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Abstract: RCS reconstruction is an important way to reduce the measurement time in anechoic
chambers and expand the radar original data, which can solve the problems of data scarcity and a
high measurement cost. The greedy pursuit, convex relaxation, and sparse Bayesian learning-based
sparse recovery methods can be used for parameter estimation. However, these sparse recovery
methods either have problems in solving accuracy or selecting auxiliary parameters, or need to
determine the probability distribution of noise in advance. To solve these problems, a non-parametric
Sparse Iterative Covariance Estimation (SPICE) algorithm with global convergence property based
on the sparse Geometrical Theory of Diffraction (GTD) model (GTD–SPICE) is employed for the
first time for RCS reconstruction. Furthermore, an improved coarse-to-fine two-stage SPICE method
(DE–GTD–SPICE) based on the Damped Exponential (DE) model and the GTD model (DE–GTD) is
proposed to reduce the computational cost. Experimental results show that both the GTD–SPICE
method and the DE–GTD–SPICE method are reliable and effective for RCS reconstruction. Specifically,
the DE–GTD–SPICE method has a shorter computational time.

Keywords: RCS reconstruction; DE–GTD model; sparse iterative covariance-based estimation
(SPICE) algorithm; scattering parameters estimation; frequency-hopping pattern

1. Introduction

Radar cross section (RCS) is a physical quantity to measure the scattering ability of
radar targets [1]. It is closely related to the physical properties of the target (such as shape,
volume, surface material, etc.) and state properties (such as position, speed, attitude,
etc.). After the processing of RCS data, the scattering distribution and status information
of targets can be obtained, such as radar SAR/ISAR imaging [2,3] and radar automatic
target recognition [4–6], etc. In general, the main methods to obtain RCS data include
electromagnetic calculation in software, a scattering measurement in anechoic chambers,
and a scattering measurement in an open area test site (OATS), under far-field conditions.
The electromagnetic simulation method has the advantages of a low cost and a short period
of time, but the authenticity of the RCS data cannot be guaranteed. The RCS data measured
in an OATS has the highest reliability, yet the measurement is extremely expensive and
the confidentiality is poor. In contrast, the RCS data measured in anechoic chambers has
a lower cost than in an OATS, and has higher data authenticity than by electromagnetic
calculation in software.

In the early stages, the continuous wave (CW) is utilized for scattering measurements
in anechoic chambers [7]. Since the CW radar transmits radio wave signals at a particular
frequency, and there is no range gate, the RCS data measured by this waveform can
be easily susceptible to clutter and cannot be used to determine the range of target. To
overcome these problems, the ultra-wideband (UWB) techniques are used [8–10]. The
linear frequency modulated (LFM) radar can acquire the RCS data of an attitude of the
target at a time after a matched filtering and an inverse fast Fourier transform (IFFT). In
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contrast, the stepped frequency radar works by transmitting stepped frequency signals
in sequence. Each measurement can only obtain RCS data (including the amplitude and
phase), which has higher accuracy than the LFM radar. Since the stepped frequency radar
measures RCS data frequency by frequency, it has a long measurement time. In recent years,
for full characteristic information regarding the target, the measurement of bistatic RCS
has also been used in anechoic chambers [11,12], which has greatly enriched the original
RCS data. The stepped frequency RCS measurement is a very classic RCS measurement
method in anechoic chambers. Compared with other methods, it has the advantages of
higher frequency stability, more accurate measurement results, and a larger dynamic range.

In fact, the stepped frequency radar in anechoic chambers does not need to measure all
RCS data frequency by frequency over the bandwidth, with the help of RCS reconstruction.
Only a part of them needs to be measured in anechoic chambers, which can significantly
reduce the measurement time. After accurate RCS reconstruction, the reconstructed RCS
data can be very close to the real RCS data, so that the stepped frequency radar virtually
measures all RCS data over the entire bandwidth. In general, the RCS reconstruction
consists of three main steps. The first step is to adopt a reasonable scattering model. At
high frequencies, the backscattering fields of radar targets can be approximated as the
sum of scattering fields from individual scattering centers (SCs) [13,14]. These SCs can
be described by different scattering models. The Damped Exponential (DE) model can
represent the point scattering center [15], and it has been widely used in high resolution
radar imaging [16–18]. However, the DE model can only represent the scattering location
and scattering intensity. In contrast, the Geometrical Theory of Diffraction (GTD) is closer to
an electromagnetic scattering mechanism, and can precisely represent complex diffraction
scattering behaviors [13,14,19]. Thus, it can precisely reflect geometric structures of radar
targets, and can accurately represent RCS data in large relative bandwidths.

The second step is to estimate the scattering parameter. There are three main ways
to obtain the scattering parameter estimation (SPE) of the GTD model. As a kind of gen-
eral method, the modern spectrum estimation technique has been applied at an earlier
time [20–22]. However, this kind of method cannot deal with non-uniform and incomplete
data. Probabilistic-based Maximum Likelihood Estimation (MLE) is another kind of ef-
fective method for SPE [23], in addition to the Approximate Maximum Likelihood (AML)
algorithm, the Coherent Particle Swarm Optimization (CPSO) algorithm [24], the RELAX
algorithm [25], etc. However, this kind of method needs huge computing resources, and
its solutions are sensitive to the initial value of the iteration. Due to the fact that SCs are
sparsely distributed in radar targets at high frequency, the sparse recovery methods can be
utilized for SPE [26–29]. These methods can be subdivided into three major classes: the
greedy pursuit method [30], the convex relaxation method [31], and the sparse Bayesian
learning method [32]. The greedy pursuit method extracts a non-zero component in each
iteration, and provides a fast solution with a low computational cost. Yet, the convergence
is not guaranteed. The convex relaxation method has good performance in sparse recovery
and has been widely applied in biomedical imaging and radar imaging. However, the per-
formance of this method is sensitive to the selection of the auxiliary parameter. The sparse
Bayesian learning method can avoid the selection of auxiliary parameters and can achieve
high precision recovery, whereas it needs to assume the noise s probability distribution in
advance. In practice, the assumption of the noise s probability distribution is sometimes
inappropriate. The last step is to calculate the RCS data. Theoretically, with the adopted
scattering model and the estimated scattering parameter, the RCS data at any frequency in
the bandwidth can be reconstructed. In this paper, we only consider the reconstruction at
stepped frequencies.

To reduce the measurement time of the stepped frequency radar in anechoic chambers,
a random frequency-hopping pattern is utilized in this paper. In this pattern, the stepped
frequency radar only randomly measures a part of stepped frequencies in the bandwidth.
We call this measured pattern the frequency-hopping pattern, and call these measured
RCS data the frequency-hopping RCS sequence. Aiming at accurate RCS reconstruction, a
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non-parametric SPICE algorithm [33,34] combined with the sparse GTD model (referred
to as the GTD–SPICE method) is proposed, which enjoys global convergence properties.
Firstly, a sparse GTD model is utilized to model the frequency-hopping RCS sequence.
Secondly, the SPICE algorithm based on the covariance matrix fitting (CMF) criterion
is employed for SPE. Then, the frequency-hopping RCS sequence can be reconstructed.
However, this method is intensively computational due to the large dictionary matrix
of the sparse GTD model. Furthermore, to reduce the computational cost, an improved
coarse-to-fine two-stage SPICE method based on the Damped Exponential (DE) model and
the GTD model (referred to as the DE–GTD–SPICE method) is proposed. In the coarse
estimation stage, the sparse DE model with fewer scattering parameter is used to coarsely
extract the scattering location to determine the candidate distribution intervals of SCs. In
the fine estimation stage, a refined sparse GTD dictionary matrix is formed according to the
obtained candidate distribution intervals. Then, the SPE is solved by the SPICE algorithm,
and the frequency-hopping RCS sequence is reconstructed. Experimental results show that
both the proposed GTD–SPICE method and the improved DE–GTD–SPICE method are
reliable and effective for RCS reconstruction. In particular, the DE–GTD–SPICE method
has a shorter computational time.

