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Abstract: Coarse spatial resolution sensors play a major role in capturing temporal variation, as
satellite images that capture fine spatial scales have a relatively long revisit cycle. The trade-off
between the revisit cycle and spatial resolution hinders the access of terrestrial latent heat flux (LE)
data with both fine spatial and temporal resolution. In this paper, we firstly investigated the capability
of an Extremely Randomized Trees Fusion Model (ERTFM) to reconstruct high spatiotemporal
resolution reflectance data from a fusion of the Chinese GaoFen-1 (GF-1) and the Moderate Resolution
Imaging Spectroradiometer (MODIS) products. Then, based on the merged reflectance data, we used
a Modified-Satellite Priestley–Taylor (MS–PT) algorithm to generate LE products at high spatial and
temporal resolutions. Our results illustrated that the ERTFM-based reflectance estimates showed
close similarity with observed GF-1 images and the predicted NDVI agreed well with observed
NDVI at two corresponding dates (r = 0.76 and 0.86, respectively). In comparison with other four
fusion methods, including the widely used spatial and temporal adaptive reflectance fusion model
(STARFM) and the enhanced STARFM, ERTFM had the best performance in terms of predicting
reflectance (SSIM = 0.91; r = 0.77). Further analysis revealed that LE estimates using ERTFM-based
data presented more detailed spatiotemporal characteristics and provided close agreement with
site-level LE observations, with an R2 of 0.81 and an RMSE of 19.18 W/m2. Our findings suggest that
the ERTFM can be used to improve LE estimation with high frequency and high spatial resolution,
meaning that it has great potential to support agricultural monitoring and irrigation management.

Keywords: Extremely Randomized Trees; latent heat flux; high spatial and temporal resolutions;
Chinese GF-1; MODIS

1. Introduction

Latent heat flux (LE) refers to the heat flux transferred to the atmosphere in the
process of surface soil evaporation, vegetation transpiration, and canopy intercepted
evaporation, and is an important component in water balance and the energy cycle [1–3].
Spatiotemporally continuous LE is of considerable significance to a variety of studies
including understanding water and energy exchange [4], renewing terrestrial freshwater
resources [5] and climate change forecasting [6]. The accurate estimation of LE with both
high frequency and high spatial resolution is urgently desired for regional water resources
management and irrigation decision making in agriculture.

Satellite-based observations provide an unprecedented opportunity to monitor large-
area terrestrial ecosystem dynamics, and have been used extensively in land surface-related
estimates and applications from regional to global scales [7,8]. Over the last few decades,
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a large number of satellite-derived LE products with different spatial resolutions have
been generated for terrestrial monitoring applications. To our knowledge, available LE
products have either high spatial resolution or frequent revisit cycle, such as the Moderate
Resolution Imaging Spectroradiometer (MODIS) LE product (1 km, 8 days) [9,10], the
Global Land Evaporation Amsterdam Model (GLEAM) LE product (0.25◦, daily), and the
Mapping EvapoTranspiration with Internalized Calibration (METRIC) LE product (30 m,
16 days) [11]. It is still a challenge to obtain remotely-sensed LE with both high spatial
resolution and dense acquisition frequency, due to the trade-off between revisit cycles and
spatial resolution.

Currently, the MODIS LE product has been adopted as one of the most widely used
data sources, with daily acquired coverage and moderate spatial resolutions ranging
from 250 m to 8 km. However, due to the lack of detailed land surface information, its
relatively coarse spatial resolution is not sufficient to characterize the variations of LE in
heterogeneous areas [12]. With the emergence of new satellite sensors, such as the Chinese
GaoFen-1 Wide Field View (GF-1 WFV) (16 m spatial resolution and frequent revisit
cycle) and Sentinel-2 (a five-day cycle and 10 m spatial resolution), it has been possible
to provide highly valuable data sources at fine spatial resolution [13,14]. Nevertheless,
cloud contamination seriously interferes with image acquisition, contributing to a generally
sparse temporal frequency. Therefore, there is an urgent need to combine the merits of the
two types of satellite images and develop the spatiotemporal fusion method [15].

In recent years, many efforts have been devoted to addressing this issue and the
work that has been done has shown that it is possible for spatiotemporal fusion methods
to generate imagery with high spatial and temporal resolution [16,17]. According to the
principles of the different techniques, the current fusion methods can be classified into
five categories: weight function-based, unmixing-based, Bayesian-based, learning-based
and hybrid methods [18]. Table 1 lists some typical spatiotemporal fusion methods. All of
these methods promise enhancements in spatial and temporal resolution and each has its
own unique advantages when it comes to taking different types of input data, levels of
computational efficiency and application requirements.

Table 1. Typical spatiotemporal fusion methods and related experimental data.

Category Description Method References Experimental Data

Weight
function-based

Introduced adjacent similarity pixel
information to predict the target pixels and

combine spectral similarity, spatial
distance, as well as temporal differences

STARFM Gao et al. [19] MODIS, Landsat
ESTARFM Zhu et al. [20] MODIS, Landsat
STAARCH Hilker et al. [21] MODIS, Landsat

Semi-Physical Fusion
Approach Roy et al. [22] MODIS, Landsat

SADFAT Weng et al. [5] MODIS, Landsat
RWSTFM Wang et al. [23] MODIS, Landsat

Unmixing-based
Definition of endmembers, unmixing of

coarse pixels, and assignment of pixels to
fine classes

MMT Zhukov et al. [24] Landsat, MERIS
Constrained unmixing Zurita-Milla et al. [25] Landsat, MERIS

