importance of each factor and comparing the significance
of two factors, the relative significance of each factor and the priority ranking in all factors
can be determined. We analyze four types of factors: topography (altitude, slope, aspect,
and TWI), vegetation (NDVI), meteorological (temperature), and human activities (dis-
tance to roads and populated areas). In order to evaluate the impact of various factors on
fire occurrence in a more precise manner, we adopted a multi-layer analytic method.

These factors are assembled into a table. Experts analyze the possibility of each factor
that can cause a fire based on their research results and cognition. According to the scoring
results of each factor in all tables, the weight of each factor is obtained by discussion [54,55].
Finally, we can divide the weight of each factor by all column elements. Then, the mean
weight can be obtained, which can be represented as the weight of the factor [8].

Generally, the AHP uses a consistency ratio (CR) to verify whether the calculated
weight meets the requirement. It is called consistency verification, and CR needs to be
lower than 0.1. The CR was calculated as follows [19,56]:

CR = CI/RI; (5)

CI = (λmax − n)/(n− 1); (6)

λmax = (1/n)
n

∑
i=1

([AWi ]/wi) (7)

where CI is the consistency index, RI is the value of the random consistency index, AWi is
a matrix obtained by multiplying a paired comparison matrix and a weight matrix(wi).

4. Result
4.1. Base Layer Classification

As shown in Tables 1–9, the weight of eight factors can be divided into five levels
which range from 1 to 5. The five levels correspond to the risk level of extremely low,
low, moderate, high, and extremely high, respectively. We can obtain the base layer of
each factor based on the base maps and risk classification. As shown in Figure 3, areas
with an altitude of lower than 300m account for 70% of the study area. Meanwhile, this
area contains the populated areas and tourist spots. Thus, it is at high risk; see Figure 11a.
Figure 11b,c show the base layer classification of aspect and slope, respectively. It can
be seen that most of the steep areas are at a place which has a high elevation, and the
surrounding areas are flat, the maximum slope of these areas is 37◦. As the terrain of
Laoshan National Forest Park is relatively flat and there are few steep areas in high-risk
areas, it can be seen from Figure 11c that most areas are in low-risk level. Laoshan park
is located in the northern hemisphere, and the south side is easier to receive sunlight.
Thus, the water content of vegetation is less, and the temperature is higher, so areas in this
direction are at high-risk level. TWI is a hydrological analysis of DEM data, it considers
the effects of topography and soil characteristics on soil moisture distribution. The higher
the TWI, the higher the moisture content in the soil, the more humid the land, the lower
the probability of fire triggering. Therefore, the fire risk of area where has high TWI is low.
It is shown in Figure 11d.
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Figure 11. The fire risk map of topographic factors. (a) The risk map of altitude. (b) The risk map of aspect. (c) The risk map
of slope. (d) The risk map of TWI. The fire risk level of each factor is determined by the fire risk classification results.

NDVI is the normalized vegetation index, with a value ranging from −1 to 1. A value
less than 0 means that the area is covered by water, snow, etc. If NDVI is 0, it indicates
that the area is covered by rocks and bare soil, and a value greater than 0 means that this
area is covered by vegetation. The higher the vegetation coverage, the greater the NDVI
value. The central part of Laoshan National Forest Park is a forest area with full vegetation
coverage, which is shown in Figure 8. The marginal areas of the central rear are roads and
populated areas, so the vegetation coverage is low. Thus, the fire risk of this area is high.
The NDVI base layer is shown in Figure 12a.
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Figure 12. The fire risk map of NDVI and temperature. (a) The risk map of NDVI. (b) The risk map of temperature.
The fire risk level of each factor is determined by the fire risk classification results.
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Temperature is one of the significant factors which can cause forest fires. Compared
with cold areas, tropical areas are more prone to forest fires. Laoshan National Forest Park
belongs to subtropical monsoon climate. Its average annual temperature is 15.3◦. Higher
temperature can easily cause forest fires. We can know from Figure 7 that the temperature
over 29◦ of this areas is close to 50%. Therefore, the fire risk in Laoshan park is high.
According to the temperature division in Figure 7, we divide the risk level of temperature
in this area into five levels, and the distribution result is shown in Figure 12b.

