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Abstract: Multidimensional deconvolution constitutes an essential operation in a variety of geophys-
ical scenarios at different scales ranging from reservoir to crustal, as it appears in applications such
as surface multiple elimination, target-oriented redatuming, and interferometric body-wave retrieval
just to name a few. Depending on the use case, active, microseismic, or teleseismic signals are used
to reconstruct the broadband response that would have been recorded between two observation
points as if one were a virtual source. Reconstructing such a response relies on the the solution of an
ill-conditioned linear inverse problem sensitive to noise and artifacts due to incomplete acquisition,
limited sources, and band-limited data. Typically, this inversion is performed in the Fourier domain
where the inverse problem is solved per frequency via direct or iterative solvers. While this inversion
is in theory meant to remove spurious events from cross-correlation gathers and to correct ampli-
tudes, difficulties arise in the estimation of optimal regularization parameters, which are worsened
by the fact they must be estimated at each frequency independently. Here we show the benefits of
formulating the problem in the time domain and introduce a number of physical constraints that
naturally drive the inversion towards a reduced set of stable, meaningful solutions. By exploiting
reciprocity, time causality, and frequency-wavenumber locality a set of preconditioners are included
at minimal additional cost as a way to alleviate the dependency on an optimal damping parameter to
stabilize the inversion. With an interferometric redatuming example, we demonstrate how our time
domain implementation successfully reconstructs the overburden-free reflection response beneath
a complex salt body from noise-contaminated up- and down-going transmission responses at the
target level.

Keywords: seismic interferometry; inverse theory; redatuming; reciprocity

1. Introduction

Seismic recordings carry useful information describing the interaction of waves propa-
gating in an otherwise unknown physical medium. The recorded wavefields are associated
with a particular wave state that can be uniquely identified by defining wave nature, media
parameters, source extension, and boundary conditions. In theory, depending on the
application, there is a certain degree of freedom in setting specific conditions to reproduce
the desired survey. In reality, multiple physical, economical, or environmental aspects
constraint the circumstances in which seismic exploration is conducted. To overcome such
limitations, based on survey measurements, data-driven techniques are typically used to
recreate more ideal settings, also known as virtual surveys. Most of the efforts in many
pre-processing workflows consist of identifying and separating certain family of events
present in the recorded seismic gathers. For instance, one may be interested in removing
the source wavelet imprint, ground-roll, or surface-related multiples. An effective strategy
to connect the elements intervening in two seismic states consists of defining an interaction
quantity and use reciprocity theorems to isolate the response of a sought state [1]. Thereby,
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it becomes possible to combine wavefield measurements at two independent receivers to
reproduce the response that would have been observed at one location as if a source was
injected at the other one. Ideally, Green’s function should emerge once cross-correlation
is performed at each receiver inside a closed energy-radiating boundary [2–4]. The set of
methods describing such wavefield reconstruction are referred to as seismic interferometry
and have been extensively used for sources of different natural events including localized
explosions and earthquakes [5], ambient noise [6], and infrasonic transducers [7]. From this
perspective, interferometric methods are also used to relocate sources from the acquisi-
tion surface to a preset virtual plane in the subsurface, therefore, the technique is often
interpreted as a form of data-driven redatuming [8,9]. The need for a closed boundary in a
lossless media hinders the accurate wavefield reconstruction by cross-correlation, thereby,
only a blurred version of the required Green’s function is retrieved. The extension of the
method for dissipative media with open boundaries results in an implicit representation
of Green’s function, where deconvolution is now used to remove the spatio-temporal
blurring effects of the correlation gathers. This method is known as seismic interferometry
by multidimensional deconvolution (MDD—[4,10]) and has been extended to more general
vector fields including elastic [11] and electromagnetic waves [12].

Though MDD plays a crucial role in seismic interferometry, its applicability extends
well beyond interferometry, being of importance to many applications—from wavemode
separation to imaging. Many applications of MDD take advantage of the fact that, in prin-
ciple, it does not require knowledge of the structural parameters, hence, one can build
connections with well-known surface-related-multiple preprocessing techniques. For in-
stance, in marine seismic operations, image resolution is degraded by ghost reflections.
When all parameters of the linear ghost model are known, deghosting is conducted as a
deterministic deconvolution [13]. Similarly, a relatively close problem is source wavelet
estimation and removal. In effect, source deconvolution is a critical preprocessing step in
Marchenko redatuming [14,15] and adaptive surface-related multiple elimination [16,17].
On the other hand, in a simultaneous-source acquisition experiment [18–20], where re-
sponses to sources ignited at different time delays are recorded, deblending has also been
interpreted as a form of seismic interferometry by multidimensional deconvolution [21].
The advantage of this approach is that most of the crosstalk artifacts mapping in the image
domain are reduced. To a large extent, many of these operations can be carried out in a
single step by considering up/down multidimensional inverse filtering. In offshore seismic
surveys, it is well known that the water-air interface and the ocean bottom are strong
reflectors. Early methods to remove water-layer reverberations consider a deconvolution
filter [22]. Later, Noah’s single-channel deconvolution was used to remove surface-related
multiple effects [23]. More recently, the advent of multicomponent ocean-bottom seismic
data (OBS), enabled data-driven wavefield separation and the method was extended to
multidimensional fields [24].

Whilst redatuming by MDD represents a clear step in the direction of obtaining
more accurate wavefields than its correlation counterpart, it comes with a set of additional
numerical challenges due to the ill-posed nature of the associated inverse problem. This has
generally prevented the wide adoption of MDD in the geophysical community; however,
recent interest in the topic has led to the development of a variety of strategies to stabilize
such an inversion. Historically, MDD is approached in the frequency domain where
multiple inverse problems are solved independently for each frequency in the available
seismic bandwidth range, and the resulting solutions are then recombined and transformed
back into the time domain. Whilst direct inversion of the kernel matrix is generally
adopated [4], alternative solutions have been proposed in the literature. For example,
Minato et al. [25] apply singular-value decomposition (SVD) to compute the pseudo-
inverse matrix and truncate small eigenvalues as a way to naturally regularize the inverse
process. More recently, Boiero and Bagaini [26] suggest to introduce a regularization term
that enforces similarity of the solution between neighbour receivers in the solution of each
inverse problem.
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Alternatively, MDD can also be solved in the time domain as a single coupled inverse
problem: whilst this approach is less known and not widely adopted yet, it has recently
been shown to be more robust as solving for the entire frequency spectrum at once acts
as a natural regularizer and does not require the identification of damping parameters
for each frequency independently. In this direction, pioneering work has been carried out by
van der Neut and Herrmann [27], van der Neut et al. [28], Luiken and van Leeuwen [29],
Ravasi and Vasconcelos [30], who also proposed the use of different regularization and
preconditioning strategies to further alleviate the ill-posedness of the inverse problem.
More specifically, van der Neut and Herrmann [27] investigate the use of sparsifying
transforms (i.e., Curvelets) in combination with sparsity-promoting inversion to improve
the robustness of the solution to noise in the data and mitigates artefacts arising from
limited-aperture source arrays. Van der Neut et al. and Luiken and van Leeuwen [28,29]
on the other hand, introduce physics-based preconditioners to guarantee the solution of
the inverse problem to satisfy a priori information such as causality and reciprocity. Finally,
in the context of acoustic laboratory experiments, time-domain MDD has also been recently
shown great promise to remove domain boundary effects [7].