The rest of this paper is organized as follows. In Section 2, the GTD model and its
sparse representation for random frequency-hopping sequence are introduced. Section 3
proposes the GTD–SPICE method and the improved DE–GTD–SPICE method. Section 4
analyzes the computational complexity of the two methods in detail. Section 5 discusses
experiments, and Section 6 draws the conclusion.

2. Signal Model and Sparse Representations

A frequency-hopping pattern is a subsampling working mode of the stepped fre-
quency scattering measurement, which reduces the number of measurements in anechoic
chambers. It can also be considered as a sparse stepped frequency pattern. In this section,
the GTD model and its sparse representation of random frequency-hopping sequence are
introduced.

2.1. GTD Model

According to the GTD model, the backscattered data from radar targets can be well
approximated by the vector summation of several equivalent SCs along the line of sight
(LOS) [13]. The GTD model can be expressed as:

E( f ) =
P

∑
i=1

Ai

(
j

f
f0

)αi

exp
{
−j2π f

2ri
c

}
(1)

where E( f ), P, and c represent the backscattered data from radar targets, the number
of SCs, and the propagation speed of the radar signal, respectively. Assume that f0 is
the initial frequency, and {ri, Ai, αi} denotes scattering location, the scattering intensity,
and scattering type of the i−th scattering center, respectively. The scattering type αi can
be as αi = {−1,−0.5, 0, 0.5, 1}, which represents different scattering geometrics of radar
targets [13].

A general coherent stepped scattering measurement system emits coherent point
frequency signals in sequence. Since the frequency of the emitted signal increases uni-
formly by ∆ f (frequency-sweeping interval), it is like a process of frequency-sweeping
measurement in the entire bandwidth. Then, (1) can be discretely reformulated as:

E( fn) =
P

∑
i=1

Ai

(
j
fn

f0

)αi

exp
{
−j2π fn

2ri
c

}
(2)

where E( fn), for n = 0, 1, · · · , N− 1, represents the backscattered value at the n-th stepped
frequency point, and fn = f0 + n∆ f is the frequency of the n-th stepped frequency point.
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Accordingly, the bandwidth is B = N∆ f , the maximum unambiguous distance is RU =
c/2∆ f , and the normal range resolution is ∆r = c/2B.

Consider a special case where {αi}P
i=1 is identically zero. In this case, (2) can be

simplified as:

E( fn) =
P

∑
i=1

Ai exp
{
−j2π fn

2ri
c

}
(3)

where (3) degenerates to the DE model. Thus, when using the DE model to represent
the complex scattering phenomenon, there might be model mismatches with respect to
scattering type.

Instead of transmitting N point frequency signals in (2), the frequency-hopping pattern
only transmits Q point frequency signals (Q ≤ N). Let V be the index vector denoting
the emitted signals in the frequency-hopping pattern. Thus, V is a subset consisting of Q
elements, i.e., V ⊆ [0, 1, · · · , N − 1]T .Let us define the frequency-hopping ratio (FHR) as
follows:

FHR =
N −Q

N
× 100% (4)

where FHR ∈ [0, 1] is the ratio of the number of the reduced measured frequency points
by the frequency-hopping pattern, to the number of measured frequency points by the
traditional frequency-sweeping pattern in anechoic chambers. It denotes the degree of
compression of the original RCS data.

2.2. Sparse GTD Model

To give the sparse GTD model, a uniform discretization in RU is carried out [35]. Based
on the achieved ∆r, a more precise one-dimensional uniform grid is conducted. Then, the
∆r is subdivided into L range cells, leading to a finer sampling range interval ∆r = ∆r/L.
Accordingly, the total number of range cells becomes M = NL in RU .

Assume that the range resolution after grid division is high enough that all SCs can be
approximated on the grids. In this case, (2) can be further reformulated as:

yn =
P
∑

i=1
Ai

(
j fn

f0

)αi · exp
{
−j2π fn

2ri
c

}
=

M−1
∑

m=0
Am

(
j fn

f0

)αm
· exp

{
−j2π fn

2rm
c

}
=

M−1
∑

m=0
Am

[
j
(

1 + n∆ f
f0

)]αm
· exp

{
−j2π f0

2rm
c

}
· exp

{
−j 4πn∆ f rm

c

}
=

M−1
∑

m=0
Am·

[
j
(

1 + n∆ f
f0

)]αm
· exp

{
−j 4πn∆ f rm

c

}
(5)

where yn is the backscattered value in n−th transmitted signal, m = 0, 1, · · · , M − 1 is
the index of the grid point, and Am = Am exp{−j2π f02rm/c}, rm = m∆r and αm ∈
{−1,−0.5, 0, 0.5, 1} refer to the scattering intensity, scattering location, and scattering type
on the m−th grid point, respectively. When the modulus of Am i.e.,

∣∣Am
∣∣ = |Am| is small

enough, it can be assumed that there is no scattering center on the m−th grid. The diagram
of the distribution of SCs is shown in Figure 1.

Figure 1. Diagram of the distribution of SCs.
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According to RU = c/2∆ f and rm = m∆r, (5) can be further reformulated as:

yn =
M−1
∑

m=0
Am·

[
j
(

1 + n∆ f
f0

)]αm
· exp

{
−j 4πn∆ f rm

c

}
=

M−1
∑

m=0
Am·

[
j
(

1 + n∆ f
f0

)]αm
· exp

{
−j 2πn

M m
} (6)

Similar to (3), when {αm}M−1
m=0 is identically zero,(6) can be simplified as:

yn =
M−1

∑
m=0

Am· exp
{
−j

2πn
M

m
}

(7)

(7) is an expression of the well-known Discrete Fourier Transform (DFT), and it can be
used to compose the sparse DE model. Let us rewrite (6) in the form of matrix as:

y = SΦx + w (8)

where y ∈ CQ×1 is the frequency-hopping RCS sequence, S ∈ NQ×N is a frequency-

hopping index matrix sq,n =

{
1
0

Vq = n
else

, for q = 0, 1, · · · , Q− 1, and w ∈ CQ×1 is an ad-

ditive noise vector introduced by measurement system. Moreover, x =
[

x0 · · · x5(M−1)

]T
∈

C5(M−1)×1 is a scattering column vector which contains the scattering intensity, scattering
location, and scattering type together. Φ ∈ CN×5(M−1) is the dictionary matrix, which can
be written as:

Φ = [Φr0 Φr1 · · · · · · · · ·ΦrM−2 ΦrM−1 ] (9)

where Φrm ∈ CN×5 is a sub-matrix of Φ and it consists of five candidate scattering types
on the m-th grid. Hence, Φrm can be written as:

Φrm =
[

Φαrm=−1 Φαrm=−0.5 Φαrm=0 Φαrm=0.5 Φαrm=1
]

(10)

where Φαrm ∈ CN×1 is the m−th base of Φ. According to (6) and (8), Φαrm can be given as:

Φαrm =

[
1 ,
(

j
(

1 +
∆ f
f0

))αrm

· exp
{
−j

2π

M
m
}

, · · · · · · · · · ,
(

j
(

1 +
(N − 1)∆ f

f0

))αrm

· exp
{
−j

2π(N − 1)
M

m
}]T

(11)

The schematic diagram of the sparse GTD model in (8) is shown in Figure 2.

Figure 2. Diagram of the sparse GTD model.

For simplicity, let us assume the following as:

ψ = SΦ (12)
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where ψ ∈ CQ×5(M−1) represents the frequency-hopping dictionary matrix. Then, (8) can
be further rewritten as:

y = ψx + w (13)

3. Proposed Method

This section consists of three subsections. A non-parametric GTD–SPICE method
based on the CMF criterion is introduced in Section 3.1, realizing the advantages of
parameter-free and accurate RCS reconstruction. Furthermore, an improved coarse-to-
fine two-stage DE–GTD–SPICE method with a lower computational cost is presented in
Section 3.2. Furthermore, Section 3.3 summarizes the procedure of the DE–GTD–SPICE
method and provides its flowchart.