Human activities are one of the important causes of forest fires. Human activities, such
as cigarette butts thrown by pedestrians near the roads, burning incense, etc., are likely
to cause unintended forest fires [12,20,23]. Therefore, forests close to roads and human
settlements will increase the risk of forest fire occurrence. In this study, we simplified
human activities as the distance between forests and roads and populated areas. Figure 9
shows the main roads in Laoshan, and is split into five levels according to the distance to
roads. The closer the distance, the more vehicles and frequent human activities, which is
easier to cause fires. Based on the actual situation of Laoshan National Forest Park, we
choose 300 m as the threshold for dividing the road distance. Most human activities areas
are not more than 1200 m away from the road, so this division method is reasonable in
this area. The base layer classification of Figure 9 is shown in Figure 13a. Figure 10 is an
example based on the distance between the forest and the populated areas. The areas with
a distance of less than 400 m in Figure 10 are mostly scenic spots in the forest park where
human activities are frequently. Cigarette butts and sparks from burning incense are easy
to ignite the surrounding forest. The areas with a distance greater than 1600 m, most of
these areas are densely forested areas with less human activities, so the risk of fire is lower.
Figure 13b is the fire risk analysis of Figure 10.
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Figure 13. The fire risk map of human activity factors. (a) The risk map of distance to roads. (b) The risk map of distance to
populated areas. The fire risk level of each factor is determined by the fire risk classification results.

4.2. Forest Fire Risk Model of Laoshan

In Section 3.2, we have proposed the method which is used to construct the fire risk
model—AHP. AHP mainly uses the score proposed by experts to determine the importance
of fire risk factors. Then, we use the importance matrix to calculate the weight of each
element. The paper divides eight elements into four types. We firstly score and weight the
factors in each type, and then determine the weight of each type. Finally, we can obtain the
final weight of each factor. Then the fire risk model can be constructed with the weight.

Table 10 shows the weight allocation of each factor in a type. DTP is Distance To Roads
and DTR is Distance To the Populated areas. Table 11 shows the weight determination of
each type.
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Table 10. The comparison matrix of each factor in a type.

Factors Factors Weight

Altitude Slope Aspect TWI
Altitude 1 2 3 1/2 0.2863

Topographic Slope 1/2 1 2 1/2 0.1820
Factors Aspect 1/3 1/2 1 1/4 0.0969

TWI 2 2 4 1 0.4348
DTR DTP

Human Activity DTR 1 3 0.75
Factors DTP 1/3 1 0.25

Table 11. The weight allocation of each type.

Topographic Temperature NDV I Human Activity Weight

Topographic 1 1/2 1/3 1/3 0.1059
Temperature 2 1 1/3 1/2 0.1636

NDVI 3 3 1 2 0.4476
Human Activity 3 2 1/2 1 0.2829

After the weight we have obtained from Table 10 and 11, the weight of each factor can
be obtained by combined these two tables. The results of the weight are listed in Table 12.

Table 12. The weight distribution result of each factor.

Influence Factors of Forest Fire Risk

Aspect 0.0103
Slope 0.0193
Alt 0.0303

TWI 0.0461
Road 0.0707

Temperature 0.1636
Populated 0.2122

NDVI 0.4476

For verifying whether the weight of each factor in Table 12 meets the consistency
requirement, it is necessary to calculate the CR. The CR of our research was 0.0263, which
is lower than 0.1. Thus, the weight of each factor in Table 12 is reasonable.

