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Abstract: The ability to measure and monitor wildlife populations is important for species manage-
ment and conservation. The use of near-infrared spectroscopy (NIRS) to rapidly detect physiological
traits from wildlife scat and other body materials could play an important role in the conservation of
species. Previous research has demonstrated the potential for NIRS to detect diseases such as the
novel COVID-19 from saliva, parasites from feces, and numerous other traits from animal skin, hair,
and scat, such as cortisol metabolites, diet quality, sex, and reproductive status, that may be useful
for population monitoring. Models developed from NIRS data use light reflected from a sample to
relate the variation in the sample’s spectra to variation in a trait, which can then be used to predict
that trait in unknown samples based on their spectra. The modelling process involves calibration,
validation, and evaluation. Data sampling, pre-treatments, and the selection of training and testing
datasets can impact model performance. We review the use of NIRS for measuring physiological
traits in animals that may be useful for wildlife management and conservation and suggest future
research to advance the application of NIRS for this purpose.

Keywords: spectroscopy; near-infrared; wildlife; conservation; management; health; disease; diet;
nutrition; reproductive status

1. Introduction

Accurate and timely information about wildlife populations is necessary to make ap-
propriate decisions about their management and conservation. A combination of invasive
and non-invasive methods is typically used to obtain this information [1,2]. However,
management decisions are often made without all of the information needed due to the
difficulty, time, and/or cost associated with acquiring it [3]. Invasive methods for collecting
data on animals usually require them to be captured, which can occasionally cause injury
or even death [1,4]. In addition, it may not be possible to locate or capture cryptic, rare,
dangerous, or easily excitable species [5]. Non-invasive field sampling techniques such
as the collection of feces, hair, footprints, and urine samples can provide useful informa-
tion about wildlife, without needing to see or interact with the animal [2,6]. For many
species, scats are easy to find in the environment and can provide in-depth information
about diet [7], stress and reproductive hormones [8,9], sex [10], and parasite load [11].
However, extracting this information from scat can be time-consuming, expensive, and
require multiple procedures [12]. For example, DNA sequencing has been used to identify
diet composition from scat [13], but these analyses require highly skilled personnel and
costly analytical equipment.

Near-infrared spectroscopy (NIRS) is a non-invasive analytical technique that can
provide a variety of qualitative and quantitative information rapidly and inexpensively [14].
A detailed description of this technique is provided in the Section 2. NIRS is widely used in
livestock industries, where it provides information about diet selection and the nutritional
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properties of pasture and feed to help farmers increase yields [15–19]. NIRS is also used
extensively to quantify the concentrations of chemical compounds in dry goods [20], dairy
milk, and other liquid consumables [21,22], as well as to rapidly detect the presence
of hazardous chemicals for security screening [23]. In addition, NIRS has been used
to measure the quality of plant browse for wild herbivores to investigate plant–animal
interactions and the relationships between browse quality and habitat quality [24–30].

Recently, NIRS has demonstrated the potential to detect biophysical traits from animal
excrement, saliva, and tissue samples that may be useful for a number of applications
in wildlife management and conservation [31]. These include disease and parasite sta-
tus [32,33], sex [10,34], species [35], age class [10,36], reproductive status [10,37–39], stress
levels [40,41], body composition [42,43], and nutritional state [44]. The development of
portable field sensors and lower-cost NIRS instruments, particularly in comparison with
the equipment required for conventional assays, is increasing interest in a wide range
of ecological applications [31,45,46]. Another major benefit of NIRS is that, after calibra-
tion, a practitioner can measure several traits simultaneously from one sample with little
preparation [14]. In this review, we provide a brief overview of NIRS and discuss the
application of NIRS for determining disease, population demographics, and diet quality
using spectral data collected from animal scat, urine, saliva, hair, skin, and scales. We also
highlight areas that should be the focus of future research, such as how the pre-treatment
of sample material could improve NIRS models, whether the aging of samples impacts
the information obtained, and other considerations such as sample size, validation, data
variability, and lastly the potential for the shareability of NIRS calibration models.