3.1. GTD–SPICE Method

The goal of SPE is to obtain a set of sparse components to represent the scattering
characteristics of radar targets. However, (8) is a linear underdetermined inverse problem,
which has an infinite number of solutions. To find a desired solution, the l0− regularization
can be used for SPE. However, this optimization problem becomes NP-hard. For simplicity,
x in (8) can be equivalently transformed to the l1− regularization based on the LASSO
framework [36]:

^
x = argmin

x

{
‖y−ψx‖2

2 + λ‖x‖1

}
(14)

Unlike the l0− regularization, (14) tries to strike a balance between the fidelity and the
sparsity. The l1− regularization is convex and computationally efficient, especially when
the dictionary matrix is orthogonal. However, the matrix ψ in this paper is not orthogonal,
which creates difficulties in solving x. In addition, the auxiliary parameter λ in (14) is also
sensitive to the noise w and is difficult to be chosen in advance, leading to poor results in
practice sometimes.

Instead of adopting l1− regularization, the SPICE algorithm solves x by a minimization
of the CMF criterion. It is a method without the selection of auxiliary parameters, and has
a global convergence [33,34]. According to (8), the covariance of w is given as:

E
(

wwH
)
=


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 · · · · · · σQ

 (15)

where the symbol E refers to the expectation operator. The covariance matrix of y can be
expressed as:

R = E
(
yyH) = ψ


x1

2 0 · · · 0
0 x2

2 · · · 0
...

...
. . .

...
0 · · · · · · x5,M−1,

2

ψH +


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 · · · · · · σQ


, APAH ∈ CQ×Q

(16)

where A can be rewritten as:

A ,
[
ψ, IQ

]
,
[
a1, . . . , a5(M−1)+Q

]
(17)

Note that A consists of the frequency-hopping dictionary matrix ψ and the Q identity
matrix of the noise i.e., IQ, together. P in (16) can be written as:
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P ,



x1
2 0 · · · · · · · · · · · · 0

0 x2
2 0 · · · · · · · · · 0

... 0
. . .

...
...

...
...

0 · · · · · · x2
5(M−1) · · · · · · 0

0 · · · · · · · · · σ1 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · · · · σQ



=



x1
2 0 · · · · · · · · · · · · 0

0 x2
2 0 · · · · · · · · · 0

... 0
. . .

...
...

...
...

0 · · · · · · x2
5(M−1) · · · · · · 0

0 · · · · · · · · · x2
5(M−1)+1 · · · 0

...
...

...
...

...
. . .

...
0 · · · · · · · · · · · · · · · x2

5(M−1)+Q



=



p1 0 · · · · · · · · · · · · 0
0 p2 0 · · · · · · · · · 0
... 0

. . .
...

...
...

...
0 · · · · · · p5(M−1) · · · · · · 0
0 · · · · · · · · · p5(M−1)+1 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · · · · p5(M−1)+Q



(18)

For convenience, let

x+ ,
[

x2
1
, x2

2
, · · · , x2

5(M−1), x2
5(M−1)+1, · · · , x2

5(M−1)+Q

]T
(19)

where x+ ∈ C(5(M−1)+Q)×1 is composed of the scattering components and the noise
components. Once x+ is solved, x in (8) is achieved accordingly.

The SPICE algorithm estimates
^
x+ by minimizing the CMF criterion [33,34]:

f =
∥∥∥R−1/2(yyH −R

)∥∥∥2

F
= tr

{(
yyH −R

)
R−1(yyH −R

)}
=, y ,22 yHR−1y + tr{R} − 2, y ,22

(20)

where R−1/2 is the Hermitian positive definite square root of R−1, and ‖ · ‖2
2 and ‖ · ‖2

F are
the l2 norm and the Frobenius norm, respectively. tr{·} designates the trace of a square
matrix. According to (16) and (18), tr{R} can be derived as:

tr{R} = E
(
‖y‖2

2

)
=

5(M−1)+Q

∑
k=1

‖ak‖2
2 pk (21)

Note that ‖ y‖2
2 > 0, thus the criterion (20) can be simplified to the following mini-

mization problem:

g
(

^
p
)
= yHR−1

(
^
p
)

y +
5(M−1)+Q

∑
k=1

ωk p̂k − 2, ωk =
‖ ak‖2

2
, y ,22

(22)
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Clearly, the function of (22) is convex, which has a globally optimal solution [34]. In

this case, the object is to solve the x+, not the
^
p. Thus, the equivalent minimization problem

in (22) with respect to x+ can be derived as:

{
^
x+

}
= argmin

x+
x+HP−1x+ +

5(M−1)+Q

∑
k=1

ωk pk s.t.Ax+=y (23)

According to [37,38], the optimal value of
^
x+ can be obtained by cyclic iteration. The

iteration process can be as follows:

^
x+(t+1)=

^
P
(t)

AH

(
^
R
−1
)(t)

y (24)

p̂k
(t+1) = |xk|(t+1)/ωk, k = 1, 2, · · · , 5(M− 1) + Q (25)

where t denotes the t-th iteration and T represents the maximum iterations. Equation (24)
and (25) are solved circularly until convergence. In this paper, a matched filter (MF) is used

to initialize
^
x
(0)

+ , which can be determined as follows:

x̂(0)k =
ak

Hy
ak

Hak
(26)

where k = 1, 2, · · · , 5(M− 1) + Q, ak is the k−th column of A in (17). According to (25),
p̂k

(0) = x k̂
(0)/ωk can be determined subsequently. The SPICE algorithm stops when the

following condition is satisfied:∥∥∥x(t)+ − x(t−1)
+

∥∥∥
2
/
∥∥∥x(t−1)

+

∥∥∥
2
< ∆ (27)

where the stopping threshold ∆ and maximum iterations T can be set according to the
expected accuracy, respectively. The SPICE algorithm for SPE is as follows.

Algorithm 1. The SPICE algorithm for SPE

1. Input: y, ψ, ∆, T
2. Initialization: A =

[
ψ, IQ

]
, ωk = ‖ak‖2

2/‖y‖2
2,

x(0)k = ak
Hy/ak

Hak, p̂(0)k = x̂(0)k /ωk

3. while
∥∥∥x(t)+ − x(t−1)

+

∥∥∥
2
/
∥∥∥x(t−1)

+

∥∥∥
2
< ∆&&t ≤ T do

4. R̂(t)
= AP̂(t)AH

5. x̂(t+1)
+ = P̂(t)AH

(
R̂(t)

)−1
y

6. p̂(t+1)
k = |x̂k|(t+1)/ωk, P̂(t+1)

= diag
(

p̂(t+1)
k

)
7. end while

8. Output: Scattering parameters vector
^
x+(end) =

^
x+(t+1)

where k = 1, 2, · · · , 5(M− 1) + Q, and
^
x+(end) denotes the final solution.

After iterative updating by the SPICE algorithm, the optimal
^
x+(end) is provided. Since

the scattering components and noise components are jointly taken into consideration, and
the components after 5(M− 1) are the noise components which should be removed, only

the first 5(M− 1) data of
^
x+(end), i.e.,

^
x
(end)

, are kept. Furthermore, in order to extract valid
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SCs and remove wrong SCs caused by side lobes or existing noise, a threshold function is

executed on
^
x
(end)

and it can be reformulated as:

x̂k
′ =


∣∣∣x̂k

(end)
∣∣∣, if

∣∣∣x̂k
(end)

∣∣∣/max

(∣∣∣∣∣^x(end)
∣∣∣∣∣
)
≥ η

0, otherwise
, k = 0, · · · , 5(M− 1), (28)

where x̂k
′ denotes the k−th element in

^
x
′

which represents the valid scattering components,
and η is a threshold level.

After (28), it can be assumed that all non-zero elements in
^
x
′

represent SCs. Hence,
the number of SCs i.e., P̂ can be determined by counting the number of the non-zero

elements in
^
x
′
. Then, the SPE, i.e.,

{
r̂i, Âi, α̂i

}
can be also obtained by matching the base

of dictionary matrix Φ one by one. Considering a special case where multiple solved
SCs of different scattering types are on the same rm, these SCs can be synthesized into
an equivalent scattering center with the help of (5). Finally, the frequency-hopping RCS
sequence can be reconstructed by the formula:

Ê( fn) =
P̂

∑
i=1

Âi

(
j
fn

f0

)α̂i

exp
{
−j2π fn

2r̂i
c

}
(29)

where P̂ refers to the number of estimated SCs. More directly, (29) can be written in the
form of matrix:

^
y = Φ

^
x′ (30)

3.2. DE–GTD–SPICE Method

The GTD–SPICE method can accomplish RCS reconstruction, whereas its computa-
tional cost is too high due to the large dictionary matrix of the sparse GTD model. To
overcome this problem, an improved coarse-to-fine two-stage SPICE method based on the
DE model and the GTD model is proposed.