LAC-GAS Maselli et al. [26] AVHRR LAC,
GAC NDVI

STDFA Wu et al. [27] MODIS, Landsat

Bayesian-based
Based on the Bayesian theory, developed

the maximum posterior probability model
to estimate the fine pixel value

BME Li et al. [28] MODIS, AMSR-E
Spatio-Temporal-Spectral

fusion Xue et al. [29] MODIS, Landsat

Learning-based
Adopted machine learning to establish

correspondences between fine and
coarse datasets

SPSTFM Huang et al. [30] MODIS, Landsat
ELM learning Liu et al. [31] MODIS, Landsat

Fit-FC Wang et al. [32] Sentinel-2, Sentinel-3
MRT Xu et al. [33] MODIS, Landsat

ESRCNN Shao et al. [34] Landsat, Sentinel-2

Hybrid methods
Combined the advantages of two or more

of the above four methods to improve
fusion performance

FSDAF Zhu et al. [35] MODIS, Landsat
STRUM Gevaert et al. [35] MODIS, Landsat
STIMFM Li et al. [36] MODIS, Landsat
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Among these mainstream fusion methods, the spatial and temporal adaptive re-
flectance fusion model (STARFM) proposed by Gao et al. [19] has been widely used.
STARFM introduces the information of spectral similarity between pixels and further
utilizes a weight function to characterize the contribution of each neighboring pixel.
Semmens et al. [37], using STARFM, estimated the daily latent heat flux with 30 m resolu-
tion at irrigated agricultural fields and achieved a relative mean absolute of approximately
19–23%. To improve the performance of the fusion algorithm, STARFM was further modi-
fied and upgraded for various complex situations. For instance, STAARCH, developed
by Hilker et al. [21], can effectively capture terrestrial disturbance and monitor landcover
change. The enhanced STARFM (ESTARFM), proposed by Zhu et al. [20], adds the con-
version coefficient to address the spatial information, which is more suitable for highly
heterogeneous areas. In addition, based on the unmixing theory, a number of spatiotem-
poral fusion approaches have been developed, such as the multisensor multiresolution
technique (MMT) [24], STDFA [27]. However, these approaches are for the most part based
on the assumption that the relationship between known and predicted pixels is one of
linear change. Due to the complexity and variability of land surface, a large number of non-
linear mixed pixels exist in satellite images of different phase, resulting in a decrease in the
accuracy of prediction. Thus, there is scope for improving the accuracy of spatiotemporal
fusion methods over areas with heterogeneous landscapes.

Inspired by the excellent nonlinear representation ability of machine learning, learning-
based fusion techniques have the potential to improve the accuracy of prediction in het-
erogenous landscapes. Several learning-based spatiotemporal fusion methods have recently
been developed. For instance, the Sparse-representation-based Spatiotemporal reflectance
Fusion Model (SPSTFM), put forward by Huang and Song [30], learned the corresponding
relationship between the available MODIS–Landsat image pairs, and then was applied
to predict the fine image with a high level of accuracy. In addition, the Extreme Learning
Machine (ELM) fusion model [30], random forest (RF) [38] machine learning and the convo-
lutional neural network (CNN)-based fusion network [34] have also attracted attention in
the attempts to reconstruct fine images. Ke et al. [38] designed the RF-based downscaling
approaches that combine RF and spatiotemporal fusion algorithms to generate an 8-day LE
product at a spatial resolution of 30 m, which provides a unique approach for monitoring
water and energy exchange at regional scales.

Extremely Randomized Trees (ERT), as a novel decision tree-based learning method,
has performed well in downscaling [39]. Compared with RF, the ERT model has stronger
generalization and its node splitting is generally more random [40]. As the number of
decision trees increases, the error rate is expected to significantly decrease [41]. To date,
several researches have confirmed that the regression accuracy of the ERT algorithm is
superior to RF and ANN [42,43]. However, to our knowledge, the ERT algorithm has not
been adopted to reconstruct the spatiotemporally continuous LE product. Given that the
spatiotemporal fusion model based on the ERT algorithm can be easily developed from the
available image pairs without complex formulas, we tried to combine it with a simple but
solid satellite-derived LE model, namely, the Modified-Satellite Priestley–Taylor (MS–PT)
model developed by Yao et al. [44], to construct an LE product with high spatial and
temporal resolutions. Departing from the traditional machine learning-based downscaling
framework, we took advantage of the powerful ability of ERT nonlinear fitting to learn a
mapping function based upon the MODIS–GF-1 image pairs difference.

In this paper, we focus on the implementation of an Extremely Randomized Trees
Fusion Model (ERTFM) along with the MS–PT model to generate a spatiotemporally
continuous LE product at 16 m daily resolution. We had three major objectives: First, we
proposed the ERTFM model to reconstruct high spatiotemporal resolution reflectance data
from a fusion of GF-1 and MODIS products and then assessed its accuracy with observed
GF-1 images. Second, we compared the ability of ERTFM for downscaling to four other
typical fusion methods. Third, we applied the ERTFM and the MS–PT model to generate a
high spatiotemporal LE product and then compared it with in situ LE observations.
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2. Materials and Methods
2.1. The ERTFM Logic

Extremely Randomized Trees (ERT) is a nonlinear and nonparametric machine learn-
ing model designed by Geurts et al. [39] to address classification and regression problems.
The ERT algorithm established an ensemble decision or regression tree according to the
classical top-down procedure, similar to standard tree-based ensemble methods. Com-
pared with other tree-based methods, e.g., RF, the ERT splits nodes totally randomly
and utilizes the whole learning sample to build the tree nodes rather than bootstrapping
replicas [40]. In addition, the algorithm selects a cut-point or attributes for each feature
completely randomly, instead of calculating the locally optimal one. In terms of accuracy
and computational efficiency, ERT achieved a satisfactory performance.