Nevertheless, a systematic comparison between the frequency and time domain im-
plementations of MDD and an in-depth analysis of the effect of different preconditioning
strategies is not present to date in the literature. In this paper, we aim to fill such a gap and
provide a thorough evaluation of the impact of different preconditioning strategies in the
solution of MDD problems. In our analysis, we first revisit the multidimensional deconvo-
lution method and provide an overview of its practical implementation in the frequency
domain. Similarly to previous studies, we also argue that difficulties mostly arise when
selecting an optimal regularization parameter per frequency to stabilize the problem. We
also reformulate the time-domain constrained least-squares inversion to include three types
of physical preconditioners, namely time causality, reciprocity, and frequency-wavenumber
locality. More importantly, by using full-waveform transmission wavefields from a subsalt
synthetic dataset we consider two different scenarios, labeled here as easy and difficult.
The first case is concerned with the situation where the input data and the kernel of the
MDC modeling operator are noise-free—e.g., directly modeled or recorded data. The sec-
ond refers to the case where these wavefields are obtained by means of another inverse
process, for example Marchenko redatuming [14,31,32] or Full-Wavefield-Migration [33,34],
which lead to input wavefields inevitably contaminated by both coherent and incoherent
noise. Especially in the latter case, we show the importance of solving the MDD problem in
the time domain alongside with the proposed hybrid physical preconditioners to produce
superior wavefield prediction in terms of amplitude and phase fidelity, indicating the
benefits of this approach in controlling the implicit noise amplification.

2. Seismic Wavefield Redatuming

Interferometric redatuming by deconvolution dates back to the 1D data-driven trans-
form method proposed by Riley and Claerbout [23]. The underlying idea of this technique
is to remove surface-related multiples (SRM) from seismic reflection data recorded at an
open boundary on the surface of the Earth by means of single-channel deconvolution of
the downgoing wavefield from the upcoming wavefield at each receiver location. More
recently, this method has been extended to work directly with multi-dimensional seismic
data and it is generally referred to as multi-dimensional deconvolution (MDD) in the
context of surface multiple removal for ocean-bottom acquisition systems [24,35,36]. Using
one-way reciprocity theorems, Wapenaar et al. [12] propose a generalization of the method
for the case of 3D laterally variant media in the presence of dissipation effects. In this
section, we briefly review the main theoretical aspects behind interferometric redatum-
ing for acoustic fields, followed by a description of its practical implementation in the
time and frequency domain. Even though convolutional models for more general vector
fields exist, we restrict our notation to scalar fields only and recall that derivations for
electromagnetic [12] and elastic [11,37] waves follow similar arguments along with the



Remote Sens. 2021, 13, 3683 4 of 24

ones in this section. As for the actual implementation of the method, the current practice
of estimating a virtual reflection response in the space-frequency domain considers the
introduction of a suitable regularization parameter to stabilize the inversion [38–41]. Con-
trary to that approach, for solutions in the space-time domain, we propose a set of efficient
preconditioners designed to conform to the implicit physics of wave phenomena, namely,
reciprocity, causality, and locality/compactness in the frequency-wavenumber domain.
Additional constraints are also imposed when considering the localized mapping of the
cross-correlation function (CCF) in the frequency-wavenumber domain. This implementa-
tion substantially reduces the numerical artifacts present in the retrieved reflectivity and
positively influences subsequent imaging and inversion studies due to accurate waveform
kinematics and amplitude estimation.

2.1. Two-Way Multidimensional Deconvolution

Rayleigh’s reciprocity theorems describe the interaction of seismic sources and wave-
fields in two distinct physical states [1,42]. They comprise the theoretical foundation of
seismic interferometry and lead to Green’s function representations describing wave prop-
agation between two observation points in the media, in terms of data measured at such
locations. The specific configuration of choice in the two states combined with a convenient
interaction quantity determines the domain of application for which the representation
is derived. In particular, consider a heterogeneous volume, D, representing a section of
the medium characterized by wave propagation velocity c(x) and density ρ(x), enclosed
by a surface ∂D. In the reference state (Figure 1a), the broadband pressure and particle
velocity wavefields at receiver location x′r due to an impulsive monopole source at location
xr are given by Green’s function Ḡp(x′r, xr; ω) and Ḡvn(x

′
r, xr; ω), respectively. Note that

the subscript n is used here to indicated that the particle velocity measurement must be
oriented normal to the enclosing surface. Similarly, in the actual medium (Figure 1b),
the band-limited pressure and particle velocity recordings at receiver x′r from a source at
xs are indicated by p(x′r, xs; ω) = Gp(x′r, xs; ω)s(ω) and vn(x′r, xs; ω) = Gvn(x

′
r, xs; ω)s(ω),

respectively, where s(ω) represents the possibly unknown source signature. Note that the
source at location xs can be of any type (i.e., monopole or dipole) as long as this is consistent
for all the wavefields in this state; moreover, we consider a configuration where xs is located
outside ∂D, whereas xr lies within the volume D. Starting from Rayleigh’s reciprocity theo-
rem of the convolution type, and considering the interaction quantity ∂i{PAVi,B −Vi,APB}
(subscripts A and B refer to the reference and actual media), the convolution representation
theorem for Green’s function Ḡ in the space-frequency domain is derived [4].

p(xr, xs) =

∫
∂Dr

p(x′r, xs)Ḡvn(x
′
r, xr)− vn(x′r, xs)Ḡp(x′r, xr)dx′r, (1)

where the frequency dependency has been omitted for brevity. Note that this representation
is valid for dissipative and lossless media. Deriving Equation (1) involves the Sommer-
feld radiation condition, which simplifies the problem by assuming the enclosing surface,
∂D = ∂Dr0 + ∂Dr, with ∂Dr a plane at depth level zr, and ∂Dr0 a semisphere segment
(Figure 1). In such configuration, ∂Dr0 does not contribute to the integral when its radius
is arbitrarily large [4,24]. Additionally, the medium outside D can be different in both
states, but it is required that inside the properties remain the same so that all contrast
terms in Rayleigh’s reciprocity theorems can be dropped. In particular, the effects of a
homogeneous reference medium outside of D can be enforced when considering proper
boundary conditions for the incoming waves. Finally, we note that the process of multiply-
ing two wavefields and integrating over the receiver boundary ∂Dr as performed twice in
Equation (1) is generally referred to as multi-dimensional convolution (MDC).
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Figure 1. Unbounded configuration defining the interacting quantities involved in the MDD problem. According to
Equation (1), the Green’s function Ḡ(x′r, xr) in the reference configuration (a), can be obtained by deconvolving the
wavefield observed at x′r from that in xr (b). Seismic waves due to sources xs (grey stars) distributed along the surface
∂Ds are measured by receivers (triangles) at ∂Dr. After MDD, the receiver at location xr (blue triangle) is turned into a
virtual source and its response is observed at the other receivers (red triangle). Note that G(xr, xs) and G(x′r, xs) are full
transmission responses carrying all orders of internal as well as surface related multiples. (c) Schematic representation of the
reference response Ḡ for a fixed time. Rows correspond to common shot gathers associated with an specific virtual source,
whereas Columns are common receiver gathers; numbers indicate the rows and columns used to display the estimated
reflection response in the subsequent figures.