After the weight of each factor is determined, the FRI model can be obtained [57].
The FRI of the study area is as follows:

FRI = 0.0103 ∗ Aspect + 0.0193 ∗ Slope + 0.0303 ∗ Alt + 0.0461 ∗ TWI

+0.0707 ∗ Road + 0.1636 ∗ Temp + 0.2122 ∗ Populated + 0.4476 ∗ NDVI
(8)

where Aspect = Aspect, Slope = Slope, Alt = Altitude, TWI = Topographic Wetness Index,
Road = Distance to roads, Temp = Temperature, Populated = Distance to populated areas,
NDVI = Normalized Difference Vegetation Index.

All matrix images are computed by generating data weight and map algebra of
GIS, the development of this model utilizes the matrix image and mathematical model.
The weights of different variables are obtained, and the appropriate mathematical model
is established by the classification and processing of matrix images and the hierarchi-
cal analysis of factors. Finally, based on the model, we can get the forest fire risk map
of Laoshan.

It is similar to the classification of the previous single factor, we also divide the map
into five risk levels: Extremely low (0–0.2), Low (0.2–0.4), Moderate (0.4–0.6), High (0.6–0.8),
Extremely high (0.8–1).
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Although this fire risk model is developed for Laoshan National Forest Park, these
factors can be adapted to other areas with similar topography and climate conditions.
However, in different regions, the topography and climate have unique characteristics, so
the relevant importance matrix requires to modify based on its specific requirements.

4.3. Generation of Forest Fire Risk Map

The forest fire risk map of Nanjing Laoshan National Forest Park is shown in Figure 14a.
Comparing Figures 7, 8 and 14a, we can find that the area with high fire risk has higher
temperature and lower vegetation coverage and the surface water content in this area
is lower. It can also be seen from Table 12 that the weight of these three factors is large,
this means that these three factors account for a larger proportion in the fire risk model
of Laoshan.

As can be seen from Figure 14b, the area of low risk accounts for 48.32% of the total
area. High risk and extremely high risk areas cover about 17.36% of the total area. Thus,
more fire prevention resources need to be allocated to the high-risk areas so that we can
respond to possible fires in a timely manner.
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Figure 14. The forest fire risk map and proportion of each level of the risk area. (a) The generated forest fire risk map.
(b) The proportion of areas of each fire risk level. The percentage represents the ratio of the area of each risk level to the area
of Laoshan Forest Park.

4.4. Validation of Forest Fire Risk Map

To verify the accuracy of the generated fire risk map, we extracted historical fire points
from MODIS data from 04.19.2013 to 09.25.2016. Total 304 fire points were extracted. Then,
we conduct the crossing between the areas of the fire risk map obtained by the fire risk
model with the heat spots [23].

Through the comparison results, we can find that among the 304 fire points in the
period, the areas that identified as high and extremely high totaled 233 heat spots. Therefore,
the accuracy of the fire risk model proposed in this paper is 76.65%. The result of the
validation is shown in Figure 15. The percentage in Figure 15 shows the proportion of the
area of heap spots covered by the forest risk map.
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Figure 15. Forest fire risk validation.

5. Discussion
5.1. Fire-Inducing Factors and Fire Risk Map

The forest risk map is an effective method for fire risk management [12–15,17–19].
Forest fire occurrence is not only affected by the natural factors of the area (i.e., topography,
vegetation, climate, etc.) [13,14,17,42], but also influenced by human activity [12,21,22].
This paper proposes a method to obtain the fire risk model of the study area by weight
analysis, which is based on the geographic, meteorological factor, vegetation, and human
activity of the study area.

A specific fire risk model may not be widely applicable on a global scale due to the
different environmental conditions under which the model is developed [58]. Utilizing
appropriate publicly available data to develop a model, the generality of the model appli-
cation and developing method may be enhanced to some extent [59–61]. In other words,
the model development method could be applied in other places when developing such a
model with its publicly available data.