There are three key parameters in the procedures, namely K, Nmin and M, where K
denotes the number of splitting nodes, Nmin denotes the number of samples of cut-point,
and M denotes the number of regression trees [39]. The ERT model will automatically
adjust their values to get the optimal solution, according to the learning samples. The ERT
has shown powerful generalization and robustness, and can partly address the overfitting
problems of other machine learning through using more random splits nodes, which is
more likely to keep surface variances over a heterogeneous landscape [39,41]. It is worth
noting that Shang et al. [43] succeeded in applying the ERT approach to integrate the five
LE products from across Europe. Therefore, the ERT has the enormous potential to derive
an LE product with a high spatiotemporal resolution.

In contrast to the sophisticated learning-based fusion method, we were mainly con-
cerned with feature mapping from the coarse-fine image pairs, and thereby avoided the
complexity of sparse coding. The ERT approach was employed to train the mapping
function. In this study, two pairs of coarse-fine images at T1 and T3 and an extra coarse
image at T2 were acquired to predict a fine resolution image. GF-1 (G1, G3) and MODIS (M1,
M3) denotes the reflectance images at the date of T1 and T3. We proposed the ERT fusion
model (ERTFM) based on the MODIS and GF-1 data to generate the high spatiotemporal
resolution LE product. The flowchart of the ERTFM is shown in Figure 1 and the schematic
overview of ERTFM is described below.

Firstly, Training Samples Generation. The ERT was adopted to train the mapping
function between the GF-1 and MODIS images. The different images were directly used
for model construction, with 70% of the samples being used for training the model and the
other 30% for validation. Specifically, M13 and G13 denotes the differences in the MODIS
and GF-1 images on the date of T1 and T3. The K-fold cross-validation method is utilized
to assess the performance of the ERTFM.

Secondly, ERT Fusion Method Building. A large number of regression trees were
generated by randomly splitting nodes, and the outputs of trees were aggregated to predict
the final value. The coarse difference images were used as predictors, and the fine difference
images were used as target variables. We also used the grid search function in the Sklearn
library to select the optimal parameters. The number (N_Estimators) and the maximum
depth (max_Depth) of regression trees were chosen to minimize bias.

Thirdly, Prediction and Reconstruction. The trained ERTFM was used to predict the
fine difference images G12 and G23 from the coarse images M12 and M23. Then, an adaptive
local weighting approach was adopted to reconstruct the fine images G2. The weight
functions can be written as:

G2 = W1 ∗ (G1 + G12) + W3 ∗ (G3 + G23) (1)

where W1 and W3 are the weighting functions for the image of G2 from G1 and G3, re-
spectively. The difference of images between the known date and the prediction date
is employed to calculate the contribution of each prediction. The shorter the time span
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between T1 and T2, and between T2 and T3, the greater the weight parameter of the images.
In addition, a sigmoid function was used to compute the time weight parameters:

W1 = 1/1 + ek∗i (2)

i =|M23 −M12| (3)

W3 = 1−W1 (4)

Finally, there was a series of GF-like image predictions based on the available MODIS
images. NDVI was then calculated according to the predicted reflectance, which can be
combined with meteorological observation data to estimate the LE product with high
spatiotemporal resolution.

Figure 1. Flowchart of the proposed ERTFM.

2.2. Comparison to Other Fusion Methods
2.2.1. STARFM

The STARFM algorithm, the most widely used spatiotemporal fusion method, was
first proposed by Gao et al. [19] to blend the MODIS and Landsat images. Given that
the GF-1 and MODIS images have comparable bandwidth, STARFM can be expanded
to yield GF-1 and MODIS fusion applications. It is assumed that the land cover types
between the available date and predicted date do not change. Due to the complexity
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and heterogeneity of land surface, the mixed pixels still exist in the coarse MODIS images.
Therefore, STARFM introduced the neighborhood pixel information and utilized the weight
function to calculate the reflectance of the center pixel.

2.2.2. ESTARFM

To improve the accuracy of STARFM over heterogeneous landscapes, the ESTARFM
algorithm designed by Zhu et al. [20] introduced the conversion coefficient to calculate the
changes between the fine-coarse pixels. Compared to the original model, the ESTARFM
needs two periods of GF-1/MODIS images (at the same or a close date) and one additional
MODIS image (at the predicted date) to compute the weighting parameter, which is
especially suitable for a highly heterogeneous spatial area.

2.2.3. FSDAF

The Flexible Spatiotemporal data Fusion (FSDAF) method is a hybrid fusion method
combining the unmixing theory and weighting function proposed by Zhu et al. [35]. The
FSDAF can effectively predict the land cover change and needs just one pair of fine-coarse
images, the first at the date of t0 and the other coarse image at the date of tp, to predict
the target image. In our study, the FSDAF classified the GF-1 image first and calculated
the temporal change of each class. Secondly, the residuals from temporal change were
estimated. Then, a thin plate spline (TPS) method was adopted to downscale the coarse
image, which was then combined with residuals to obtain the robust prediction. Finally,
the weighting parameter was utilized to estimate the target pixels.

2.2.4. Fit-FC

Fit-FC method was firstly developed to blend the Sentinel-2 and Sentinel-3 images
proposed by Wang and Atkinson [32], which consisted of regression fitting, spatial filtering
and residual compensation. The most significant improvement of Fit-FC is an increase
in the relationship between the available and predicted images. It also shows a robust
performance in dealing with cases where substantial temporal changes occurred within
a short time span. In the three steps, the linear fitting and spatial filtering are feasible
approaches to eliminate the “patches” caused by the resolution differences. Finally, the
residuals compensated for the predictions, and the spectral information of the fine image
is preserved.