2. NIRS in Practice

NIRS involves collecting the light reflected from or transmitted through a material
across the near-infrared (NIR, 750 nm to 1000 nm) and short-wave infrared (SWIR, 1000 nm
to 2500 nm) regions of the electromagnetic spectrum, often collectively referred to as
near-infrared (Figure 1, [45]). Chemical bonds vibrate as they rotate, bend, and stretch
in response to their atomic interactions and energy level. These vibrations absorb elec-
tromagnetic radiation at wavelengths that correspond to their energy state and create
measurable overtones and harmonics in the NIR wavelengths [47]. Given that different
materials contain specific combinations of chemical constituents, and thus the patterns
of reflected and absorbed light are also different between materials, NIRS can be used
to obtain information about the chemical composition of a sample [14,48]. Notably, near-
infrared radiation is absorbed primarily by C-H, N-H, and O-H chemical bonds, which
make up most organic compounds, so it is particularly useful for the quantitative analysis
of organic material [14]. In addition to measuring some chemical constituents directly from
specific wavelengths associated with chemical bonds, NIRS and its associated statistical
methodology—chemometrics—can also identify relationships between complex traits that
are not determined by any one chemical compound but by numerous interacting effects
and multiple wavelengths within the electromagnetic spectrum [14,29,49].

NIRS allows for the rapid collection of thousands of data points across the electromag-
netic spectrum. These data can be collected using a variety of different imaging modes
(i.e., reflectance, transmittance, or interactance) and instrument types, which are reviewed
elsewhere (for example, see [50]). Although there are some simple models that associate
a single wavelength or band of wavelengths with a constituent of interest, such as water
and ethanol, most variables require reflectance values from tens or hundreds of wave-
lengths for accurate measurements [45]. Models developed from NIRS result in accurate
predictions when consistent associations between the measured variable and variations in
the reflectance of particular wavelengths are found; however, the underlying mechanism
driving those relationships is not always known [51]. For example, the ability of NIRS
to discriminate males from females in some animals may not be due to wavelengths as-
sociated with the chemical bonds of sex hormones but possibly sex-based differences in
diet selection that result in samples from males and females having a different chemical
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composition [46]. Although understanding the scientific basis for model success can help
in the assessment of its applicability and limitations, few studies address this issue. Most
research focuses on developing and testing spectral calibration models to predict values
in new samples using chemometric methods. Chemometrics evolved alongside NIRS as
a collection of mathematical and statistical tools to extract relevant information from the
large, multidimensional datasets that are common with NIRS and other forms of spec-
troscopy. A complete review of chemometrics is beyond the scope of this paper and has
already been addressed in the existing literature [52,53]. However, we provide an overview
of some common mathematical pre-treatments and statistical methods for the qualitative
and quantitative analysis of NIRS data below.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. A visualisation of wavelengths in the electromagnetic spectrum, highlighting the near-
infrared region. Adapted from proccesssensors.com blog from 2013 (https://www.processsen-
sors.com/, accessed on 8 September 2021). 

NIRS allows for the rapid collection of thousands of data points across the electro-
magnetic spectrum. These data can be collected using a variety of different imaging modes 
(i.e., reflectance, transmittance, or interactance) and instrument types, which are reviewed 
elsewhere (for example, see [50]). Although there are some simple models that associate a 
single wavelength or band of wavelengths with a constituent of interest, such as water 
and ethanol, most variables require reflectance values from tens or hundreds of wave-
lengths for accurate measurements [45]. Models developed from NIRS result in accurate 
predictions when consistent associations between the measured variable and variations 
in the reflectance of particular wavelengths are found; however, the underlying mecha-
nism driving those relationships is not always known [51]. For example, the ability of 
NIRS to discriminate males from females in some animals may not be due to wavelengths 
associated with the chemical bonds of sex hormones but possibly sex-based differences in 
diet selection that result in samples from males and females having a different chemical 
composition [46]. Although understanding the scientific basis for model success can help 
in the assessment of its applicability and limitations, few studies address this issue. Most 
research focuses on developing and testing spectral calibration models to predict values 
in new samples using chemometric methods. Chemometrics evolved alongside NIRS as a 
collection of mathematical and statistical tools to extract relevant information from the 
large, multidimensional datasets that are common with NIRS and other forms of spectros-
copy. A complete review of chemometrics is beyond the scope of this paper and has al-
ready been addressed in the existing literature [52,53]. However, we provide an overview 
of some common mathematical pre-treatments and statistical methods for the qualitative 
and quantitative analysis of NIRS data below. 

Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR) 
are the most common statistical methods for developing calibration models with NIRS 
data because they are particularly useful for reducing the large, multivariate, and often 
highly correlated datasets to focus on relevant variables [53–55]. Both methods allow 
models to be developed using a number of variables that is larger than the number of 
samples, and they combine independent variables into factors to reduce data dimension-
ality and avoid co-linearity issues. PCR and PLSR typically provide similar model results, 
but PLSR usually requires fewer principal components (PCs) than PCR-based models. A 
high number of PCs reduces the variability not accounted for by the model and a model 
may be overfit, meaning it can predict the training data well but not independent data 

Figure 1. A visualisation of wavelengths in the electromagnetic spectrum, highlighting the near-
infrared region. Adapted from proccesssensors.com blog from 2013 (https://www.processsensors.
com/, accessed on 8 September 2021).

Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR)
are the most common statistical methods for developing calibration models with NIRS data
because they are particularly useful for reducing the large, multivariate, and often highly
correlated datasets to focus on relevant variables [53–55]. Both methods allow models to
be developed using a number of variables that is larger than the number of samples, and
they combine independent variables into factors to reduce data dimensionality and avoid
co-linearity issues. PCR and PLSR typically provide similar model results, but PLSR usually
requires fewer principal components (PCs) than PCR-based models. A high number of
PCs reduces the variability not accounted for by the model and a model may be overfit,
meaning it can predict the training data well but not independent data [56]. For this reason,
PLSR is often the favoured method for identifying the linear combination of wavebands
to explain the response variable, although overfitting can still be an issue for any of these
models. Principle component and partial least squares approaches also have variations
that can be used when the response variable is categorical rather than continuous, and
these are called discriminate analyses (DA). Machine learning techniques such as Artificial
Neural Networks (ANN), Random Forests (RF), and Cubists approaches are other methods
to develop non-linear models that are gaining in popularity, but these are still relatively
new tools for developing NIRS calibrations [57].

The process of developing NIRS calibrations to predict traits in unknown spectra
involves a number of steps. First, NIR spectral data are collected from the samples of
interest with a spectrometer. The way that samples are prepared can have a great influence
on the quality and consistency of the spectral information that can be obtained. The most
appropriate methods to prepare samples prior to collecting spectral data are discussed in a
separate section at the end of the manuscript because this requires specific considerations
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and additional research for some of the applications we review later. Once spectral data
have been collected, they are pre-processed to reduce noise, or non-useful information.
Pre-processing treatments such as standardisation (i.e., centering and scaling) [58], multi-
plicative scatter correction, and standard normal variate are often applied to reduce this
noise and “clean” the spectral data prior to modelling [59,60]. In addition, first and second
derivatives of the spectral data are generally created to accentuate features of interest [61].
After pre-treatment, the spectra can be used in model development.

Constituent values must be determined using other methods in a subset of the samples
from which spectra were collected. “Constituent” here refers to the trait of interest, and
that can be the amount or presence of a certain chemical compound or a trait such as
sex (i.e., male or female) that may be linked to the presence or absence of a number of
different compounds within a sample. Constituent values for model training and testing
data should be obtained using appropriate and robust methods because the predictive
models ultimately will be constrained by the quality of input data for the training and
testing datasets [46].

The spectral data with known constituent values are then divided randomly into
training and testing datasets, and the model is usually developed using one of the methods
outlined above. The number of samples required for training depends on many factors,
including the spectral variability of the material used for modelling and the potential
range of values (e.g., chemical concentrations) and variability in materials (e.g., different
species, sample collection localities, etc.) across which predictions are going to be made [53].
Pasquini [45] recommended that 50 to 100 samples be used for natural systems depending
on the complexity and variability of the sample matrix. However, training datasets can
easily require several hundred samples if there is substantial variability in the material
being analysed [62]. If the sources for the variability in the data are not present in the
training data, the resulting model may not be robust when faced with variability beyond
which it was trained. Having a training dataset that includes all the potential sources of
variability in a population is ideal but usually unachievable. Efforts should be made to
identify and include potentially large sources of variability, and models should be used
with an awareness of potential limitations. A subset of samples should be verified using
alternative analyses when models are applied to data that may have additional variability
beyond the training dataset to further test model performance.