Due to the easily accessed and high temporal resolution data, MODIS data have been
widely used in forest fire analysis and modelling. MODIS Terra images have been used
to assess fire susceptibility of vegetation [62]. The MODIS NDVI time series can be used
for near real-time land cover change detection [58], which can also be used with a particle
filter to explain the change in the vegetation growth cycle caused by forest fire [63]. In this
paper, fire points were extracted from MODIS data.

Based on the information acquisition situation of the study area, we choose four types
of fire-inducing factors (topography, meteorological, vegetation, and human activities) to
derive the fire risk model. These four types of factors consist of eight specific elements
(e.g., aspect, altitude, temperature, vegetation, etc.), which have been identified as effective
elements for fire risk modeling [20,33,43].

The analytic hierarchical analysis is an effective method to determine the weight
of each factor [33,34,45]. In order to improve the accuracy, we use multi-layer analytic
hierarchical analysis to calculate the weight of the factors. Table 12 shows the result of
weight analysis, which is calculated by the AHP decision-making method. The eight factors
show different importance in predicting forest fire. Based on the proposed model, the fire
risk map (Figure 14a) can be plotted. Finally, we made crossings between the areas of the
fire risk map obtained by the fire risk model with heat spots. The result indicates that the
identification of the variables and derivations from those variables are appropriate [20,23].

5.2. The Influence of Factors on Fire Risk Model

The vegetation element is considered the most important factor in our paper. The
weight assigned to vegetation is 0.4476, while the topographic factor is assigned the lowest
weight of 0.1059. Human activities are the second most important factor. When the forest
vegetation coverage is determined, whether there are human activities in the area influences
the probability of fire.
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Topographic factors are considered to be effective among the fire-inducing factors [13,14,42].
Altitude, slope, and aspect are commonly used. TWI is an indicator of surface water con-
tent [15]. Surface water content represents the degree of humidity in the area. The humidity
area has a low probability to be fire [16]. Recently, TWI has been identified as one of
the effective factors to model the fire occurrence [20]. In this paper, it has a high weight
within four topographic factors, this is consistent with the observation in the relevant
works [20,20]. Compared with aspect and slope, altitude has a great impact on the proba-
bility of forest fire in Laoshan, because low elevation areas have higher human accessibility,
which may result in unintended fire by fire sources (for example: cigarette butts thrown by
pedestrians) [64]. In our study, area, most of the Laoshan area is flat, and the influence of
slope is lower. Meanwhile, the sunny slope has higher temperature and is prone to fire in
the northern hemisphere [20]. Due to the specific situation in our study area, we set low
weight for slope and aspect, which are 0.1820 and 0.0969, respectively.

The fire ignition is greatly influenced by human activities [12,23,35,51]. In populated
areas and roads, the flowrate of visitors is large, and human activities may cause careless-
ness fires [20,52,65]. In this paper, human activity factors have a value of 0.2829. In the
group of human activity factors, we also score DTP and DTR, respectively. In Laoshan
Forest Park, most of the surrounding populated areas are residential areas and tourist
attractions. Human activities in these areas include cooking, sacrifices, smoking, etc., which
can cause fires. The roads in the forest are mostly driven by vehicles, so the stay time is
relatively short. Thus, the probability of fire caused by human activities is lower than that
in populated areas. So when we assess the importance of these two factors, we choose to
assign a larger weight to the populated areas.

Temperature and precipitation have an important influence on fire ignition [17,23].
Since precipitation data cannot be obtained in this area, we can only consider temperature.
Higher temperature tends to reduce the water content of the surface and vegetation in
the area, and increases the probability of forest fires [18,19]. Since Laoshan Forest Park
belongs to a subtropical monsoon climate. The higher average temperature makes Laoshan
prone to fire, especially in summer. Thus, temperature occupies a large proportion of fire
inducing-factors. In this article, we assign a weight of 0.1636 to the temperature, which is
higher than the influence of terrain factors on the area.