2.3. LE Computation

In this study, GF-1 and MODIS LE products were generated based on a Modified-
Satellite Priestley–Taylor (MS–PT) algorithm proposed by Yao et al. [44]. It is developed
by the classical Priestley–Taylor equation [45], which is designed for open water and
saturated land:

LE = α
∆

∆+γ
(R n − G) (5)

where α is the Priestly–Taylor coefficient (1.26), γ is the psychrometric constant (0.066 kPa C−1),
∆ is the slope of saturation water vapor pressure versus temperature curve, Rn is the net
radiation, and G is the soil heat flux. Based on the Priestley–Taylor type models [46], the
MS–PT model utilized the apparent thermal inertia (ATI) to replace relative humidity and
saturated vapor pressure to minimize the uncertainties of surface resistance, which has
been verified to be effective in China [44,47]. The input parameters merely require the air
temperature (Ta), the net radiation (Rn), diurnal air temperature range (DT) for ATI, and
the vegetation index (NDVI). The terrestrial LE consists of the unsaturated soil evaporation
(LEs), the canopy transpiration (LEc), the canopy interception evaporation (LEic), and the
saturated wet soil surface evaporation (LEws). The MS–PT algorithm can be given by:

LE = LEs + LEc + LEic + LEws, (6)
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LEs = (1− fwet) fsmα
∆

∆ + γ
(Rns − G), (7)

LEc = (1− fwet) fv fTα
∆

∆ + γ
Rnv, (8)

LEic = fwetα
∆

∆ + γ
Rnv, (9)

LEws = fwetα
∆

∆ + γ
(Rns − G), (10)

fsm= ATIk =

(
1

DT

)DT/DTmax

, (11)

fwet = fsm
4, (12)

fc =
NDVI−NDVImin

NDVImax −NDVImin
, (13)

where fwet is the relative surface wetness, fsm is soil moisture constraint, fT represents
plant temperature constraint

(
exp(−(Ta − Topt

)
/Topt)2), DTmax describes the maximum

diurnal air temperature range (40 ◦C), Topt is an optimum temperature (25 ◦C), Rns is
the surface net radiation to the soil (Rns = Rn(1− fc)), G is soil heat flux (µRn(1− fc),
µ = 0.18), Rnv represents the surface net radiation to the vegetation (Rnv = Rn fc), fv is the
vegetation cover fraction, and NDVImin and NDVImax are the minimum and maximum
NDVI, respectively.

Compared with the MODIS LE product (MOD16), the MS–PT algorithm reduced the
uncertainties by approximately 5 W/m2 in the LE estimation and provided more reliable
LE estimations at multiple biomes [14]. Therefore, the MS–PT was chosen to generate a
spatiotemporal continuous LE product with 16 m daily resolution.

2.4. Assessment Metrics

The following statistical metrics were used to assess the accuracy of the ERTFM
approach: the structural similarity (SSIM), the correlation coefficient (r), and average
absolute deviation (AAD). SSIM denotes the similarity between the fusion image and true
image, ranging from zero to one. The higher the SSIM value is, the better performance
is. R denotes the correlations between observations and predictions. AAD measures the
absolute deviation.

2.5. Experimental Data and Preprocessing
2.5.1. Study Area

The study area (14 km × 11 km) was selected near Guanting Reservoir, which is
located in Huailai County, Hebei Province of Northern China (Figure 2). It is covered with
a variety of heterogeneous landscapes, including cropland, forest, grassland, shrubland,
wetland, water, impervious surface, and bare land, thus allowing for the assessment of
the ETRFM model under different conditions. The study area has a typical continental
climate with an average annual temperature of 10 ◦C and an average annual precipitation
of 500 mm. This area contains two flux towers surrounding the fields with irrigated corn:
Site 1 (115.788◦E, 40.3491◦N; hereafter EC 10 m site) and Site 2 (115.7923◦E, 40.3574◦N;
hereafter EC 40 m site). The EC system, equipped with both a gas analyzer and a sonic
anemometer, provided flux measurements ranging from 2014 to 2017, with a temporal
resolution of 30 min. In this study, all flux measurements have been time-averaged to a
daily value and any half-hourly measurements with low quality (QC > 2) were excluded.
Any day with gaps of more than 25% of the entire time were indicated as missing. After
that, the energy balance closure across two sites was 79.2% on average. Because of the
energy non-closure limitation, the widely used method proposed by Twine et al. [48] was
used for energy balance closure [49,50].
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Figure 2. Maps showing: (A) The location of the study area; (B) GF-1 image collected on 2017/133;
(C) Land cover types and the location of EC towers.

2.5.2. Remotely-Sensed Data

The Chinese GF-1, as the first satellite of the China High Resolution Earth Observation
System, has the advantages of high spatial resolution, multispectrality, and large width [51].
The GF-1 spectrum ranges from 450 to 890 nm, which contains four spectral channels:
bands 1 (blue), 2 (green), 3 (red) and 4 (near-infrared). Due to the unfavorable atmospheric
conditions with cloud and aerosol contamination, images with a spatial resolution of 16 m
and a temporal resolution of 4 day were frequently absent. In this paper, only nineteen
cloud-free GF-1 WFV images were obtained during the period of 2014–2017. The systematic
atmospheric, radiation and geometric corrections were processed. In addition, the Landsat
8 OLI product was used to correct the positioning accuracy of GF-1 images.

The MODIS spectral reflectance product (MOD09GA) contains bands 1–7 surface
reflectance with a 500 m daily resolution, and was provided by the Land Processes Dis-
tributed Active Archive Center (LP DAAC). It has corrected the effects of atmospheric gases
and aerosols and gridded these factors into the sinusoidal projection. The four spectral
bands, including bands 1 (red), 2 (near-infrared), 3 (blue) and 4 (green), were selected and
reordered 3 (blue), 4 (green), 1 (red), and 2 (near-infrared) to match the GF-1 bands. The
MODIS Reprojection Tool (MRT) was used to convert the file format and reprojection [52].
Then, the MODIS product was resampled to the 16 m resolution using the bilinear interpo-
lation method to meet the model input requirement. In addition, the outliers caused by
cloud shadow contamination were removed. Since we have highlighted acquiring spatially
and temporally continuous LE products, the cloud-free image close to the acquisition dates
provided complementary information to fill in the gaps due to missing pixels.