Sometimes, the number of samples available for training and testing is constrained
by the number that it is possible to obtain. Where it has been determined that there are
insufficient data for model training and independent validation, cross-validation can be
used to estimate model error based on data resampling, where the model is both trained
and tested on all available data [63,64]. Although cross-validation is commonly used in
NIRS model development, the ability of the model to fit new data depends on whether
the training data are spectrally representative of the entire population of the data. Cross-
validation alone is appropriate for feasibility studies, but independent data should be used
to verify model performance before using a model for a specific application in the real
world [53]. Cross-validation can also provide some indication of a model’s performance on
future datasets by comparing training and cross-validation testing standard errors, which
should be similar. If they are not similar, this indicates that the amount of spectral variability
in the population may be much larger than the training dataset can accommodate.

3. Measuring Animal Traits with NIRS

The following sections review the use of NIRS in the existing literature to provide
information on animal health and disease, population demographics, and diet quality.

3.1. Animal Health and Disease

Disease and parasitism can have substantial impacts on animal populations [65,66].
Likewise, stress can have negative effects on animal reproduction, body condition, and
immune function [67]. Assessing animal health and disease is traditionally determined



Remote Sens. 2021, 13, 3699 5 of 14

through clinical evaluation by a qualified individual, which is often a veterinarian [68].
For instance, cortisol, a hormone associated with stress, is usually detected through the
saliva or blood of animals, using hormone extraction and quantification methods such
as radioimmunoassay [69]. Similarly, diagnosing diseases, such as chlamydia in koalas
(Phascolarctos cinereus), often involves collecting a sample from the affected area on the
animal for antigen, antibody, DNA, or microbial testing [70]. These investigations may
require a thorough clinical evaluation and the capture and sometimes sedation of an
individual animal, or many individuals, to understand the disease and health status of the
population [1,4].

Indicators of stress and disease are found in many bodily materials, including hair [41,71]
and feces [72,73], that can be collected without interacting with an animal. A recent study
found that NIRS of cattle (Bos taurus) hair was able to accurately predict cortisol levels [41],
and similar success was reported for measuring cortisol in gorillas (Gorilla gorilla gorilla)
from fecal cortisol metabolites in scat [40]. NIRS has also been used for the non-invasive
detection of parasitic infection and bacterial pathogens from scat [33,65,74].

Even when animals must be caught, assessment methods that do not require extracting
fluid or tissue may be preferable. Vance et al. [66] were able to predict disease status and
sex in Chinese giant salamanders (Andrias davidianus) using NIR spectral data collected
from the animals’ skin without causing harm. The study provided valuable information for
aquaculture managers to mitigate disease outbreaks in the study population and reduce
intrasex aggression during reintroductions [66]. Other applications of NIRS of animal skin
for monitoring health include identifying differences in burn scars at various stages of
healing in cattle [75]. NIRS has also been used to investigate differences in body tissue
composition between animals eating different diets [42,76–78].

Malaria and many other zoonotic diseases, such as COVID-19, are also potential threats
to human populations. The ability to rapidly detect them could help to control disease
outbreaks across species. For example, Esperança et al. [32] used NIRS of insect bodies
to identify malaria (Plasmodium berghei) infected mosquitoes (Anopheles stephensi), which
is essential for monitoring the transmission potential of this parasite to humans and the
efficacy of control interventions. Recent research has found that the novel COVID-19 virus
can be detected from serum and pharynx exudate samples in humans using NIRS [79,80].
This method also may be able to provide a rapid screening tool for coronaviruses in bats
and other animals that could threaten human populations.

3.2. Population Demographics

Information on population demographics, such as sex ratios, reproductive status,
and age classes within a population, is essential for population management and con-
servation. These data can be used to inform estimates of population growth and de-
cline rates [10,66,81]. A number of studies have used NIRS to successfully predict demo-
graphic traits in a range of different species, including giant pandas (Ailuropoda melanoleuca)
(sex, age class, and reproductive status; [10,38]), snow leopards (Panthera uncia) (sex and
species; [82]), red deer (Cervus elaphus), fallow deer (Dama dama) (sex and species; [35]),
giant salamanders (Andrias davidianus) (sex; [66]), red snapper (Lutjanus campechanus)
(age, growth; [83]), sharks (Sphyrna mokarran, Carcharhinus sorrah) (age; [84]), fruit flies
(Drosophila melanogaster) (species, sex, and age class; [85]), mosquitoes (Aedes aegypti)
(age; [86]), tsetse flies (Glossina spp.) (sex; [87]), sheep (Ovis aries) (pregnancy status; [88]),
and cattle (Bos taurus taurus) (reproductive status and sex; [34,37,89]).