At this point, the problem of finding Ḡp(x′r, xr) and Ḡvn(x
′
r, xr) under the integral can

be resolved in terms of multidimensional deconvolution by assuming p(xr, xs), p(x′r, xs),
and vn(x′r, xs) to be known. Solving the integral Equation (1) requires a sufficiently large
amount of sources xs radiating energy into the volume D such that the implicit ill-posedness
of the problem can be reduced. Given that, in practice, only a limited set of sources and re-
ceivers are deployed at discrete locations, it is convenient to discretize the representation (1)
and recast the integral in a compact matrix-vector form for each frequency [43],

p(xr, xs) =
[
P(x′r, xs) −Vn(x′r, xs)

][ ḡp(x′r, xr)
ḡvn(x

′
r, xr)

]
⇔ p = Dḡ. (2)

Here, matrix D consists of the stack of velocity and pressure recordings where each
of them performs a multidimensional convolution operation in the frequency domain.
On the other hand, the sought solution, ḡ, is the concatenation of pressure and particle
velocity Green’s functions in the reference state. Finally, whilst we have considered here
the case of a single virtual source xr, Equation (2) can be easily modified to include multiple
virtual sources as commonly found in the literature [4]; in such a case, both p and ḡ become
matrices whose columns are associated to different virtual sources.

P(xr, xs) =
[
P(x′r, xs) −Vn(x′r, xs)

][ Ḡp(x′r, xr)
Ḡvn(x

′
r, xr)

]
⇔ P = DḠ. (3)

Depending on the specific solution, one can constrain the inversion by introducing
prior information in the form of regularization. Ravasi et al. [43] proposes a directionality
operator based on the one-way wavefield separation filter [44–46]. Such a prior steers the
inversion in favor of the desired solution.

2.2. One-Way Multidimensional Deconvolution

Assuming one is interested in reconstructing the overburden-free properties of a wave-
field propagating in the reference configuration only (Figure 1a), two-way deconvolution
may not be a suitable implementation in the most general case. Except for situations
when directionality priors are considered, the retrieved wavefield includes any scattering
effects introduced by the overburden above the datum level zr. Alternatively, by imposing
that the reference medium is homogeneous above ∂Dr, the reference Green’s function is
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only composed of upcoming waves at the boundary ∂Dr, i.e., Ḡ = Ḡ−. Effectively, this
argument implies that Ḡ+ is discarded once all wavefields in Equation (1) are expressed in
terms of their pressure normalized wavefield separated components, i.e., G = G+ + G− [4].
Therefore, Equation (1) yields,

p−(xr, xs) = 2
∫

∂Dr

v+n (x
′
r, xs)Ḡp(x′r, xr)dx′r ⇔ P− = V+

n Ḡp. (4)

or alternatively

p−(xr, xs) = 2
∫

∂Dr

p+(x′r, xs)Ḡvn(x
′
r, xr)dx′r ⇔ P− = P+Ḡvn . (5)

These are two alternative versions of the one-way implicit representation for the
broadband up-going response Ḡp at observation point x′r due to a localized virtual source
at xr radiating energy downwards into the medium D. Once again, MDD is required
to estimate the unknown quantity Ḡp (or Ḡvn ). In essence, one-way MDD enables the
reconstruction of a virtual survey beneath the overburden such that the reflection response
is deprived from all interactions with the medium above ∂Dr. Finally, by invoking a far
field approximation [47], Equations (4) and (5) can be further simplified to consider only
monopole sources and pressure receivers

p−(xr, xs) =

∫
∂Dr

2
c(x′r)ρ(x′r)

p+(x′r, xs)Ḡp(x′r, xr)dx′r ⇔ P− = P̃+Ḡp. (6)

where the medium parameters scaling factor has been incorporated for simplicity into P̃+.
For historical reasons, one-way MDD is the most widely used interferometric redatuming
technique in seismic exploration, whereas the two-way MDD represents as a more general
description, for which in principle data separation is not required.

2.3. Frequency Domain MDD—Regularized Least Squares

Irrespective of the integral representation and the specificities of the deconvolution
problem one attempts to solve, Equations (3)–(6) can be written for general fields in terms
of a Fredholm integral of the first kind

U(xr, xs) =

∫
∂Dr

Q(x′r, xs)G(x′r, xr)dx′r ⇔ U = QG, (7)

where, Q(x′r, xs) is the integral kernel operator, G(x′r, xr) the wavefield in the model space
we wish to recover, and U(xr, xs) is the wavefield in the data space. A summary of
particular discrete representations for one and two-way wavefields in terms of the general
notation is given in Table 1. Our goal is to solve the linear inverse problem (7) to find the
unknown model parameters G that better explain the data U. In contrast to most inverse
problems, where the kernel is well defined and encodes the underlying physics, in this case,
both U and Q are measurements, in general polluted with noise. Examples of this situation
are recorded wavefields as in the virtual source method [3], or wavefields derived from
model-driven redatuming techniques such as Full-Wavefield Migration (FWM—[33]) or
data-driven redatuming techniques such a Marchenko redatuming [14,31]. This peculiarity
negatively impacts the stability properties of the MDD problem making it more challenging
than other inverse problems. In spite of such consideration, we can still attempt to solve
Equation (7) in terms of a regularized least-squares problem:

min
G

∥∥∥QG−U
∥∥∥2

2
+ λ

∥∥∥G
∥∥∥2

2
, (8)
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where the l2-norm is used to evaluate the distance from the observed data to the numerical
estimation, and the regularization parameter, λ, weights the information in the data against
that in the prior. The minimum norm solution to Equation (8) is then written as in the
normal equations,

QHU =
[
QHQ + λI

]
G ⇔ G =

[
QHQ + λI

]−1QHU. (9)

Table 1. Summary of acoustic MDD representations in compact matrix-vector notation for one- and
two-way wavefields according to the general representation (7). The fifth and sixth column, C, Γ,
comprise cross-correlation and point spread functions, respectively.

MDD U Q G C Γ Equation

Two-way P D Ḡ (D)HP (D)HD (3)
One-way P− V+

n Ḡp (V+
n )HP− (V+

n )HV+
n (4)

P− P+ Ḡvn (P+)HP− (P+)HP+ (5)

We note that the first term on the left-hand side is the well known cross-correlation
function, C = QHU, while the point spread function, Γ = QHQ, appears as a blurring
operator acting on the sought solution. Inversion of the normal equations, C = ΓG,
in the frequency domain is commonly done for each frequency slice individually. Since the
stabilized point spread function is inverted per frequency component, the required memory
is such that, operator and data matrices of size (nr × ns) can be explicitly defined, therefore,
this strategy is computationally feasible and in many cases direct or block Krylov methods
can be used [48,49]. A major drawback in solving (8) lies in the difficulty of selecting an
optimal regularization parameter, in fact, many of the parameter selection methods rely
on solving the system multiples times and select λ based on an additional minimization
problem [50]. Moreover, no theory exists to define how to choose different λ for each
frequency inversion that are consistent with each other. Equally important is the source to
receiver ratio and the band-limited character of the sources [29]. Finally, the absence of a
clear causality constraint in ω-domain lead to solutions containing acausal events.