2.5.3. Auxiliary Data

The meteorological dataset was obtained from the automatic weather station (AWS),
which provides 10 min measurements of air temperature (Ta), wind speed (Ws), relative
humidity (RH), soil heat flux (Gs), and shortwave solar radiation (Rs). All meteorological
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variables were aggregated into daily or eight-day mean values. To ensure that records were
only retained for dates with high-quality forcing data, all meteorological measurements
along with flux measurements from EC systems corresponding to rain events and snow
conditions were treated as missing. On the other hand, the shortwave broadband albedo
was acquired from the Global LAnd Surface Satellite (GLASS) albedo product (5 km,
8 day) [53], which has satisfactory spatial-temporal coverage and reasonable consistency
with ground measurements. The digital elevation model (DEM) data was acquired from
the 90 m Shuttle Radar Topography Mission (SRTM) images, which were employed to
calculate surface Net Radiation (Rn) in this study.

3. Results
3.1. Evaluation of the ERTFM

Four GF-like images were produced by the ERTFM based on the available GF-1 and
MODIS reflectance products. Four actual observed GF-1 images captured on the dates of
2015/269, 2016/112, 2016/121, and 2017/129 served as reference data for the independent
assessment. Figure 3 provides the visual comparison between the actual GF-1 images and
predictions by the ERTFM on validation dates. Compared with the original images, the
images fused by the ERTFM can maintain spatial details and closely resemble the actual
image. Although the land surface is highly heterogenous, it is apparent that the ERTFM
algorithm was able to capture the villages, towns, roads, and sparse patches of vegetation,
and achieved a satisfactory reconstruction.

Figure 3. The actual GF-1 images (RGB composite) and the predictions by the ERTFM.

Table 2 presents the quantitative assessment of four predicted bands and shows that
the ERTFM-based images are similar to the actual observed GF-1 images, with higher
values of SSIM and r, and lower values of RMSE and AAD. The scatter plots of comparison
between the predicted and observed bands (as shown in Figure 4) also demonstrated that
the ERTFM performed well. The reflectance after fusion shows a high correlation with the
observed GF-1 and most of the values show a one-to-one relationship. For all prediction
bands, SSIM ranged from 0.86 to 0.96, r was between 0.7 and 0.83, and the RMSE and AAD
were in acceptable ranges from 0.012 to 0.032. The blue and green bands were more similar
to the actual GF-1 band compared with the red and near-infrared (NIR) bands in terms
of SSIM, while the red and near-infrared bands provided higher correlations than other
bands. The overall validation indicates that the ERTFM is accurate enough to produce
satisfactory estimations.

To further investigate the performance of the ERTFM, we compared the predicted
NDVI, calculated by the red and NIR bands, and the actual GF-1 NDVI (Figure 5). The
results show that the synthetic NDVI also presented close agreement with the observed
NDVI, r ranged from 0.76 to 0.86, RMSE was around 0.11, and AAD ranged from 0.08
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to 0.1. It is apparent that in the growing season (2016/121, 2017/133 and 2016/269),
the predictions by the ERTFM achieved higher accuracy. Although the fusion of raw
reflectance bands would appear to have introduced errors, such as the anomalous values in
NIR reflectance, the advanced filters by calculating NDVI could eliminate the outliers and
improve the accuracy. The NDVI is regarded as one commonly used parameter to monitor
water and energy cycling. Therefore, it is feasible to apply the predicted reflectance data to
calculate terrestrial parameters, such as the vegetation index, and obtain satisfactory and
reasonable predictions.

Table 2. The accuracy assessment of four fusion bands by ERTFM between the actual GF-1 images
and predicted images.

Date Band SSIM RMSE AAD r

2015/269

Band1 0.938 0.016 0.012 0.74

Band2 0.888 0.024 0.021 0.69

Band3 0.868 0.028 0.021 0.72

Band4 0.91 0.028 0.021 0.7

2016/112

Band1 0.96 0.016 0.012 0.71

Band2 0.937 0.018 0.021 0.74

Band3 0.896 0.027 0.021 0.78

Band4 0.89 0.031 0.021 0.83

2016/121

Band1 0.968 0.015 0.012 0.71

Band2 0.949 0.017 0.021 0.74

Band3 0.9 0.027 0.021 0.78

Band4 0.904 0.032 0.021 0.83

2017/129

Band1 0.922 0.02 0.017 0.81

Band2 0.906 0.019 0.014 0.76

Band3 0.863 0.025 0.019 0.82

Band4 0.866 0.032 0.025 0.8

3.2. Comparison with Other Fusion Methods

A visual comparison of the predictions via the five methods and the actual image
showed that each of these methods correctly captured the fine spatial information and
general temporal change (Figure 6). It is apparent that the predictions are generally similar
to the original GF-1 image and present the GF-like images. Compared with the other
four methods, the image produced by the ERTFM more closely resembled the observed
GF-1 image, and the boundaries between roads, villages, and patches of vegetation are
clearly distinguished. In contrast, the Fit-FC predictions appear blurry, with less clear
boundaries, especially in farmland areas. Due to the mixed medium resolution pixels in
the MODIS image, the great heterogeneity and rapid temporal changes generally resulted
in an unsatisfactory performance. The images fused by FSDAF and STARFM produced
outliers in some pixels, with the result that the images were relatively fuzzy. Therefore, the
ERTFM was able to predict images that more closely resembled the actual GF-1 than the
other four methods.