The ability to detect fertility and reproductive cycles can be a valuable tool in wildlife
conservation. In pandas, the NIRS-derived reproductive status from urine has been used
to successfully monitor and manage populations for captive breeding programs [10,38].
Similarly, Kinoshita et al. [39] used NIRS to determine the estrogen and creatine concen-
trations in the urine of Bornean orangutans (Pongo pygmaeus) to better understand their
reproductive physiology. Prior to this study, there was no easy monitoring method for
reproductive physiology in this critically endangered species [39]. Although NIRS has
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proven to be useful in this capacity for some species, it is unclear whether this method is
broadly applicable for a wide range of species or using NIRS data collected from other
bodily materials. Some studies have found that animal age and the stage of the repro-
ductive cycle may impact the ability of NIRS models to determine sex and reproductive
status [34,89].

NIRS can be used to differentiate species using chemotaxonomy, which identifies
species based on metabolomics (i.e., the chemical compounds that an organism pro-
duces) [90]. This methodology has proven particularly successful in entomology, demon-
strating the potential of NIRS to identify multiple different species (from insect bodies)
within the same family across a diverse order of taxa including Blattodea, Orthoptera,
Psocodea, Hemiptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera (reviewed
in [90]). Similarly, NIRS also has been used to identify different origins of individuals from
a single species, such as sea bass (Dicentrarchus labrax) from body tissue, which can be
particularly useful for monitoring trade from both farmed and free-ranging wildlife [91].

The ability to age individuals within populations is essential for understanding and
predicting population growth dynamics. Aging is particularly important for managing
fisheries, and the application of NIRS to aging larval, juvenile, and adult fish is revolu-
tionising fish aging by replacing traditional, labor-intensive methods with the comparably
rapid and inexpensive Fourier transform NIRS [92]. Growing fish accumulate layers of
calcium carbonate and a protein matrix on their otoliths, and scanning these otoliths with a
focused beam from a spectrophotometer has provided rapid and accurate age estimations
for a wide range of commercially valuable fish species [83,92–94].

Despite many successful studies involving the detection of population demographics
in wildlife using NIRS, some studies have been unable to link spectra with traits of interest.
Although Aw et al. [85] were able to quantify the sex and species in Drosophila flies, they
were unable to accurately predict fly ages. Godfrey et al. [88] successfully predicted the
pregnancy status of sheep from scat, yet were unable to determine sex. In this case, diet
composition appeared to be a confounding factor [88]. In other situations, differences in
diets between sexes can aid in sex discrimination and may be the basis for the success of
some NIRS predictive models [46]; however, it is important to recognize the limitations of
such models because they may not be discriminating sex per se, but diet.

3.3. Diet Quality

The amount of energy, protein, minerals, and various other dietary constituents that
animals consume and digest influences their nutritional state [95,96]. This, in turn, affects
animal health, growth rate, and reproduction. As a consequence, the capacity to measure
diet quality can be useful for population management [18,46]. Diet quality can be detected
through the measurement of the diet itself (e.g., foliar nitrogen) but also indirectly through
the chemical composition of bodily material, often feces. NIRS has been used extensively
to measure diet quality and intake in agricultural animals [17,97,98]. The use of feces in
conjunction with diet, as opposed to using diet alone to measure diet quality, has been
especially successful. For example, Lyons and Stuth [97] found a strong relationship
between diet quality reference chemistry (crude protein and digestible organic matter) and
fecal NIRS-predicted estimates of these constituents. Since then, multiple studies have
related the NIR spectra of feces (Figure 2) to many different aspects of diet, including crude
protein, digestible organic matter, phosphorous, and plant secondary metabolites that can
adversely affect nutritional quality, such as dietary tannins [24,26,99–102].