2.4. Time Domain MDD—Constrained Least Squares

An alternative implementation of deconvolution is derived by transforming the Fred-
holm integral (7) from the frequency into the time domain. Once again, the data U and
unknown response G are related through Multi-Dimensional convolution with a given
kernel, Q̂. Contrary to the element wise multiplication in the frequency domain, here the
kernel of the Fredholm integral constitutes a time domain convolution. In the time domain,
the linear inverse problem reads,

U(xr, xs; t) =
∫

∂Dr

∫ ∞

−∞
Q̂(x′r, xs; t− τ)G(x′r, xr; τ)dτdx′r ⇔ Q̂g = u, (10)

where the circumflex is used to stress the fact that the multi-dimensional convolution is
here performed in the time domain and therefore it cannot be decoupled on a frequency-
by-frequency basis. A fundamental distinction from the frequency domain version lies in
the fact that the time-domain operator Q̂ is too large to be explicitly formed and inverted,
an aspect that calls for the use of matrix-free linear algebra and optimization techniques. In
other words, the use of direct solvers is prohibited by the size of the matrix representation
of the operator, and therefore the solution g is usually approximated using an iterative
solver such as LSQR [51]. Such a solver only requires the implementation of the forward
and adjoint operations of the modelling and preconditioning operators on a given data
vector. From an implementation perspective, the multi-dimensional convolution is more
efficiently solved in the Fourier domain, thus, an equivalent time domain representation
requires the definition of an operator Q̂ = F−1QF acting on a given vector and performs a
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step of batch matrix multiplication as described by Ravasi and Vasconcelos [30]. Here F
and F−1, are forward and inverse space-time Fourier transform operators.

In general the problem (10) remains ill-posed provided that in typical surveys only a
few sources are considered, nonetheless, the conditioning of the operator decreases as the
sources/receivers density increases for large apertures. In an effort to alleviate these issues,
further physical priors can be included in the solution of the inverse problem primarily
to impose desired physical constraints on the solution while also stabilizing the inverse
problem. The inverse problem is therefore posed as a constrained least-squares problem
which enforces the reconstruction of g to belong to a restricted subset of solutions G [29],

min
g

∥∥∥u− Q̂g
∥∥∥2

2
+ λ

∥∥∥g
∥∥∥2

2
s.t. g ∈ G. (11)

If we now define a projection operator P that can enforce the solution to be within
the set of admissible solutions G, the constrained problem can be equivalently written as a
preconditioned unconstrained least-squares problem:

min
z

∥∥∥u− Q̂Pz
∥∥∥2

2
+ λ

∥∥∥z
∥∥∥2

2
. (12)

where g = Pz. Note that a linear operator is said to be a projection only when the following
relation is satisfied, P = P2, or in other words when applying the operator twice or more
times produces the same result as applying it once. Here, we seek to reconstruct z by
considering the associated normal equations,[

Q̂P
]Hu =

[[
Q̂P
]HQ̂P + λI

]
z ⇔ z = P

[
PHQ̂HQ̂P + λI

]−1PHQ̂Hu (13)

Conceptually, this formulation is no different from the result in Equation (9), ex-
cept that introducing the preconditioner P is a necessary condition to retrieve a physically
reliable and stable solution. Moreover, in connection with the use of iterative methods
for solving linear systems, in our experience, preconditioning also helps to improve the
convergence by steering the solution towards the desired subset of solutions G. The imple-
mentation of our time-domain MDD is based on the PyLops framework for matrix-free
linear algebra [52].

2.5. Physics-Inspired Preconditioners

We now introduce a set of efficient preconditioners which allow enforcing our prior
belief on the solution in terms of physical constraints at each iteration as the optimization
scheme progresses. Such constrains should, in principle, capture the physics of wave
propagation and enable a successful reconstruction by driving the inversion towards a
meaningful set of solutions. First, we seek causal solutions for which any event arriving
before the direct wave is rejected, while ensuring that all internal multiples at t ≥ τd(x′r, xr)
are retained. The key elements of causality are introduced through a space-time window
which is applied to the sequence of partial solutions of an iterative method [29]. Such
preconditioner is typically built with the help of an eikonal solver using approximated
velocities at the redatuming level zr, and can be formally defined as

Θ
{

G(x′r, xr; t)
}
=

{
G(x′r, xr; t), t ≥ τd(x′r, xr)

0, otherwise,
(14)

where τd is the direct-wave’s travel time. In the frequency domain the implicit Hadamard
product Θ�G turns into a convolution, limiting any practical implementation of causality
in the Fourier domain. Note that since the Hadamard product is self-adjoint Θ = ΘH ,
this projection is said to be orthogonal. Second, we exploit the symmetry properties of
the sought wavefield by introducing a reciprocity constraint that enforces the reflection
response to remain the same when sources and receivers are interchanged. Mathematically
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speaking, source-receiver reciprocity is achieved by ensuring that the reconstructed wave-
field is the same when the spatial coordinates are transposed. Formally, the prescribed
prior can be written as follows

Υ
{

G(x′r, xr; t)
}
=

1
2
(
G(xr, x′r; t) + GT(x′r, xr; t)

)
, (15)

where the operator Y reshapes the model vector z into a three-dimensional tensor with x′r, xr,
and t along the three directions, transposes the first and second dimensions, and averages
the two tensors together before reshaping the resulting tensor back to a one dimensional
vector. Enforcing this preconditioner projects the model vector onto the space of symmetric
solutions, thereby, this physical prior makes sure that any solution for which reciprocity
is not satisfied belongs to an undesired subspace and therefore is discarded. Once again,
this projection operator is self-adjoint and therefore orthogonal. A third preconditioner is
designed in the frequency-wavenumber and it is aimed at enforcing the spectrum of our
solution to be placed within the expected signal cone [53]. The signal cone is here designed
based on the cross-correlation function C. In essence, since the CCF is a blurred version
of the impulse response G, it captures most of its features whilst being at the same time
polluted with artifacts and wrong amplitudes. Despite the presence of unphysical events,
we can still use its f -k spectrum to constrain the inversion by rejecting solutions outside a
specific frequency range. In consequence, we introduce a 3D f -k filter adhering to the CCF
frequency content as

W
{

G(kx′r , kxr ; ω)
}
=

{
G(kx′r , kxr ; ω), k2

x′r
+ k2

xr ≤
(

ω
cmin

)2

0, otherwise.
(16)

Here cmin is a design parameter and corresponds to the minimum velocity to be
retained. As iteration progress corrupted information leaks into the solution due to small
singular values amplifying any noise present in the data, as a result the reconstruction is
degraded and many coherent short-scale length features and fringes are observed. Likely
that information corresponds to low velocity events mapping in the reject region of the
frequency-wavenumber filter (16) and can be removed. Effectively, this form of implicit
regularization eliminates short-wavelength that are not expected to be resolvable within
the given frequency bandwidth. In this sense, this preconditioning enforces a smoothing
constrain suppressing potential spurious model updates and enhance the convergence
toward a well-behaved solution lying in the correct subspace.