3.2.1. Coarse Estimation of Scattering Location Based on the Sparse DE Model

To predict the candidate distributed location of SCs, the sparse DE model is utilized to
model the frequency-hopping RCS sequence. Assume that the coarse range resolution is
∆Coarse

r = ∆r/LCoarse. In this case, the number of columns is M′ = NLCoarse − 1. Similar to
(8), the sparse DE model can be reformulated as:

y = SΦCoarsexCoarse + w (31)

where xCoarse = [x0 · · · xM′ ]
T ∈ CM′×1 denotes the scattering parameter on each coarse

sampling range grid, and ΦCoarse is the Fourier dictionary matrix. According to (7), the
element of ΦCoarse can be determined by the following formula:

ΦCoarse(q, m′) = exp
{
−j2π

q
NLCoarse

m′
}

(32)

where m′ = 0, 1, · · · , M′. The LCoarse can be set according to the users. On the one hand, if
users pay more attention to the computational cost of the coarse stage, the LCoarse can be
set to a small integer. On the other hand, if users are more concerned with the precision of
scattering locations, the LCoarse can be set to a larger integer.

With the help of the SPICE algorithm, the coarse scattering components
^
x
(end)

Coarse can
also be solved. After a threshold function, the coarse scattering location of SCs can be
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determined according to ΦCoarse. Accordingly, the candidate distributed scattering intervals
can be also determined. The diagram is shown in Figure 3.

Figure 3. Diagram of candidate distributed intervals of SCs in the coarse estimation.

Considering the case where there are overlapped regions among P̂ coverage subinter-
vals, the final candidate distributed scattering interval rIntervals can be determined by the
following formula as:

rIntervals = (r̂1 − ∆FB, r̂1 + ∆FB) ∪ · · · ∪
(
r̂P̂ − ∆FB, r̂P̂ + ∆FB

)
=
{(

r̂start
1 , r̂end

1

)
, · · · ,

(
r̂start

J , r̂end
J

)} (33)

where ∆FB is the coverage radius of scattering center (∆FB = ∆r), the symbol ∪ denotes the
union operation, J are the number of sub-distributed intervals after the union operation,
and r̂start

J and r̂end
J denote the starting location and the ending location of the j-th sub-

distributed interval, respectively. Only when there is no overlapped region among P̂
coverage subintervals can the maximum number of the coarse subsampling grids in
rIntervals be achieved.

3.2.2. Fine Estimation of Scattering Parameter Base on the Sparse GTD Model

Based on rIntervals in (33), a refined redundant dictionary based on the GTD model
can be determined subsequently. Unlike the GTD–SPICE method, which uses a larger
dictionary Φ, the DE-GTD model has a refined redundant dictionary ΦFine that only covers
the candidate distributed range of SCs. As a result, the number of columns of ΦFine is
reduced. Assume that there are M′′ columns vector in ΦFine. The subsampling range
intervals in the fine stage is assumed as ∆Fine

r = ∆Coarse
r /LFine which is set to ∆Fine

r = ∆r in
this paper. Since ∆r = ∆r/L, the following formula holds:

L = LCoarseLFine (34)

In this case, according to (9), the dictionary matrix ΦFine is completely a subset of the
sparse GTD model. On the basis of (33), ΦFine can be further determined as:

ΦFine = Φ(rIntervals) (35)

where the symbol (·) denotes the subset operation. Similarly, the sparse DE-GTD model
can be written as:

y = SΦFine xFine + w (36)
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where xFine ∈ CM
′′×1 represents the scattering column vector. When there is no overlapped

region among coverage subintervals, the maximum number of subsampling grids can be
achieved, and it can be determined by the following formula:

M
′′

max = P̂
(

2∆FB
∆Fine

+ 1
)
= P̂

(
2∆r

(∆r/LFine)
+ 1
)

= P̂(2LFine + 1)
(37)

With the sparse DE-GTD model, the fine scattering components
^
x
(end)

Fine can be solved
more efficiently. Similar to the solution process in the GTD–SPICE method, the SPE can be
also solved. Accordingly, the RCS reconstruction can be accomplished by (29), or by the
following formula:

^
y = ΦFine

^
x
′

Fine (38)

3.3. Procedure of the DE–GTD–SPICE Method

To facilitate the understanding, the flowchart of the DE–GTD–SPICE method is shown
in Figure 4.

Figure 4. Flowchart of the proposed DE–GTD–SPICE method.

Accordingly, the flowchart can be summarized as follows:
Step (a). Input.
This step mainly completes the data input. These data are the frequency-hopping

sequence y, frequency-hopping index matrix S, initial frequency f0, band B, frequency
interval ∆ f , truncated threshold η, coverage radius ∆FB, maximum iterations T, stopping
threshold ∆, , LCoarse and LFine.

Step (b). Initialization of the coarse estimation.
This step aims to prepare the coarse estimation. On the basis of the input, ΦCoarse,

ACoarse and ωk(Coarse) are determined according to (32), (17), and (22), respectively. Then,
^
x
(0)

Coarse and p̂(0)k(Coarse)
=
∣∣∣x(0)k(Coarse)

∣∣∣/ωk(Coarse)
are initialized according to (26) and (25), re-

spectively.
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Step (c). Iteration updating of the coarse estimation.

This step is the key of the coarse estimation. It iteratively updates
^
R
(t+1)

Coarse,
^
x
(t+1)

Coarse, and

p̂(t+1)
k(Coarse)

according to (16), (24), and (25) till convergence. Then,
^
x
(end)

Coarse is solved.

Step (d). Initialization of the fine estimation.

Based on the solved
^
x
(end)

Coarse, the candidate scattering distributed intervals rIntervals are
determined according to (33). Most importantly, the refined dictionary matrix ΦFine is

generated according to (35). Then, AFine and ωk(Fine) are also determined. Similarly,
^
x
(0)

Fine

and p̂(0)k(Fine)
=
∣∣∣x(0)k(Fine)

∣∣∣/ωk(Fine)
are initialized according to (26) and (25), respectively.

Step (e). Iteration updating of the fine estimation.

This step circularly updates R(t+1)
Fine ,

^
x
(t+1)

Fine , and p̂(t+1)
k(Fine)

according to (16), (24), and (25),

respectively, which aims to solve
^
x
(end)

Fine .
Step (f). Output.

Based on the solved
^
x
(end)

Fine , the SPE results, i.e.,
{

r̂i, Âi, α̂i
}

are obtained. According to
(29) or (38), the RCS reconstruction of the frequency-hopping sequence can be accomplished.
Finally, the reconstructed RCS sequence is output.

4. Performance Analysis

In this section, the computational complexity of the two methods is provided. Then,
the comparison of the complexity of the two methods are analyzed in detail.

4.1. Complexity of the GTD–SPICE Method

Let us analyze the computational complexity of the GTD–SPICE method. In one it-
erative loop, (16), (24), and (25) are computed in sequence. For (16), it mainly contains
two matrix multiplication operations. Since the sizes of matrix A and matrix P are Q ×
(5(M− 1) + Q) and (5(M− 1) + Q)× (5(M− 1) + Q), the first matrix multiplication re-
quires Q(5(M− 1) + Q)2 multiplications. The second matrix multiplication is between the
intermediate result matrix (after the first matrix multiplication) with size Q× (5(M− 1) + Q)
and matrix AH with size (5(M− 1) + Q)×Q, which requires (5(M− 1) + Q)Q2 multipli-
cations. Thus, (16) has a total of 2Q3+15(M− 1)Q2+25(M− 1)2Q multiplications. For
(24), it is found that the complexity of matrix operation implemented from right to left is
lower than that implemented from left to right. Therefore, we assume that (24) is imple-
mented from right to left. In this case, (24) can be decomposed into these matrix operations:
the inversion of a Q × Q matrix; matrix multiplication of a Q × Q matrix and a Q × 1
column vector; matrix multiplication of a (5(M− 1) + Q) × Q matrix and a Q × 1 col-
umn vector; and matrix multiplication of a (5(M− 1) + Q)× (5(M− 1) + Q) matrix and
a (5(M− 1) + Q)× 1 column vector. The multiplications of the four matrix multiplications
are Q3, Q2, (5(M− 1) + Q)× Q, and (5(M− 1) + Q)2, respectively. Thus, (24) requires a
total of Q3 + 3Q2+15(M− 1)Q+25(M− 1)2 multiplications. For (25), it can be considered
as multiplication operations, where 5(M− 1) + Q multiplications are required.