Scatter plots (Figure 7) and quantitative indicators showed that all the fusion methods
can achieve satisfactory accuracy with the higher SSIM and r, and lower RMSE and AAD.
Among the five fusion methods, the ERTFM results yielded the most accurate predictions,
and the points were closer to the 1:1 line. The proposed ERTFM method had the highest
SSIM (0.91) and r (0.79) values, and the lowest RMSE (0.023) and AAD (0.017) values,
followed by ESTARFM and STARFM. For the specific band, the performance of the ERTFM



Remote Sens. 2021, 13, 3703 11 of 23

was also superior to the other four fusion methods. The correlation coefficient of the
predicted red band and the NIR band can reach more than 0.81, while the accuracy levels
of the other four fusion methods were much lower on the validation date. ESTARFM and
STARFM have a comparable capacity to produce accurate results. Nevertheless, they made
erroneous estimations for some pixels. In particular, the performance of the FSDAF and the
Fit-FC leaves much to be desired and the obvious outliers are dispersed around the 1:1 line.

Figure 4. Scatter plots of predicted reflectance by the ERTFM and the actual GF-1 bands. The red line is the fitting line, and
the black line is the 1:1 line.

According to the statistical parameters (Figure 8), we can see that with respect to SSIM
(ranging from 0.889 to 0.93), r (ranging from 0.713 to 0.8), AAD (ranging from 0.017 to
0.019), or RMSE (ranging from 0.023 to 0.024), the ERTFM is superior to the other four
fusion methods as far as the whole images are concerned. The accuracy of the ESTARFM is
lower than the ERTFM, but higher than the others, with an SSIM value of 0.9, an r value
of 0.75, an AAD value of 0.21 and an RMSE value of 0.024. The STARFM yields relatively
lower SSIM (0.88) and r (0.712) values, and higher RMSE (0.026) and AAD (0.021) values.
The Fit-FC yields the lowest validation accuracy compared with the other four methods
(r varying from 0.543 to 0.699 and RMSE varying from 0.30 to 0.38).
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Figure 5. Scatter plots of predicted NDVI compared with GF-1 reference NDVI. The red line is the
fitting line, and the black line is the 1:1 line. Negative pixels of the modelled NDVI corresponding to
a body of water were not included in the statistical analysis.

Figure 6. False color composites (RGB) of reflectance observed on the date of 2016/121 by: (a) GF-1;
(b) ERTFM; (c) ESTARFM; (d) STARFM; (e) FSDAF; (f) Fit-FC.

3.3. The Application of the ERTFM on LE Estimation

To evaluate the performance of the ERTFM for estimating LE at high spatiotemporal
resolution (daily and 16 m), we firstly selected six cloud-free GF-1 images and combined
them with MODIS images at the corresponding date. Then, we applied the ERTFM model
to produce temporally continuous reflectance data at high spatial resolution, which can be
used to derive vegetation indices, such as NDVI. Based on the improved NDVI generated
by the ERTFM and the original NDVI from MODIS, the spatial distributions of LE estimates
during the growing season (May to September) in 2017 were presented in Figure 9 (ERTFM-
applied) and Figure 10 (original MODIS), respectively.
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Figure 7. Scatter plots of observed GF-1 reflectance and predicted reflectance by ERTFM, ESTARFM, STARFM, FSDAF, and
Fit-FC. The red line is the fitting line and the black line is the 1:1 line.
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Figure 8. Comparison of the ERTFM with the other four spatiotemporal fusion models, STARFM, ESTARFM, FSDAF, Fit-FC.
(a) SSIM. (b) r. (c) AAD. (d) RMSE.

Compared with Figure 10, LE estimates using the ERTFM-based NDVI had similar
temporal variation characteristics but provided more details of spatial variances. Particu-
larly for the period from June to August, the regional distribution of LE estimates differed
significantly in the study area. In the beginning of May, LE estimates of different land
covers were relatively lower, contributing to less spatial variances in both Figures 9 and 10.
After the middle of May, LE estimates located in forested areas and surrounding villages
significantly increased, due to rising temperature and solar radiation. By contrast, the
increasing trend of LE estimates in croplands started in June, and gradually reached its
peak value in July. That is because crop transpiration played an important role in the rising
of LE temporal variations, and the agricultural managements, such as irrigation, can be
regarded as an acceleration factor in this irrigated corn area. However, the simulated LE
decreased on the 201st day of 2017 but increased again on the 209th day of 2017. This
suggests that the 201st day of 2017 experienced a rain event, causing decreased solar
radiation and further lowered LE. As autumn was coming, LE estimates in croplands show
a decreasing trend from August to September, indicating that the corn gradually came to
maturity with less transpiration. In general, LE estimates using the ERTFM-based NDVI
provided more detailed spatial characteristics and showed clearer variations in terrestrial
drought conditions—a feature of the method that would be of use in regional precision
water management and agricultural management.
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Figure 9. Spatial time series (every 8 days) of LE product based on the ERTFM in the growing season
(from May to September 2017).

Figure 10. Spatial time series (every 8 days) of MODIS LE product before fusion in the growing
season (from May to September 2017).
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A field scale LE, taken over 8 days with 16 m resolution, was produced successfully
based on the proposed ERTFM method. To further evaluate the performance after fusion,
we compared the two satellite products with the ERTFM-based LE products and EC
observations in Figure 11. The blue circle and orange circle represent the MODIS and
GF-1-derived LE products, respectively. After fusion, LE estimation showed improved
accuracy compared with the coarse MODIS product with an R2 of 0.8 and an RMSE of
19.2 W/m2. Before fusion, the MODIS and GF-1 LE products were slightly overestimated
or underestimated. After fusion, the estimated LE and EC measurements showed closer
agreement, and most of the pixels followed the one-to-one relationship. The RMSE of the
predicted LE decreased from 23.0 to 19.2 W/m2, which implies that the accuracy of the
estimated LE has been improved slightly. Because the estimated LE was reconstructed
by the fusion model based on the MODIS and GF-1 satellite images, there was limited
improvement in accuracy. The simulated reflectance and NDVI were determined by MODIS
and GF-1 data, therefore the accuracy of the estimated LE also depended on these two
satellite products.