In general, we can easily prove the benefit of repeatedly applying those precondition-
ers at each iteration of the inverse process instead of only once directly on the final solution.
This comes from the realisation that, whilst our preconditioners acts locally on the solution
either in time-space or frequency-wavenumber domain, the MDC operator acts globally on
the model and data vectors within the entire time-space domain. In other words, taking
the time causality preconditoner as an example, let us consider a single time-space location
in the model vector and follow the computation of the gradient of our cost function at the
i-th iteration, ∇Ji = −QH(u−Qgi), which is used to update the current model estimate
within the iterative solver. The application of the modelling operator Q involves a time
convolution between each trace of the kernel of the operator and the current model vector
estimate: as the kernel extends over the entire time axis the presence of signal at acausal
times in the model vector not only introduces further noise at earlier times but also in the
causal part of the predicted data as shown in Figure 2a. Similarly, the part of the residual
originated from the acausal signal in the model vector introduces additional noise in the
gradient and therefore in the subsequent model estimate at every time sample (Figure 2b).
On the other hand, when a time window is applied during the computation of the gradient
in the form of a preconditioner, acausal contributions arising during the application of the
forward and adjoint modelling operator are immediately annihilated and prevented to leak
into the gradient and subsequent model estimate.
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Figure 2. Schematic representation of the effect of the acausal contribution gi(x′r, xr; t̄) in the model estimate at i-th iteration
on the the gradient ∇J used to update the model. (a) Forward modelling step, (b) Adjoint modelling step. The gray zones
in the Qgi and ri panels indicate the portion of the modelled data that is only populated by noise contributions arising
from the single time-space sample gi(x′r, xr; t̄). Note that whilst only the positive time axis is shown here, non-physical
contributions map all the way to the negative axis.

Finally, as we will investigate in more details in the numerical section, the described
preconditioners can be chained together to better constrain the inversion. Whilst this can
be done in principle for any combination and order of the preconditioners, mathematically
speaking the product of multiple projections is in general not a projection. More specifi-
cally, when two projections commute, their product is always projection; the converse is
however false, as the product of two non-commuting projections may still be a projection.
The concatenation of operators that do not commute does not guarantees that the resulting
vector lies in the intersection of the independent projections. As discussed in more details
in [29], as the time causality and reciprocity projections commute, they can be applied
together in any order. This interchangeability originates from the fact that they both act in
time-space domain in a orthogonal fashion: time causality annihilates values in the acausal
part making this part of the model already reciprocal, whilst it does not modify samples in
the causal part where the reciprocity operator enforces symmetry. Conversely, f -k filtering
applies by masking the model solution in the frequency-wavenumber domain. Whilst
windowing in such domain is equivalent to two-dimensional filtering in the time-space
domain, this projection has a more global impact on the model vector. For example, when
applied after the time causality, it would bring back some of the signal to the acausal
window. On the other hand, if time causality is applied after, the acausal part of the
signal is ensured to be zero. Whilst this fact has theoretical implications in terms of the
constrained and preconditioned problem not being equivalent, in the next section we will
see how considering the combined effect of multiple priors via composition generally leads
to improved model reconstruction. Thereby, we retrieve an impulse response that exhibits
fewer erroneous events, while more accurate amplitudes are predicted. Table 2 outlines
different options for chained preconditioners.
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Table 2. Different preconditioners options explored in this study. The attributes of the transformation
rule, P, in the optimization problem (12) are given via composition of preconditioners (14), (15),
and (16). Here, ∗ indicates the physical constraints enforced by the chained operator.

Opt Causality Reciprocity f -k Filtering Preconditioner

1 I
2 ∗ Θ

3 ∗ Υ

4 ∗ F−1WF
5 ∗ ∗ ΘΥ

6 ∗ ∗ ΘF−1WF
7 ∗ ∗ ∗ ΘΥF−1WF

3. Numerical Examples

In order to evaluate the performance of multidimensional deconvolution and compare
its frequency and time domain implementations, we design a numerical experiment for one-
way source redatuming using decomposed wavefields at the receiver side. The input up-
and downgoing wavefields are obtained by solving the scattering Marchenko extrapolation
equations [53] in a highly complex medium (Figure 3a). The Marchenko method provides
access to noise-polluted up and down-going wavefields, P±mko, emitted by sources at the
surface and reconstructed at a set of virtual receivers. Typically, virtual receivers are
located at the focusing level beneath the overburden. The medium extends 16.26 km in the
horizontal direction and up to 8.0 km in depth, serving as support for a large overburden
mimicking the effects of an inhomogeneous (dirty) salt body. Beneath the overburden, this
model consists of sharp unconformities, laterally inhomogeneous sediments, and interbed
discontinuities (Figure 4a). Interferometric redatuming in such environments is challenging
due to the high impedance contrast, which introduces a strong internal-multiple regime that
ultimately produces artifacts in the cross-correlation function. Those nonphysical events
are attributed to the cross-talk between uncorrelated events in the data. Besides band-
limitation issues along with a virtual survey-limited aperture, source undersampling
further contributes to the ill-posedness of the problem.

Figure 3. (a) Sub-salt velocity model supporting decomposed wavefields at the receiver array, the magenta line extending
horizontally at 4.4 km below the overburden. The source array, solid red line, is deployed at the surface. The dashed black
line indicates the target area for which reflectivity is recovered. (b) Down- and (c) up-going common-receiver gathers at
receiver 75 obtained by means of scattering Marchenko redatuming. (d) Common-receiver gather of the up-going field at
the same receiver computed by means of the representation theorem in Equation (5) using the down-going wavefield in
panel (b) and the true directly modelled reflection response in the target area shown in Figure 4.

We first demonstrate source redatuming to a target level inside the medium at 4.4 km
and analyze the results of implementing MDD in the frequency domain against those of the
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time domain for multiple preconditioning options. In our example, we consider 201 sources
regularly distributed every 40 m spanning 8 km from 4.0 to 12.0 km horizontally, at the
surface. The Marchenko up and down-going pressure fields conform the transmission
responses from sources at the surface to an array of 151 virtual receiver points regularly
distributed every 20 m over a 3 km line at 4.4 km depth and are readily available for a
maximum time of 8 s. Those wavefields represent the data P− and operator P+ in the MDD
problem (Figure 3b,c). Similarly, the virtual survey we seek to reconstruct relative to the
macro-model is shown in Figure 3 enclosed by the dashed target box beneath the salt body.
Figure 4 shows the target model with corresponding numerically modeled local reflection
response used as the benchmark for our reconstruction. Data modeling is carried out with
a broadband impulse-source wavelet ranging from 1 to 50 Hz and absorbing boundaries
on all sides of the target model. In Figure 4b–d, we select three sources gathered at 6.4, 7.5,
and 8.6 km to reveal the structure of the true reflectivity.