The total multiplications of the GTD–SPICE method are the sum of those of (16), (24),
and (25). Assume that the GTD–SPICE method needs K iterations to converge. Therefore,
the computational complexity of the GTD–SPICE method can be calculated as:

CGS = O
(

K
(

3Q3 + (15(M− 1) + 3)Q2 +
(

25(M− 1)2+15(M− 1) + 1
)

Q

+25(M− 1)2 + 5(M− 1)
) ) (39)
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For the convenience of analysis, substituting M− 1 ≈ LN and Q = N into (39), CGS
can be approximated as:

CGS = O
(
K
(
3N3 + (15LN + 3)N2 +

(
25L2N2 + 15LN + 1

)
N + 25L2N2 + 5LN

))
= O

(
K
((

25L2 + 15L + 3
)

N3 +
(
25L2 + 15L + 3

)
N2 + (5L + 1)N

))
≈ O

(
K
(
25L2 + 15L + 3

)
N3) (40)

In the approximation of (40), the relation N3 � N2.

4.2. Complexity of the DE–GTD–SPICE Method

Let us further analyze the complexity of the DE–GTD–SPICE method. Assume that the
coarse estimation and the fine estimation converges after KCoarse and KFine iterations, respec-
tively. In the coarse estimation, the number of columns of ACoarse (ACoarse = [ψCoarse IQ]
and ψCoarse = SΦCoarse) is M′ + Q. Similarly, the complexity of the coarse estimation can
be calculated as:

CCoarse = O
(

KCoarse

(
3Q3 +

(
3
(

M′ − 1
)
+ 3
)
Q2 +

((
M′ − 1

)2
+ 3
(

M′ − 1
)
+ 1
)

Q +
(

M′ − 1
)2

+
(

M′ − 1
)) )

(41)

Substituting NLCoarse ≈ M′ − 1 and Q = N, CCoarse can be approximated as:

CCoarse = O
(

KCoarse

(
3N3 + (3NLCoarse + 3)N2 +

(
(NLCoarse)

2 + 3(NLCoarse) + 1
)

N +(NLCoarse)
2 + (NLCoarse)

))
= O

(
KCoarse

((
L2

Coarse + 3LCoarse + 3
)

N3 +
(

L2
Coarse + 3LCoarse + 3

)
N2 +(LCoarse + 1)N))

≈ O
(
KCoarse

((
L2

Coarse + 3LCoarse + 3
)

N3)) (42)

In the approximation of (42), the relation N3 � N2. In the fine estimation, the number
of columns of AFine AFine = [ψFineIQ] and ψFine = SΦFine is 5M′′max + Q. Similar to (39),
the complexity of the fine estimation can be given as:

CFine = O
(

KFine

(
3Q3 + (15M′′

max + 3)Q2 +
(

25M′′
max

2+15M′′
max + 1

)
Q +25M′′

max
2 + 5M′′

max

))
(43)

Substituting M′′max ≈ 2P̂LFine and Q = N into (43), the complexity of the fine
estimation can be reformulated as:

CFive = O
(

KFine

(
3N3 +

(
15
(
2P̂LFine

)
+ 3
)

N2 +
(

25
(
25P̂LFine

)2
+ 15

(
2P̂LFine

)
+ 1
)

N +25
(
2P̂LFine

)2
+ 5
(
2P̂LFine

)))
= O

(
KFine

(
3N3 +

(
30P̂LFine + 3

)
N2 +

(
100P̂2LFine

2 + 30P̂LFine + 1
)

N +100P̂2LFine
2 + 10P̂LFine

)) (44)

For a more concise approximation, assume P̂ = µN(µ ≤ 1). Then, (44) can be further
rewritten as:

CFine = O
(

KFine

(
3N3 + (30µNLFine + 3)N2 +

(
100(µN)2L2

Fine + 30µNLFine + 1
)

N +100(µN)2L2
Fine + 10µNFine

))
= O

(
KFine

((
3 + 30µLFine + 100µ2L2

Fine
)

N3 +
(
3 + 30µLFine + 100µ2LFine

2)N2 + (10µLFine + 1)N
))

≈ O
(
KFine

((
3 + 30µLFine + 100µ2L2

Fine
)

N3)) (45)

In the approximation of (45), the relation N3 � N2. The total of the DE–GTD–SPICE
method is the sum of (42) and (45), which can be calculated as:

CDGS = CCoarse + CFine
= O

(
KCoarse

((
L2

Coarse + 3LCoarse + 3
)

N3))+ O
(
KFine

((
3 + 30µLFine + 100µ2L2

Fine
)

N3)) (46)

Due to the sparse distribution of SCs, P � N is always satisfied. If the coarse
estimation is accurate, i.e., P̂ ≈ P, we have P̂� N. In this case, µ is almost a constant, and
µ� 1. However, if the coarse estimation is inaccurate, P̂ may become large. In this case,
µ� 1 is not satisfied and the computational complexity of the fine estimation subsequently
increases.
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4.3. Comparison of Complexity

Next, let us compare the complexity of the two methods. For simplicity, let us assume
K = KCoarse = KFine. According to (34), (40), and (46), the ratio of the complexity of the two
methods, i.e., RC = CDGS/CGS, can be calculated as:

RC = CDGS
CGS

=
O(KCoarse((L2

Coarse+3LCoarse+3)N3))+O(KFine((3+30µLFine+100µ2L2
Fine)N3))

O(K(25L2
Coarse L2

Fine+15LCoarse LFine+3)N3)

= L2
Coarse+3LCoarse+30µLFine+100µ2L2

Fine+6
25L2

Coarse L2
Fine+15LCoarse LFine+3 , µ ≤ 1

(47)

Equation (47) shows that, with the fixed LCoarse and LFine, RC increases with the
increase of µ. When µ→ 0 , (47) can be reduced to RC →

(
L2

Coarse + 3LCoarse + 6
)
/(

25L2
CoarseL2

Fine + 15LCoarseLFine + 3
)
. Since LCoarse and LFine are set to positive integers

in this paper, RC ≤ 10/43 holds, and its maximum is achieved when LCoarse = LFine = 1.
Therefore, when µ� 1, the complexity of the DE–GTD–SPICE method is much lower than
that of the GTD–SPICE method. More generally, the complexity of DE–GTD–SPICE is lower

than that of GTD–SPICE only under the condition of L2
Coarse+3LCoarse+30µLFine+100µ2L2

Fine+6
25L2

Coarse L2
Fine+15LCoarse LFine+3 ≤

1, µ ∈ (0, 1) i.e., L2
Coarse + 3LCoarse − 25L2

CoarseL2
Fine − 15LCoarseLFine + 3 ≤ 0.

5. Experiments

In this section, experiments are performed to verify the validity of the proposed
methods. To make it more convincing, experiments in different frequency-sweeping
intervals ∆ f , SNRs, and FHRs are carried out. In addition, the iteratively reweighted least
squares method (GTD–IRLS) [39] and the LASSO-based l1-norm method (GTD–CVX) are
used for comparison. These methods are all implemented on a PC with an Intel i5-4210U
CPU and 8GB RAM.