One limitation of the above approach is the need for accurate measures of diet com-
position, intake and/or digestibility parameters to pair with fecal spectra, which may be
difficult to obtain for many wildlife species. An alternative approach is to develop calibra-
tions that directly measure constituents in feces that indicate diet quality. In some animals,
for example, fecal nitrogen concentrations increase with dietary protein intake [103,104].
Due to the low protein concentrations in many plants, protein can be a limiting nutrient
for many herbivores. As a consequence, protein, or nitrogen as a proxy for protein, is
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often a key measure of diet quality [46,104,105]. However, for browsing herbivores and
some grazers, total fecal nitrogen may not correlate with the protein that is available to the
animal, since the tannins found in some herbivorous diets can bind to nitrogen and make it
unavailable for digestion, inflating the amount of nitrogen excreted in scats [104,106]. In
this instance, the amount of unbound nitrogen in scats may be a better indicator of diet
quality [44]. In recognition of this, Windley et al. [44] were able to use NIRS to determine
the concentration of in vitro digestible nitrogen in scats of female common brushtail pos-
sums (Trichosurus vulpecula) and showed that these measurements were correlated with
their reproductive success. Digestible nitrogen has also been measured using NIRS of
vegetation from airborne and satellite sensors in addition to laboratory spectrophotometers,
opening the door to relatively rapid, landscape-scale assessments of forage quality [64,107].
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species collected with a laboratory NIR spectrometer (unpublished data).

The accuracy of NIRS models for estimating diet quality from scat can be affected
by factors such as high levels of moisture in samples and contamination from other sub-
stances [97,108,109]. It may be necessary to dry fecal samples prior to diet quality analyses,
and care should be taken to avoid contaminants [14,110]. Additional considerations for
sample pre-treatment that may impact model performance, such as grinding to homogenize
samples, are discussed in the next section. The variation in diet between sampled individu-
als is a potential issue with all NIRS models developed from scat and should be considered
when testing the effectiveness of NIR models. Diet represents a considerable portion of the
spectra of excrement, and diet can be chemically variable in itself. However, several studies
have demonstrated that multispecies calibrations for fecal N can be developed [111,112],
which may be particularly useful when trying to assess diet quality from rare species that
forage and deposit scat in the same landscapes as more abundant grazers.

4. Considerations for the Application of NIRS to Wildlife Health, Population, and
Diet Assessments

The following section discusses aspects of data collection, sample preparation, and
data sharing that can impact the accuracy and applicability of NIRS models for assessing
animal physiological traits.

4.1. Data Collection

A problem with the applicability of some NIRS models is that data collection takes
place under a narrow set of conditions, often due to limitations in the capacity to sample
widely, and thus cannot accurately predict the same trait in samples collected from another
location or set of conditions. For example, Tolleson et al. [35] looked at sex and species in
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red and fallow deer, but all individuals in the study lived in a small region and consumed
a monoculture of ryegrass (Lolium perenne) pastures. Wild deer consume a much larger
range of foods, and thus the NIRS calibrations may not adequately predict traits in wild
deer feeding on different forage in other locations. Similarly, calibrations developed from
the bodily materials of wild animals in captive or otherwise unnatural conditions, may
only be relevant for animals under those conditions [10].

Sample condition (e.g., age, ground particle size, drying temperatures, storage condi-
tions, potential contamination, and other environmental factors) can also impact model
development and performance [66]. Studies that seek to use samples of different ages
should first determine how the aging process influences the capacity to determine the
trait(s) of interest [113]. For example, it may be particularly important to collect fresh
fecal samples when looking at stress levels, given the fact that cortisol metabolites may
degrade in feces over time [114]. Even if aging does not result in the loss of the trait of
interest, calibrations should incorporate samples of all ages to which the final models will
be applied, because other external factors such as microbial activity may change over time
and impact spectral signatures [46]. Although it is acceptable to conduct feasibility studies
on smaller, non-representative samples, it is critical that the diversity of conditions under
which the final NIRS model will be applied is considered during sample collection and
model development, or the model will not be widely applicable [10,115].