Figure 4. (a) Virtual survey configuration depicting the target area for which MDD retrieves a reflection response. The solid
red line represents a set of virtual receivers whereas the white dots are associated with different sources locations. (b–d) Mul-
tiple common source gathers extracted from the numerically modeled pressure response at positions coinciding with the
white dots in (a) are used to benchmark MDD reconstructed reflectivities.

3.1. Noise-Free Modelled Wavefields

A sensible aspect of MDD is the influence of erroneous or noise-degraded wavefields
used in the inversion as data/operator. As a reference for the subsequent experiments, we
first conduct a noise-free case study. To recreate such a scenario, we treat the down-going
pressure field P+

mko (Figure 3b) as an aerial source at ∂Dr, and then convolved it with
the broadband numerically modeled reflection response to build a noise-free up-going
field P−mod (Figure 3d) as dictated by Equation (5). Therefore, any deviation from P−mod is
interpreted as noise, just as it is inferred when comparing Figure 3c,d. Our first test use
the minimum norm solution per frequency slice to reconstruct the field that would have
been recorded at the datum level (magenta-solid line in Figure 3) by an actual seismic
experiment as if sources and receivers were located just above it. We start by constructing
the spatially band-limited point-spread function needed to correct source smearing and
directionality in the correlation gathers. Figure 5a shows a source-gather slice of the
time domain blurring operator in the middle of the virtual acquisition axis. Ideally, it
should be a band-limited delta function around zero time and space offset. Nonetheless,
strong coherent events are visible outside the desired range, whereas long unbalanced
tails dress the expected delta pulse. Those events arise from the cross-talk of up and
down-going waves, which ultimately leak into the correlation function. As observed in
Figure 5b, the imprint of this filter populates the correlation gathers with artificial waves
whose dips are rather high, apart from multiple uniform events mapping outside the
space-time causal path. Despite the complexity of the up/down transmission wavefields,
most physical events are well defined at near offsets and the general structure resembles
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the gather in Figure 4c. This observation justifies the use of the CCF as a surrogate of
the virtual response in many applications. Still, in Figure 5c, trace evaluation uncovers
a substantial phase misalignment along with uncompensated amplitudes. Figure 5d,e
show the corresponding space-frequency (power spectra) domain counterparts. We note
a limited temporal bandwidth content around zero offset with cross-talk noise energy
spreading from the center towards larger offsets.

Figure 5. Key elements of seismic interferometry by MDD. (a) The One way PSF in the time domain is a noise-contaminated
band-limited delta function blurring the sought broadband impulse response. (b) Acausal events appear in the pressure
reflection response obtained by cross-correlation of up- and down-going wavefields, while spurious cross-talk events
interfere with reflections from the target area. (c) Close-up view of normalized traces corresponding to receiver 75 (red-
dashed line in (b)) extracted from the true response (Figure 4c) and the CCF. (d,e) The space-frequency domain versions of
the PSF and CCF, respectively.

Now that the blurring operator (PSF) and correlation function (CCF) are available,
we solve the normal equations one frequency at a time. Filtering the correlation response
with the regularized inverse of the PSF, [Q̂HQ̂ + λI]−1, in theory, should remove the cross-
talk artifacts while at the same time an amplitude corrected and sharper version of the
CCF is retrieved. In the frequency domain, sharpening results in the widening of the
temporal spectrum. Far from perfect, the choice of an optimal stabilization parameter
strongly influences the regularized MDD solution at each frequency sample. This penalty
term, to a large extent, controls the quality of the reconstruction, but often it is difficult
to select the best possible option without solving the problem multiple times for a small
subset of damping parameters. The first panel in Figure 6a (common source gather) and
Figure 6b (common receiver gather) illustrate the deconvolved correlation function with
a hand-tuned regularized PSF once transformed into the time domain. Opposite to the
observations in the CCF, the estimated pressure response in this noise-free MDD reveals
well-defined arrivals with higher spectral contributions and attenuated artifacts. In fact,
many reflectors have recovered their continuity, and most of the overburden interfering
events are suppressed. We also note seismic phases closer to the ground truth relative
to those in the correlation gather and a partial virtual source smearing removal despite
amplitudes not being accurately predicted (third panel in Figure 6a,b).

Alternatively, we resolve to set up the inversion on the time-space domain and opt
for a gradient-based iteration solver (e.g., LSQR). While an explicit definition in computer
memory of the discrete wavefield operator P+

mko is prohibitive, such solvers only require
the resulting forward and adjoint operations on the data vector; therefore, a Pylops linear
operator is defined instead [30,52]. Even though no preconditioned is introduced, P = I,
the synthesized virtual source-receiver response, second panel in Figure 6a,b, exhibits
significantly fewer spurious events, a radiating pattern with improved causality properties,
plus a much closer prediction of both phase and amplitudes. That being the case, a detailed
trace inspection allows us to infer that a crude time-domain implementation takes care
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of crucial waveform information otherwise underestimated or neglected, opposite to its
frequency domain counterpart (third panel in Figure 6a,b).

Figure 6. Frequency versus time-domain MDD reconstruction of the local reflection response for noise-free (top) and
noisy (bottom) scenarios. Panels in (a,c) are common source gathers (CSG) associated with the second red-tagged slice in
(Figure 1c), whereas (b,d) match with the common receiver gather (CRG) indicated by the second blue slice in the referenced
figure. The first panel in figures (a–d) correspond to reconstructed fields in the frequency domain implementation, while
the second to those in the time domain. An overlay of traces indicates overestimated amplitudes for the frequency-domain
implementation in both source (red-dashed line) and receiver (blue-dashed line) gathers when compared with the same trace
section in the true response (solid black line). In contrast, a better fit is instead observed for the time domain reconstructions
when the magenta-dashed line (CSG) and the green-dashed line (CRG) are evaluated against the benchmark.

3.2. Noise-Contaminated Marchenko Wavefields

Continuing with our example, we now conduct the same experiment but using the
noisy records P±mko from scattering Marchenko redatuming. These transmission fields
contain multiple spurious events not associated with reflectors in the target area besides
high-frequency random noise. Figure 6c,d outline the inherent difficulties MDD faces when
noise interferes with clean data. In contrast to the previous case, both time and frequency
domain implementations quickly diverge from a satisfactory solution, verified by an
overall gather degradation and strong short-wavelength events arriving at high dipping
angles, which can not be explained when comparing with the benchmark. For instance,
trace comparison indicates an overall amplitude overestimation regarding the noise-free
solution for both CSG and CRG. Although we only display a few gathers retrieved by MDD,
the behavior displayed in these panels is representative of the overall inversion results.
Irrespective of the method used, data and operator fidelity are of utmost importance for the
inversion along with effective priors to mitigate noise amplification that ultimately obscures
the reconstructed local impulse response. In our next example, we explore the influence of
implementing a causality preconditioner (Option 2 in Table 2). Restricting the domain of the
sought solution is beneficial since it can effectively reject any acausal event which in turn
prevents energy outside the time window Θ from leaking into the causal part of the solution.
Clearly, in the gradient-based optimization, as iteration progress, any acausal information
in the model vector is translated across the whole time-space domain as artifacts in the
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predicted data, a consequence of modeling with a noise-contaminates convolutional kernel
that extends throughout the entire time axis. Figure 7 depicts a local response estimation
that is purely causal (Figure 7c) aside from a large offset slice of the crude reconstruction
for P = I (Figure 7b). In spite of the implicit numerical instabilities introduced by the
MDD problem, a considerably more consistent reconstruction is achieved when relying on
causality as constrain contrary to the crude unconstrained solution. Still, prominent events
with quasilinear moveouts are embedded in the reconstructed field. In this case, while a
general more accurate fit is predicted along the receiver axis, a significant misalignment
is observed in the common receiver gathers. This observation is characteristic of a non-
reciprocal response. As expected, the algorithm does not consider such physical priors
unless introduced as constrain.