5.1. Evaluation Metrics

To quantify the accuracy of the amplitude of the reconstructed RCS sequence
^
y, the

mean square error (MSE) of amplitude, i.e., MSEAmp, is defined as:

MSEAmp =
1
N

N

∑
n=1

(|ŷn| − |yn|)2 (48)

where ŷn is the n-th element in
^
y. To quantify the accuracy of the phase of

^
y, the MSE of

the phase, i.e., MSEPha, is defined as:

MSEPha =
1
N

N

∑
n=1

(
phase

(
ŷn

yn

))2
(49)

For a fairer assessment, a correlation function (COR) which can reflect the similarity

between the reconstructed RCS sequence
^
y and the true RCS sequence y is defined as:

COR^
yy

=

∣∣∣∣^yH
y
∣∣∣∣∥∥∥∥^

y
∥∥∥∥

2
× ‖y‖2

(50)

where COR^
yy
∈ [0, 1]. The closer COR^

yy
is to 1, the more similar the reconstructed RCS

sequence is to the true RCS sequence, and the higher the quality of RCS reconstruction.
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5.2. Experimental Results

Assume that the radar target consists of five SCs, and the scattering parameters
are set according to Table 1. In this case, the parameters of the radar system are set as
follows: f0 = 8GHz, B = 1GHz, and ∆ f = 10MHz. Accordingly, the number of stepped
frequency points is N = 101, the normal range resolution is ∆r = 0.15 m, and the maximum
unambiguous range is RU = 15 m. The subsampling range interval ∆r is set to 0.0375 m
(L = 4). For easy reference, the radar parameters are listed in Table 2. The simulated data
is obtained based on (2). In order to provide a benchmark, the GTD–CVX method and
GTD–IRLS method are used. Therefore, the GTD–SPICE method, the DE–GTD–SPICE
method, the GTD–IRLS method and the GTD–CVX method are included in the following
experiments.

Table 1. Scattering parameters of the five SCs.

Scattering Centers r (m) A α

S1 2.21 0.62 −1
S2 2.85 0.78 −0.5
S3 4.05 1.00 0
S4 4.20 0.58 0.5
S5 4.95 0.41 1

Table 2. Radar system parameters.

Name Values

Initial frequency 8 GHz
Bandwidth 1 GHz

Frequency-sweeping interval 10 MHz
Sampling range interval 0.0375 m (L = 4)

5.2.1. Validation of the Proposed Methods

First, let us validate the effectiveness of the proposed methods under different SNR
conditions. In this experiment, the FHR is fixed to 60%, and the SNR is set to 25 dB and
5 dB, respectively. Note that the auxiliary parameter of the GTD–CVX method is chosen
as λ = 0.15 and λ = 1.5, respectively. Figure 5 shows the SPE results of the GTD–SPICE,
DE–GTD–SPICE, the GTD–IRLS, and the GTD–CVX method at 25 dB and 5 dB, respectively.

It is seen in Figure 5 that the SPE results of the four methods at 25 dB are more
precise than those at 5 dB. When SNR = 25 dB, the parameters extracted by the GTD–
SPICE method and the DE–GTD–SPICE method are consistent with their true values. The
scattering locations and scattering types of the five SCs are all estimated correctly. As
shown in the first column of Figure 5, the intensities of the five SCs obtained by the DE–
GTD–SPICE method are closer to their true values than those obtained by the GTD–SPICE
method. The mean error of the scattering intensities of the five SCs of the DE–GTD–SPICE
method is 0.09, whereas the mean error of the GTD–SPICE method is 0.13. In particular,
the scattering intensity of S3 (0.99) estimated by the DE–GTD–SPICE method is quite close
to its true value (1.00), and it has the least deviation.

In contrast, the SPE results of the other two methods are less accurate. Though the
parameters of S2, S3, S4, and S5 are extracted correctly by the GTD–IRLS method, the
scattering intensity and scattering type of S1 are misestimated as α = 1 and A = 0.49,
respectively. Also, there is a little deviation in the scattering location of S1, and there is also
a fake scattering center near S1. The results of the GTD–CVX method are sensitive to the
auxiliary parameter λ. When λ = 0.15, the SPE results of S1, S2, S3, and S4 are all correct,
and only the scattering type and scattering intensity of S1 are inaccurate. The scattering
type of S1 is misjudged as α = −0.5, and there is a deviation of about 0.09 in the scattering
intensity of S1. When λ = 1.5, the SPE results are the poorest. The maximum deviation of
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the scattering intensity occurs at S2, and its relative error is over 80%. In addition, S5 is not
contained in its results.
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Compared with the case of SNR = 25 dB, the SPE results of the four methods under
SNR = 5 dB are poorer. The SPE results of the five SCs by the GTD–SPICE method are
basically consistent with the true values. It is seen that the scattering locations of the five
SCs are correctly extracted. The scattering types of S2, S3, S4, and S5 are correctly judged,
except that the scattering type of S1 is misjudged as α = −0.5. The scattering intensities
of S2, S3, S4, and S5 are also close to their true values. The deviation of the estimated
scattering intensity of S1 is up to 0.31, which is the maximum deviation among all SCs.
In addition, there are four fake estimated SCs whose intensities are smaller than 0.1. The
SPE results obtained by the DE–GTD–SPICE method are less accurate than that of the
GTD–SPICE method. The scattering locations and scattering types of the five SCs are
correctly estimated; however, the deviations of the scattering intensities of the five SCs are
all larger than 0.1, and the maximum deviation of the estimated scattering intensity reaches
0.34. Also, there are four fake estimated SCs.

The scattering locations and scattering intensity of the five SCs extracted by the
GTD.IRLS method are basically consistent with their true values, and the mean error of
their scattering intensities is 0.15. Also, the scattering type of S1 and S2 is misjudged
as α= −1 and α= −0.5, respectively. When λ = 0.15, the GTD–CVX method correctly
estimates S2, whereas the scattering types of S1, S3, S4, and S5 are misjudged as α = 1,
α = −0.5, α = 0.5 and α = −0.5, respectively. The maximum deviation of the scattering
intensity of the five SCs occurs at S3, up to 0.52. In addition, the result contains eighteen
wrong SCs. When λ = 1.5, due to strong noise, the method can only extract two SCs whose
locations may be correct. However, the estimated scattering intensities are far from their
true values. This indicates that the estimated results are totally wrong.

Based on the estimated scattering parameters, the RCS sequence can be reconstructed.
Figure 6 shows the amplitude of the reconstructed RCS sequence of the four methods. It is
seen that the reconstruction results at 25 dB are more accurate than those at 5 dB. When SNR
= 25 dB, the performance of the GTD–SPICE method, DE–GTD–SPICE method, GTD–IRLS
method, and the GTD–CVX (λ = 0.15) method are comparable, and the reconstructed RCS
sequences are close to the true RCS sequence. In contrast, the GTD–CVX (λ = 1.5) method
cannot reconstruct the RCS sequence well. The amplitude of the reconstructed sequence
has a large deviation from the true RCS sequence. These results are consistent with the
poor SPE results of the GTD–CVX (λ = 1.5) method in Figure 5.

When SNR = 5 dB, the reconstruction results of the four methods are poorer. As
shown in the second column of Figure 6, the performance of the GTD–SPICE method,
DE–GTD–SPICE method, GTD–IRLS method, and GTD–CVX (λ = 0.15) method seems
to be comparable as well. It is seen that there are large deviations near the peak position
of the reconstructed RCS sequence by the four methods. Similarly, the reconstructed
RCS sequence by the GTD–CVX (λ = 1.5) method is greatly deviated from the true RCS
sequence. It is the poorest result.