Figure 11. Scatter plots of MODIS LE, GF-1 LE, and integrated LE products validated by the EC
measurements: (a,b) for EC 10 m site; (c,d) for EC 40 m site. The red line is the fitting line and the
black line is the 1:1 line.

Figure 12 plots the time series comparison of MODIS LE, GF-1 LE and the ERTFM-
based LE and EC ground measurements. The results indicated that the temporal variation
trend of satellite LE and simulated LE products showed favorable agreement with in situ
measurements. The interannual variation of LE follows one peak pattern and reaches its
peak in summer from June to August, which corresponds to the continental monsoon
climate. In the early and late stages of the growing season, the MODIS product generally
overestimated LE with the bias of approximately 15 W/m2, while the GF-1 based LE
product showed closer agreement with EC measurements. The temporal trends of LE verify
that there exists a significant complementarity in the temporal and spatial characteristics
of the MODIS and GF-1 products. More importantly, the ERTFM-based LE was able to
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combine the advantages of these two products and successfully captured the fine spatial
and temporal details. The estimated LE also showed a good correspondence with the
precipitation events. It is not surprising to find that the ERTFM-based LE showed the
notable trough in the growth period (DOY 200), this having been caused by the decreased
shortwave radiation in the cloudy and rainy conditions. Overall, the estimated LE based
on the ERTFM was consistent with EC measurements and captured the rapid temporal
changes that took place over the heterogeneous land surface.

Figure 12. Time series of the MODIS LE (blue line), the GF-1 LE (red diamond), and the ERTFM-based
LE (red line) products validated by the EC measurements (gray circles) on an 8-day average scale.
Blue bars indicate rainfall events.

4. Discussion
4.1. Performance of the ERTFM

Our results demonstrated that the proposed ERTFM algorithm is able to merge GF-1
and MODIS reflectance imageries with higher values of SSIM and r, and lower values of
bias and AAD. The feature mapping function constructed by the ERT machine-learning
modeling between the coarse and fine resolution imagery is effective in predicting land
surface reflectance with high spatiotemporal resolution. Among different spectral bands,
the red and NIR bands showed relatively higher correlations than the other bands. This is
likely due to a greater similarity in the scope of spectral band coverage between the GF-1
and MODIS sensors [51,54]. However, it is noted that some scatter points are dispersed
and the overestimation or underestimation can be transferred to final predictions. The
outliers and uncertainties can be explained in terms of the mixed MODIS coarse pixels
leading to the smooth GF-1 extreme predicted values [15,55]. Given the complexity and
variability of the land surface, the prediction errors would be amplified, thereby affecting
the reflectance estimations [18]. Nevertheless, the spatiotemporal fusion method based on
the ERT learning technique has shown that it is possible to build a nonlinear correlation
using different images at the predicted and target times, without having recourse to the
sophistication of sparse representation. Compared with other current fusion methods,
the ERTFM presents the stronger generalization ability. Overall, the ERTFM algorithm
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proved to be a feasible technique for improving the spatial and temporal resolution of
multisource data, and was able to achieve a level of accuracy comparable to the other
methods, even though the pixel-wise difference between the GF-1 and MODIS images is
nearly thirty times.

The limitations of the ERTFM model include two major factors: (1) the accuracy of
high precision images; (2) the reliability of training samples. Theoretically, spatiotemporal
fusion requires precise image alignment to provide the exact same views [52]. Although the
GF-1 and MODIS datasets have similar spectral configurations and band width, obvious
differences still exist in different satellite sensors, such as the geometry registration and
atmospheric conditions [56]. For example, the GF-1 satellite has the broader swath with
larger viewing angles than MODIS, resulting in the different solar viewing angles and
elevations. Therefore, it is necessary to preprocess the georeferencing and atmospheric
corrections to ensure the accuracy of fusion methods. In our study, we utilized the same
period of Landsat imagery to correct the distorted GF-1 images, but the manual adjustment
is not enough to reach the fine-pixel bench level. On the other hand, the ERTFM model is
employed to merge satellite datasets and achieve accurate predictions and reconstructions
and thus the accuracy of the machine learning method is highly dependent on the quality
of the training data samples. Previous studies found that the larger the amount of training
samples, the higher the accuracy estimations [57]. However, a large number of training
datasets would lead to low computing efficiency, particularly for a large-scale area. There-
fore, the difficulty of striking a balance between the robustness of training samples and
computing efficiency is the key factor limiting the application of the ERTFM model.

4.2. Comparison with Other Fusion Models

Several popular fusion algorithms have been employed for comparison using GF-
1 and MODIS reflectance products in our study. According to our results, the overall
fusion methods can successfully preserve the pixel-level spatial details and provide nearly
unbiased predictions for each reflectance band. Among the five methods, the Fit-FC and
FSDAF performed worse than the other methods due to an unsatisfactory blurring effect
for great temporal variations. Some differences should be taken into account based on the
actual experimental datasets, such as the input imagery, radiometric bias, and the principle
of the algorithm.