Figure 7. Comparison of Time-domain reconstructed impulse responses using physical priors for
MDD. Panels tagged with the solid red and blue line follow the CSG and CRG convention in Figure 1.
(a,e) Slices of the numerically modeled pressure field in the truncated section of the model, Figure 4a,
below the focusing datum at z = 4.4 km. (b,f) The unconstrained reflectivity solution is densely
contaminated with non-physical events amplified by low singular values as iterations go on. (c,g)
Introducing the time window P = Θ as preconditioner derives in a solution depleted of acausal
events but does not prevent noise from leaking into R. In (d,h) an overlay of traces indicates a
fairly good amplitude prediction in the receiver side (red-dashed line), but a significant phase and
amplitude mismatch is appreciated in the source side (blue-dashed line).

As a way to control high-frequency errors propagating across iterations, we now study
the influence of f -k filtering to constrain the inversion within a prescribed signal cone.
The argument being that physical events with hyperbolic moveout map at low wavenum-
bers in the f -k domain whereas short-wavelength spurious arrivals populate the spectrum
at higher wavenumbers. Consider the CCF f -k spectrum depicted in Figure 8a. We note
that the center of the f -k space contains low spatial frequency information associated with
the actual local response, controlling the overall gather contrast, brightness, and general
shape, whereas its periphery determines high spatial frequency information interpreted
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as sharp details, edges, and low-velocity dipping events. Hence, the red-dashed line in
Figure 8 establishes a limit to discriminate between physical and artificial energy. Indeed,
this spurious energy is amplified as iterations progress in an unconstrained inversion as
we can see in Figure 8b, where an f -k slice of the inverted virtual response in Figure 7b
discloses information with a rather large energy content outside the signal cone. Making
sure that such unphysical energy is removed from the solution at each iteration proves to
be of substantial benefit for wavefield reconstruction. For this to be achieved, we now run
the inversion using P = F−1WF as a preconditioner (Option 4 in Table 2). Contrary to our
previous example, the pressure response from the target area in the f -k space (Figure 8c,f)
is now deprived of low-velocity artificial events mapping at high wavenumbers but still
retains crucial waveform information otherwise overlapping with linear moveout events
and high-frequency uncorrelated noise in the time-space domain. Likewise, the inverted
pressure wavefield in the time domain (Figure 9b,f) reveals waveform features representing
a substantial improvement in comparison to that of Figure 7b,f and is closer to the bench-
mark in Figure 9a,e. While in the f -k domain preconditioned inversion many spurious
events are controlled, still, the solution does not obey source-receiver reciprocity as one can
infer when comparing CSG with CRG. In addition to enforcing a smoothing constrain on
the model vector per iteration, one expects the wavefields to obey some form of reciprocity.
In Figure 9c,g, we extract a source and receiver gather slice from the virtual response
reconstructed with the help of the reciprocity preconditioner P = Υ (Option 3 in Table 2).
While some events are underestimated in the unconstrained method, Figure 9d,h show a
prominent waveform similarity against the benchmark for all causal events as appreciated
in the trace comparisons. The gathers are not only kinematically closer to the ground truth
but also all amplitudes appear better predicted. Depending on the wave physics, enforcing
the spatial reciprocity preconditioner requires proper parameter scaling. This principle in
its simple form holds for two-way wavefields; but it is not the case for one-way wavefields
in general, where the separation strategy determines how reciprocity works [54]. When
flux-normalization is considered, the standard form (15) holds, however, if the wavefields
are pressure normalized, an additional balancing factor modifies the reciprocity condi-
tion. It should be noted that such a factor is given in terms of vertical derivatives of the
structural parameters which in general are unknown at depth. Only when the medium
is homogeneous, flux and field normalized fields are identical, in which case reciprocity,
in the form (15), holds for both situations.

Figure 8. Wavenumber-frequency amplitude spectrum for (a) the cross-correlation function, (b) the unconstrained,
and (c) the preconditioned reflectivity reconstruction. (d–f) Top view of the spectra in (a–c). The red-dashed line de-
lineates the f -k band-pass filter used as a preconditioner to constrain the time-domain MDD. Note that spurious energy
outside the filter, at high wavenumbers in the correlation spectrum, is amplified in the unconstrained inversion with P = I.
Luckily, the undesired low-velocity artifacts map outside the f -k window, whereas the actual physical energy lies at a
low-frequency band. Enforcing a restricted spectrum, with P = F−1WF, as iterations progress in the inversion, removes
most of the dipping events observed in Figure 6c,d.
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Figure 9. Same as in Figure 8, but now the 3D f -k filter constrains the iterative reconstruction.
(a,e) slices of the benchmark reflection response at xr = 8.6 km. (b,f) As expected, despite the
conservative character of W, many coherent low-wavelength structures and dipping events are
removed from the spectrum, producing a reasonable solution within the prescribed bandwidth.
(c,g) When source-receiver reciprocity, Υ, controls the set of accepted solutions, a significantly more
accurate reconstruction is achieved. (d,h) Trace inspection at receiver 35 reveals a substantially better
fit, opposite to the situation in Figures 6 and 8.

A final experiment considers the combined effect of multiple physical priors. In
Figure 10 the reconstructed virtual responses using chained preconditioners P = ΘF−1WF
and P = ΘΥF−1WF are displayed. The fact that acausal arrivals are controlled throughout
iterations in the inversion implies that they are not present in the reconstructed gathers
and therefore do not interfere with physical events arriving after the direct wave when
the multidimensional matrix operator is applied to the model vector. On top of that,
the smoothing preconditioner rejects all low-velocity artifacts and prevents uncorrelated
high-frequency noise to leak into the solution. Similarly, when the reciprocity prior is
enforced, the signals in the common shot and common receiver gathers are identical
indicating that the solution is reciprocal. Here we note that using joint preconditioners
redound in responses with noticeably broader temporal bandwidth with lower spurious
events and traces exhibiting a much better fit than the unconstrained inversion, or more
importantly the Tikhonov regularized inversion in the frequency domain.