To quantitatively compare the performance of the four methods, MSEAmp, MSEPha,COR^
yy

,

and the computational time are given in Table 3. Since the GTD–SPICE (λ = 1.5) method has the
poorest results, its metrics are not provided. When SNR = 25 dB, the MSEAmp, MSEPha,COR^

yy
of the GTD–SPICE method, DE–GTD–SPICE method, and GTD–CVX (λ = 0.15) method are
almost equal to each other, respectively. Although the GTD–IRLS method has the minimum
MSEAmp, i.e., MSEAmp = 0.0144, it has the maximum MSEPha, i.e., MSEPha= 0.0237, and
minimum COR^

yy
, i.e., COR^

yy
= 0.9963. This indicates that the accuracy of the reconstructed

RCS sequence by the GTD–SPICE method, the DE–GTD–SPICE method, and the GTD–CVX
(λ = 0.15) method is basically similar, and the accuracy of the reconstructed RCS sequence by
the GTD–IRLS method is slightly lower. When SNR = 5 dB, the GTD–SPICE method has the
minimum MSEAmp, i.e., MSEAmp = 0.2242, the minimum MSEPha, i.e., MSEPha= 0.3483,
and the maximum COR^

yy
, i.e., COR^

yy
= 0.9004. In contrast, the GTD–IRLS method has the

maximum MSEAmp, i.e., MSEAmp = 0.5229, the maximum MSEPha, i.e., MSEPha= 0.7052,
and the minimum COR^

yy
, i.e., COR^

yy
= 0.8199. These metrics show that in this case, the
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GTD–SPICE method has the best reconstructed RCS sequence, whereas the GTD–IRLS method
has the poorest reconstruction results.
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Table 3. Numerical results under different SNR conditions.

SNR Methods MSEAmp MSEPha COR^
yy

Computational
Time(s)

25 dB

GTD–SPICE 0.0434 0.0100 0.9964 28.9063
DE–GTD–SPICE 0.0378 0.0089 0.9978 2.2969

GTD–IRLS 0.0144 0.0237 0.9963 8.3813
GTD–CVX
(λ = 0.15) 0.0336 0.0073 0.9981 6.3594

5 dB

GTD–SPICE 0.2242 0.3483 0.9004 29.1250
DE–GTD–SPICE 0.3045 0.4426 0.8873 18.5156

GTD–IRLS 0.5229 0.7052 0.8199 16.6250
GTD–CVX
(λ = 0.15) 0.3370 0.5510 0.8643 6.1563

Then, let us compare the computational time. The GTD–SPICE method has the longest
computational time of about 30 s under the two SNR conditions. In contrast, the DE–GTD–
SPICE method has the shortest time of 2.2969 s at 25 dB. Compared with the GTD–SPICE
method, the computational time is reduced by more than 26 s (larger than 90%). This
validates the effectiveness of the DE–GTD–SPICE method in reducing the computational
time compared to the GTD–SPICE method. Moreover, it is more than 4 s and 6 s faster than
the GTD–CVX (λ = 0.15) method and the GTD–IRLS method, respectively. When SNR =
5 dB, though the computational time of the DE–GTD–SPICE method increases to 18.5156 s,
it is still faster than the GTD–SPICE method. The GTD–SPICE method takes almost three
times as long as the GTD–CVX (λ = 0.15) method. Therefore, the computational time of
the DE–GTD–SPICE method may be related to SNR, and the computational time of the
GTD–SPICE algorithm may be independent of the SNR.

5.2.2. Performance Versus ∆ f

The frequency-sweeping interval ∆ f determines the maximum unambiguous distance
RU(RU = c/2∆ f ) and the number of stepped frequency points N = B/∆ f . Thus, ∆ f plays
a role in the accuracy of RCS reconstruction.

First, let us compare the performance of the four methods under different ∆ f . In this
experiment, the SNR and FHR are fixed to 30 dB and 60%, respectively. The Monte Carlo
simulation with 50 trials is used. The ∆ f ranges from 10 MHz to 40 MHz with an interval
of 5 MHz. The averages of the MSEAmp, MSEPha, COR^

yy
, and computational time versus

∆ f are shown in Figure 7a–d, respectively.
It can be seen in Figure 7a–c that the MSEAmp and MSEPha increase with the increase

of ∆ f , and the COR^
yy

of the four methods decreases with the increase of COR^
yy

. It is

seen that the GTD–CVX (λ = 0.15) method is more accurate than the GTD–CVX (λ = 1.5)
method, due to the fact that it has much smaller MSEAmp, MSEPha, and larger COR^

yy
. This

indicates that the selection of auxiliary parameter λ is the key to the performance of the
GTD–CVX method. For simplicity, unless specifically illustrated, the GTD–CVX method
refers to the GTD–CVX (λ = 0.15) method in the following.

When ∆ f = 10MHz, the MSEAmp,MSEPha, and COR^
yy

of the four methods are almost

the same, respectively, which indicates the comparable performance in RCS reconstruction.
It is seen in Figure 7a that when ∆ f > 10MHz, the MSEAmp of the GTD–SPICE method
and the DE–GTD–SPICE method is slightly less than that of the GTD–IRLS method, and a
little bigger than that of the GTD–CVX method. Figure 7b shows that the MSEPha of the
GTD–SPICE method, the DE–GTD–SPICE method, and the GTD–CVX method is quite
close, and it is less than that of the GTD–IRLS method. As shown in Figure 7c, the COR^

yy
of the GTD–SPICE method, the DE–GTD–SPICE method, and the GTD–CVX method is
almost the same, and it is larger than that of the GTD–IRLS method. Therefore, it can be
inferred that the GTD–SPICE method, the DE–GTD–SPICE method, and the GTD–CVX
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method can have a comparable performance at all ∆ f , and a better performance than the
GTD–IRLS method when ∆ f is large.
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As shown in Figure 7d, with the increase of ∆ f , the computational time of the GTD–
SPICE method, the GTD–IRLS method, and the GTD–CVX method gradually decreases.
This is due to their computational complexity decreases with the decrease of N, which is
consistent with (40). The GTD–SPICE method requires the longest computational time
of about 37s when ∆ f = 10MHz. It is more than three times and six times of that of the
GTD–IRLS method and the GTD–CVX method, respectively. When ∆ f ranges from 10 MHz
to 30 MHz, the maximum computational time of the DE–GTD–SPICE method is about 3 s,
which is only around 8.12% of that of the GTD–SPICE method, which indicates that the
DE–GTD–SPICE method can reduce computational time compared with the GTD–SPICE
method. It is also seen that when ∆ f > 30MHz, the computational time of the DE-GTD
method has a slight increase as the increase of ∆ f . The reason for this phenomenon will be
explained in Section 5.2.4.

5.2.3. Performance Versus SNR

Let us further compare the performance of the four methods under different SNRs.
In this experiment, the ∆ f and the FHR are fixed to 10 MHz and 60%, respectively. The
Monte Carlo simulation with 50 trials is used. The SNR ranges from 0 dB to 30 dB with
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an interval of 3 dB. The averages of the MSEAmp,MSEPha,COR^
yy

, and computational time

versus SNR are shown in Figure 8a–d, respectively.
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As shown in Figure 8a–c, the MSEAmp and MSEPha decrease with the increase of SNR,
and the COR^

yy
of the four methods increases with the increase of SNR. It can be seen that

the performance of the GTD–CVX (λ = 1.5) method is worse than that of the GTD–CVX
(λ = 0.15) method due to it has larger MSEAmp, MSEPha, and smaller COR^

yy
. This also

means that the GTD–CVX method is sensitive to the auxiliary parameter λ.
As can be seen in Figure 8a, when SNR < 6 dB, the MSEAmp of the GTD–SPICE method,

the DE–GTD–SPICE method, and the GTD–CVX method is much smaller than that of the
GTD–IRLS method. When SNR > 6 dB, the MSEAmp of the four methods is almost the same.
As shown in Figure 8b, when SNR < 12 dB, the MSEPha of both the GTD–SPICE method
and DE–GTD–SPICE method is slightly smaller than that of the GTD–CVX method and
much smaller that of the GTD–IRLS method. In contrast, when SNR > 12 dB, the MSEPha of
the four methods is quite close and tends to be 0, except that the MSEPha of the GTD–IRLS
method is slightly larger than 0 when SNR is from 20 to 30 dB. It is seen in Figure 8c
that when SNR < 10 dB, the COR^

yy
of the GTD–SPICE method and the DE–GTD–SPICE

method is slightly larger than that of the GTD–CVX method and much larger than that of
the GTD–IRLS method. When SNR > 10 dB, the COR^

yy
of the four methods is almost equal
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and quite close to 1, except that the COR^
yy

of the GTD–IRLS methods is a little smaller than

1 when SNR is from 20 to 30 dB.This indicates that the two proposed methods outperform
both the GTD–CVX method and the GTD–IRLS method under low SNR conditions, and
have a slight advantage under high SNR conditions.