Firstly, the large uncertainties are mainly attributed to the defectiveness of the prior
fine-coarse image pair, which meant that less supplementary information was available.
Previous studies also supported this finding, and suggested that the number of fine reso-
lution images that are inputted has a significant influence on the performance of fusion
methods [58]. Significantly, the fusion images utilized in our study are GF-1 and MODIS
products, which are not identical to the products used in the other studies. It should be
noted that the Fit-FC method was only recently developed for sentinel-2 and sentinel-3
fusion applications, and has more strict requirements [32]. Secondly, the performance of
the fusion methods also depends on radiometric deviation. The Fit-FC and FSDAF are
highly sensitive to radiometric inconsistences, but the biases in the different sensors are
hard to eliminate completely [59]. Moreover, for the formulation of the Fit-FC algorithm,
it first developed the relationship between the GF-1 and MODIS images using a linear
regression, and further applied it to the target images. This strategy is not suitable for
highly heterogeneous regions, which would explain why the Fit-FC algorithm produced
the blocky effects that it did, and which resulted in the fuzzy boundaries. In contrast, the
proposed ERTFM is easy to conduct and achieves a relatively higher level of accuracy. The
extraordinary advantage of the ERTFM is the use of machine learning to replace the simple
linear regression and provide a robust simulation.

The performance of the STARFM and ESTARFM methods is not as accurate as the
proposed ERTFM, while the latter’s ability for preserving the GF-like image structures
outperforms the Fit-FC and FSDAF methods. STARFM, as the most popular used fusion
algorithm, utilizes information from neighboring pixels with similar spectra to predict the
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missing data [60]. However, this algorithm is based on the assumption that one MODIS
pixel contains one land cover type, which would be problematic for heterogeneous pixels.
According to our results, STARFM produced much less accurate estimations, especially
in conditions of high heterogeneity and temporal variation. A similar comparison was
performed by Gevaert and García-Haro [15], who suggested that STARFM is more sensitive
to temporal change than spatial variance. Regarding this issue, ESTARFM introduced
a conversion coefficient to enhance the accuracy of prediction for heterogeneous land-
scapes. This modification led to a better performance (∆R of +3.8%) of ESTARFM than
STARFM in our study, which is consistent with the findings of Zhu et al. [20]. It should
be noted that although ESTARFM is generally an “enhanced” version of STARFM, it does
not always produce lower errors than STARFM, particularly for spectral bands where
temporal variance is dominated [61]. Land cover with different domain characteristics and
spatiotemporal variances was found to be strongly associated with the performance of
STARFM-like methods [59].

4.3. The Application of ERTFM

According to our study, the ERTFM can be used to produce accurate and high spa-
tiotemporal resolution LE by fusion of the GF-1 and MODIS products. This method was
also validated with respect to the efficient capture of the spatial and temporal variability
in LE at GF-like resolution. This fine LE information, if generated operationally, could
assist with irrigation managers to arrange irrigation quantities and timing. For instance,
Ma et al. [4] used field-scale LE to monitor irrigation water efficiency and suggested that
the reallocation of irrigation water is needed to reduce wasted water that cannot be used
by crops. Furthermore, given that NDVI is an indicator of plant phenological stage, many
studies have verified the utility of high spatiotemporal resolution NDVI images for crop
growth monitoring and yield prediction [62,63]. Due to the direct relationship with plants’
carbon assimilation, LE estimates at field scale were also proven to be associated with
within-field variability in at-harvest yield maps [37]. Thus, the superiority of the ERTFM
when it comes to providing detailed LE information that may not be easily acquired with
other methodologies means that the model promises a more comprehensive understanding
of how LE relates to surface water stress and plant growth.

The ERTFM is an application of the ERT method to predict terrestrial LE, which could
also be employed for other land surface parameters. For example, Zhang et al. [64] used
eight machine learning regression algorithms to estimate forest aboveground biomass and
found the recently developed ERT and CatBoost methods achieved better performances,
providing more stable results. Similar studies were conducted to predict streamflow [65]
and air quality [66]. These studies demonstrated that the ERT method not only provided
solid performance on different datasets, but also achieved a good compromise between
predictive accuracy and computational requirements. As noted by Shang et al. [43], the
superior fusion performance of the ERT method could be attributed to the removal of
the need for the optimization of discretization thresholds. More applications of the ERT
method to generate images with high frequency and high spatial resolution are encouraged
to better understand its pros and cons.

5. Conclusions

The accurate estimation of terrestrial LE is fundamental to regional water stress
monitoring and water resources management. Despite the rapid development of new
satellite-derived LE products, it is still a challenge to observe LE with both high frequency
and high spatial resolution. Alternatively, several satellite-based data fusion approaches
have been developed to bridge the gap between the high and low spatial resolution data
and improve the spatiotemporal continuity of products. In this study, we combined the
machine learning-based ERTFM and vegetation-based MS–PT method to produce high
spatiotemporal resolution LE data by merging the Chinese GF-1 and MODIS products.
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The validation results illustrated that the fused reflectance data generated by the ERTFM
showed a close agreement with the fine GF-1 data (SSIM = 0.91, r = 0.76, RMSE = 0.023,
AAD = 0.02) and presented the distinct features of roads and agricultural areas. The NDVI
calculated from the fused reflectance data also had a high correlation (r = 0.83) with GF-1
NDVI. Through a comparison with four fusion models including STARFM, ESTARFM,
FSDAF, and Fit-FC, ERTFM was proven to explain more observed reflectance variances
with a mean r value of 0.79, followed by the ESTARFM (r = 0.75) and STARFM (r = 0.71).
Further analysis demonstrated that high spatiotemporal resolution LE estimates calculated
from the fused reflectance data agreed well with ground LE measurements (R2 = 0.81,
RMSE = 19.18 W/m2). Our findings indicated that the ERTFM is able to improve ET
estimates by integrating daily information at moderate resolution from wide-swath sensors
like MODIS, with periodic high spatial resolution images from GF-1. Spatiotemporally
continuous LE estimates of a high quality are projected to support agricultural monitoring
and irrigation management.
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