Vegetation is significant in fire induction in most fire research articles [48–50,66].
NDVI is commonly chosen to indicate the distribution of vegetation which is commonly
considered as a proxy of fuel for analyses of fire occurrence. If more detailed and precise
data, such as tree species, combustibility and flammability, can be obtained, it would be
helpful to construct a more accurate model. In the future work, we would like to obtain
and consider using more precise vegetation species, combustibility and flammability data
for modeling [67]. Currently, NDVI is still widely used when more precise data are not
available. In this paper, NDVI is divided into different intervals to quantify the vegetation
coverage, and a weight of 0.4476 is assigned. In the future, we would like to consider
different division methods.

5.3. Accuracy and Application Analysis

This article uses the AHP method to assign weights to the factors. There are other meth-
ods such as fuzzy AHP [26], logistic regression [20], artificial neural networks (ANN) [61],
etc. These methods need to verify the established model and use fire data to verify the
accuracy of the model. For example, in [61], the deep recurrent Elman neural network
performs well in determining the relationship between climate and fire incidence. The ex-
periment was based on monthly climatic data surfaces of Australia and the accuracy was
over 90%. Kayet [68] used the frequency ratio for verification, and the verification accuracy
rate is 81%. Fernando [23] made a crossing between the areas of risk of forest fires with
the heat spots, and the accuracy rate is 78.92%. This paper uses the method of fire point
extraction, by extracting fire points as historical fire data, and comparing them with the
model for verification (details in Section 4.4). The result shows that the accuracy of the
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fire risk model in this paper is close to 77%. This means that the method proposed in this
article and the weights assigned to each factor are reasonable. The generated map can be
used as a reference for fire management in Laoshan Forest Park.

A challenging and critical problem in fire management is how to timely detect and
report the fire breakout. Human patrol according to the fire risk map may be an effective
way. However, it is still hard to perform routine patrol tasks to fully cover a large forest
area [32,69,70].

With the recent technological advances in forest fire management and the increasing
popularity of using Unmanned Aircraft Vehicle (UAV) and wireless video monitoring
devices [69–71], the generated forest fire risk map is expected to play an increasingly
important role in future detection of forest fire. The generality of our method and the
generated fire risk map open the possibility to plan a short and accurate patrol path of
future UAV applications by utilizing mobility and fire risk level.

Compare with traditional video-based-watchtower deployment methods, which
mainly consider viewshed of watchtowers [32,72], integrating fire risk and viewshed
in deploying watchtowers may be more effectively.

6. Conclusions

It can be seen from the research in this paper, Laoshan has approximately 11.879 km2

of the area at extremely low risk, 33.824 km2 at low risk, 12.145 km2 at moderate risk,
8.918 km2 at high risk and 3.234 km2 at extremely high risk, representing 16.97%, 48.32%,
17.35%, 12.74% and 4.62% of Laoshan, respectively. According to the above statistics, about
17.36% of Laoshan is at a high risk of fire occurrence, and 4.62% are at extremely high
risk. It is necessary to take protective measures for extremely high-risk areas, increase
the deployment of fire prevention resources and environmental monitoring. For example:
Strengthen the monitoring intensity of the area, set up fire belts, restrict entry into the
dangerous area, and regularly inspect the fire protection facilities in the dangerous area.
Due to the limited number of fire protection resources, high-risk areas should prioritize
the allocation of resources. We used heat spots and areas of the fire risk map for cross-
validation, and found that the prediction accuracy of the fire risk map was nearly 77%.
It proves that the model is effective and can be used as a reference for actual resource
allocation. For the prospect of future work, we will try to obtain more fire impact factors
related to Laoshan Forest Park (e.g., precipitation, land types, etc.), and use more advanced
methods (e.g., machine learning, reinforcement learning, etc.) to build fire risk models
to obtain a more accurate risk model. Based on the risk model, the current fire-fighting
facilities and fire-fighting resources can be more rationally scheduled. How to schedule
fire prevention resources so that the fire can be detected in time and quickly extinguished
is also one of the future research directions.
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