As shown in Figure 8d, when SNR ranges from 0 dB to 30 dB, the computational
time of the GTD–SPICE method and the GTD–CVX method is almost a constant. The
GTD–SPICE method has the longest computational time of approximately 30 s, and the
GTD–CVX method has a computational time of about 6s. The computational time of the
GTD–IRLS method is in the middle and decreases with the increase of SNR. Also, it can
be seen that the computational time of the DE–GTD–SPICE method decreases with the
increase of the SNR under the condition of SNR being 0~13 dB. Since severe noise affects
the accuracy of the coarse estimation, the estimation of the number of SCs, i.e., P̂, becomes
larger. Accordingly, µ also becomes larger, which increases the computational complexity
of the fine estimation. This is consistent with (46). Although the computational time of the
DE–GTD–SPICE method has the maximum, around 20 s at SNR = 0 dB, it is only about
66.7% of that of the GTD–SPICE method. When SNR > 13 dB, its computational time
tends to be stable and approaches 3 s, which is only about 10% of that of the GTD–SPICE
method (30 s). Substituting µ = P/N ≈ 1/20 and LCoarse = LFine = 2 into (47), we can
have RC ≈ 4+12+30/20×2+100/202×4+6

25×22×22+15×2×2+3 = 5.62%. This is basically consistent with 10%, which
validates the effectiveness of the DE–GTD–SPICE method in reducing the computational
cost.

5.2.4. Performance Versus FHR

Next, we compare the performance of the four methods in different FHRs. The
∆ f and SNR are fixed to 10 MHz and 30 dB, respectively. Similarly, the Monte Carlo
simulation with 50 trials is used. The FHR ranges from 40% to 90% with an interval of
5%. The averages of the MSEAmp, MSEPha, COR^

yy
, and computational time are shown in

Figure 9a–d, respectively.
It can be seen in Figure 9a–c that the MSEAmp and MSEPha increase with the increase

of FHR, and the COR^
yy

of the four methods decreases with the increase of the FHR. It is

seen that the GTD–CVX (λ = 0.15) method is much more accurate than the GTD–CVX
(λ = 1.5) method. This also shows that the selection of the auxiliary parameter λ is the key
to the performance of the GTD–CVX method.

When FHR < 70%, the MSEAmp, MSEPha, and COR^
yy

of the four methods are quite

close, respectively, which indicates the comparable performance in RCS reconstruction. It
is seen in Figure 9a when FHR >70% that the MSEAmp of the GTD–SPICE method, the
DE–GTD–SPICE method, and the GTD–CVX method is close and slightly smaller than
that of the GTD–IRLS method. Figure 9b also shows the similar relation of the MSEPha
of the four methods. When FHR > 70%, the MSEPha of the GTD–SPICE method, the
DE–GTD–SPICE method, and the GTD–CVX method is basically close, and is smaller to
that of the GTD–IRLS method. As shown in Figure 9c, when FHR > 70%, the COR^

yy
of the GTD–SPICE method, the DE–GTD–SPICE method, and the GTD–CVX method is
almost the same, whereas the COR^

yy
of the GTD–IRLS method is smaller than that of the

other three methods. Therefore, the four methods have comparable performance in low
FHRs, while the proposed methods outperform the GTD–IRLS method under high FHR
conditions.
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It can be also found that when FHR >80%, the MSEAmp, MSEPha, and COR^
yy

of the

four methods all change dramatically, which is due to the destruction of RIP conditions.
According to [40], the minimum number of scattering measurement points QTheory can be
determined theoretically. According to [41], for a reliable recovery, QTheory ≈ P log

(
M/P

)
can be calculated as QTheory ≈ 5(log(5(4× 101− 1)/5)) ≈ 13. As shown in Figure 9a–c,
the low boundary of FHR is approximately 80%. Hence, the number of frequency-hopping
points in actual is QActual = N(1− FHR), i.e., QActual = 101× (1− 80%) ≈ 20, which is
basically consistent with the theoretical low boundary QTheory.

As shown in Figure 9d, with the increase of FHR, the computational time of the GTD–
SPICE method, the GTD–IRLS method, and the GTD–CVX method gradually decreases.
This is due to the fact that their computational complexity decreases with the decrease of Q,
which is consistent with (39). The GTD–SPICE method requires the longest computational
time of about 30 s at FHR = 40% among the four methods. When FHR ranges from 40% to
75%, the computational time of DE–GTD–SPICE method decreases with the decrease of
FHR, on the premise of guaranteeing the accuracy of RCS reconstruction. This is also due
to the complexity of the DE–GTD–SPICE method, which decreases with the decrease of Q.
Moreover, it has the least computational time of about 3 s at FHR = 75%, which is about
10% of that of the GTD–SPICE method (about 30 s). This is also consistent with (47). In
contrast, when FHR > 75%, its computational time begins to increase, whose phenomenon
also occurs at Figure 7d. This is the result of the FHR approaching the RIP condition. In
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this case, the coarse estimation obtains a larger number of SCs than that of the true value
and µ becomes larger, which increases the computational complexity of the fine estimation.
This is consistent with (46), in which the increase of µ will increase the computational
complexity.

5.2.5. Joint Experiment on Different SNRs and FHRs

Lastly, the joint impacts of ∆ f , SNR, and FHR on the proposed methods in RCS
reconstruction are analyzed. Since the performance of the GTD–SPICE method and the
DE–GTD–SPICE method in RCS reconstruction is related to ∆ f , SNR, and FHR, it is difficult
to determine which ∆ f , SNR, and FHR are more efficient. Considering the above findings
that the performance of the proposed method has similar trends in terms of ∆ f and FHR,
only the SNR and FHR are performed jointly in this experiment. The SNR ranges from
10 dB to 30 dB with an interval of 4 dB, and the FHR ranges from 40% to 90% with an
interval of 5%. Similarly, the Monte Carlo simulation with 50 trials is used. The averages
of the COR^

yy
and the computational time of the two proposed methods are shown in

Figure 10a–d, respectively.
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two methods is larger than 0.8, which shows superior performance in RCS reconstruction.
Then, let us further compare its computational time. It can be seen in Figure 10c that the
computational time of the GTD–SPICE method significantly depends on FHR. When FHR
< 75%, its computational time is larger than 30 s. In contrast, the computational time of the
DE–GTD–SPICE method is affected by both the SNR and FHR. It is seen in Figure 10d that
only when SNR < 0 dB and FHR < 50%, the computational time of the DE–GTD–SPICE
method is larger than 30s. From Figure 10c–d, it can be found that the DE–GTD–SPICE
method has a shorter time and a higher efficiency than the GTD–SPICE method. Therefore,
it can be concluded that both the methods are reliable and effective for RCS reconstruction.
In particular, the DE–GTD–SPICE method requires less computational time.

6. Conclusions

In this paper, a random frequency-hopping pattern combined with RCS reconstruction
is utilized to reduce the time of the coherent stepped frequency scattering measurement
in anechoic chambers. To achieve accurate RCS reconstruction, the non-parametric GTD–
SPICE method and the DE–GTD–SPICE method are proposed. Then, the computational
complexity of the two methods is analyzed in detail.

Numerical simulations on different ∆ f , SNRs, and FHRs are carried out to evaluate
their performance, respectively. The GTD–CVX method and the GTD–IRLS method are
used for comparison. Results show that the performance of the GTD–SPICE method and the
DE–GTD–SPICE method are comparable to the GTD–CVX method, with the best auxiliary
parameter, which outperforms the GTD–IRLS method. However, the GTD–CVX is sensitive
to the auxiliary parameter. Without a good selection of the auxiliary parameter, its RCS
reconstruction result is poor and cannot be used. Compared with the GTD–CVX method,
the proposed GTD–SPICE method and the DE–GTD–SPICE method are non-parametric.
Thus, the two methods can accomplish reliable RCS reconstruction. In addition, both the
methods can achieve accurate RCS reconstruction.

Therefore, the frequency-hopping pattern combined with RCS reconstruction can
reduce the measurement time in anechoic chambers, which has wide application prospects
in RCS measurement. Next, measured data will be used for further research.
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