The independence of the training samples on which a calibration is built is another
important consideration. Pseudoreplication is a process whereby samples from the same
individual are treated as independent data points. Models from these data can be very good
at predicting traits from the individuals used for model development but may be limited
in their ability to predict the same traits from other individuals [116]. A number of studies
utilizing NIRS to determine traits from wildlife have had extensive pseudoreplication in
their datasets [10,82]. For example, Wiedower et al. [10] collected 239 fecal samples over
2 years from 12 giant pandas. The resulting models were very good at determining traits in
those 12 individuals but may have performed poorly in correctly determining traits in new
individuals. The best way to overcome limitations that can be associated with pseudorepli-
cation is to develop models with truly independent samples (e.g., different individuals
rather than multiple samples from the same individual). In addition, it is important to
consider the sources of variability that might occur in the population for which prediction
is desired and attempt to account for that variability through the sample selection.

4.2. Pre-Treatment of Samples

Numerous factors besides the traits of interest can influence the NIR spectral profile of
samples. For example, Fernandez-Cabanas et al. [117] found that particle size caused the
greatest spectral variation in ground plant samples. The same is likely to be true for scat
samples. Fine and homogeneous milling can reduce the effect of heterogenous particle size
on light scattering detected by the NIRS sensor [117]. Grinding also can help to homogenize
a sample so that the collected spectra is more representative of the whole.

Water interacts with light in the same areas on the spectrum that other compounds
interact, which causes the information from some traits to be obscured [118,119]. A study
on the moisture content of cattle manure found that feces containing high moisture levels
generally reduced the calibration’s predictive capacity [109]. For these reasons, for some
traits, drying samples before collecting spectral data may be desirable. However, drying
may also degrade some chemicals or dissipate volatile compounds that could be important
for determining other traits with NIRS. Freeze-drying is an alternative to oven drying
that avoids the breakdown of some chemicals from heating [120]. In some situations, it
might be necessary to use fresh samples because volatile compounds can be lost during
freeze-drying as well, and this should be determined on a case-by-case basis.
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4.3. Data Sharing and Building Widely Applicable Calibration Models

Collecting spatial data in the location where samples were collected is particularly
useful for NIRS data sharing and research purposes. Moore et al. [49] used NIRS together
with spatial data to map tree palatability for koalas in a 7.6 ha fenced reserve. This allowed
a subsequent study to demonstrate relationships among foliage choice by koalas, tree
nutritional quality, and tree location, providing novel information about koala dietary
choices [29]. Data sharing could also aid in the development of more robust calibration
models. If multiple labs collaborate to compile large spectral datasets and calibration mod-
els that could be continuously expanded, it would likely result in very robust and widely
applicable models [31]. However, standardisation across equipment, sample collection,
processing, and storage currently prevent this occurring on a global scale [31].

One of the main constraints on using data sharing to develop widely applicable
models is the difficulty in cross-calibrating instruments. Machines—even spectrometers
produced by the same manufacturer—often do not produce the exact sample spectrum
from the same sample [121]. Cross-calibrating machines is theoretically possible but rarely
performed in practice because most instrument manufacturers do not provide affordable
or accessible pathways to achieve this. It may be possible to overcome this by developing
calibrations with spectra collected on several instruments by different operators to build
models that could account for variability across machines and users. Developing and
sharing standard methods for sample collection, preparation, and storage would also help
to reduce these sources of variability to improve calibration models developed across
labs. Identifying ways to overcome limitations such as these is important to advance the
application of NIRS for wildlife management and conservation.

5. Conclusions

Species traits such as sex, reproductive status, diet quality, stress levels, and disease
status shape population management decisions, reintroduction plans, and conservation
priorities. Many of these traits have been measured in a variety of animals using NIRS,
which has numerous advantages over more traditional methods for assessing population
demographics, health, and diet quality [10,26,33,35,36,40,82]. NIRS allows for the collection
of data quickly, inexpensively, and often non-invasively, which makes this approach ideal
for measuring animal traits, particularly in rare or cryptic species [14,31]. However, it is
important that studies attempt to represent or otherwise account for variability in their
populations, use independent validation datasets for testing model accuracy, and avoid
pseudoreplication if models are intended to be applicable beyond the group used for model
development. Sample pre-treatment can influence model performance, and it is necessary
to determine the most appropriate methodology for specific traits and applications at the
outset. Overcoming issues that can impede data sharing and collaborative calibration
model development will help us to build more robust and widely applicable models.
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