Having access to multiple forms of preconditioning the multidimensional deconvolu-
tion problem calls for a more quantitative form to evaluate the performance of the inversion
as a function of the pre-set prior. To compare the quality of distorted wavefield reconstruc-
tion relative to the numerically modeled local response, we use two distinct metrics. While
the root means square error (RMSE) is a common measure to estimate the reconstruction
quality in multiple inversion techniques, in image processing, the structural similarity
index measure (SSIM) is often referred to as a more robust approach to evaluate image [55]
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and seismic gathers [56] attributes. Indeed, whereas the RMSE is a local measure of the
square norm between two signals, the SSIM considers mean intensity, contrast, and struc-
ture. Figure 11a,b show the SSIM and RMSE for multiple preconditioning strategies as a
function of iterations. It is important to note that in both cases one realizes the characteristic
semi-converge behavior of different solutions, provided that initially, at low iterations,
the SSIM is close to one (ideal reconstruction) but it decays as the number of iterations
increases. Notably, depending on the preconditioner option a faster decay in the quality
factor is observed for the situation where the inversion is unconstrained, or only disjoint
causality and f -k filtering are used. On the other hand, when chained preconditioners are
in place, the solution remains more stable as the iteration number increases. In Figure 11c
the relative residual errors for several priors used in the previous examples is shown. Here,
the error propagation a function of iterations for hybrid preconditioners shows dramati-
cally fast convergence with stable residuals (continuous green and purple lines) around
8× 10−3 reached in approximately 10 iterations.

Figure 10. Same as in Figures 8 and 9, except that different chained preconditioners are used as
leverage to enhance Green’s function reconstruction. (a,e) slices of the benchmark reflection response
in the middle of the virtual at xr = 7.5 km. (b,f) Applying causality in combination with a flexible
smoothing constrain eliminates excessively large coherent noise and controls the maximum resolvable
wavelength in the gathers. Likewise, considering a hybrid operator, ΘΥF−1WF, conveys the physical
properties of an actual local response into the sought solution (c,g). Ultimately the benefits of
exploiting joint preconditioners are revealed in traces (d,h), not only this estimation is kinematically
closer to the benchmark but the amplitudes are better resolved.
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(a) (b) (c)

Figure 11. Error propagation a function of iterations for multiple single and hybrid preconditioners. (a) Structure similarity
index measure, (b) root mean square error, and (c) LSQR residuals. (a,b) expose the semi-convergence behavior of the
iterative method. Initially, an accurate solution is retrieved at low iterations, but as the algorithm progresses, the noise gets
amplified and the reconstruction is degraded.

4. Discussion

Through our work, we show that MDD can be accomplished in a manner that is both
reliable and stable—particularly in the presence of noise in both the data and forward
operator—by means of physics-based constraints implemented as pre-conditioners in the
time domain. Though our examples in this paper are 2D, our approach is general and imme-
diately applicable to 3D seismic data. In a companion paper, Ravasi and Vasconcelos [30]
show an HPC-ready setup of the very same PyLops implementation we use here and
demonstrate it with 3D MDD in the image domain after redatuming. Moreover, the gen-
erality of our approach also extends directly to the cases of MDD in elastic [11,37,39] and
attenuative media [12], with the only difference being that, of course, our proposed pre-
conditioning operators must be appropriately re-parameterized for those cases (e.g., see
discussion in the next paragraph).

When considering the use of spatial reciprocity operators for preconditioning, we point
out that our approach in this work is to be considered both an example and a framework.
At a more immediate level, it is in an example in the context of the acoustic wavefields
employed in the examples herein. More generally, however, it is a framework given that,
depending on the wave physics in consideration, reciprocity requires different parame-
terizations in terms of both scaling and data-component relations. For example, when
dealing with one-way-decomposed wavefields, the appropriate form of spatial reciprocity
is dependent upon the choice of wavefield normalization chosen for the decomposition
operation [45,46,54]—which in some cases may require additional medium information,
such as impedance local to source or receiver locations. Another important example is
when multi-component fields are present—such as pressure and particle velocity in acous-
tics, or displacement and stress in elastic media—in which case spatial reciprocity must
comply with the appropriate component combinations, e.g., a vertical-stress source into a
horizontal-displacement receiver can only be replaced by a horizontal-displacement source
into a vertical-stress receiver with appropriate sign corrections.

In the general context of interferometry and deconvolution, MDD is important, but of
course 1D, single-channel deconvolution is just as important if not more prevalent in
terms of use. This is so not only in interferometry [57–59], but also in key approaches
such as estimation of receiver functions [60–62]. To this end, it is important to note
that our conclusions hold equally in 1D deconvolution—because that is a reduced case
of MDD—pre-conditioned, time-domain deconvolution will outperform the majority
of frequency-domain, single-channel schemes, including the widely-used “water-level”
method. In the case of single-channel deconvolution, pre-conditioners such as imposed
causality or wavelet shapes/bandwidth are trivial simplifications of the multi-dimensional
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causality and f -k restriction operators we propose here. In terms of implementation,
the same PyLops-operator setup can be used for efficient 1D deconvolution.

Finally, though herein we restrict ourselves to solving the time-domain deconvolution
problem under a least-squares norm by means of the LSQR solver [51], our conclusions and
framework could just as easily be extended to other metric and/or solver choices. For ex-
ample, our pre-conditioned time-domain approach is applicable to one-norm, sparsity-
promoting MDD (e.g., [27,63])—where the use of sparsity-promoting transforms such as
radon-based [64], curvelets [65,66], shearlets [67], seislets [68], or wavelets [69,70] in 1D.
Such metrics can make up of solvers such as FISTA [71] or SPGL1 [72]. These open up
possibilities for pre-conditioners in the transformed domains, where one such example
would be, for instance, to impose smoothness and/or restrictions on local slopes of events
in the output inverted data. These and other more complex operations will be the subject
of future research and thus are beyond the scope of this paper.

5. Conclusions

With this work, we show that the challenging task of performing reliable, stable
multi-dimensional deconvolution (MDD) is both achievable and practical by treating
the problem in the time-domain, combined with easy-to-implement, regularisation-free,
physics-based pre-conditioners. Such an approach consistently outperforms frequency-
domain approaches that, while being easier to implement computationally, are the source
of the common misconception that deconvoltution can be unreliable due to its reliance on
tuneable regularisation parameters. Our conclusions not only apply to MDD but are equally
important for single-channel deconvolution practices, e.g., in interferometry or receiver
function estimation, where pre-conditioned time-domain deconvolution will consistently
outperform the widely-used frequency-domain spectral division.

Here, we present acoustic-wave multidimensional deconvolution in the context of
target-oriented redatuming at a given datum in the subsurface. In general, MDD estimation
of an overburden-free reflection response deprived of any overburden-related effects builds
on the availability of a sufficiently large number of sources over a wide aperture and
regularly sampled receivers. While the current practice of using frequency-domain wave-
fields to solve the normal equations relies on direct solvers, an alternative iterative-based
time-domain implementation has proved promising for broadband response estimation in
general settings. The first approach is feasible provided the point-spread function is small
enough to be explicitly defined in memory, whereas in the former, there is no need for
such memory burden since one leverages on iterative solvers that only require the forward
and adjoint operations of the convolutional matrix operator on a given data vector to be
readily available, therefore an explicitly defined version of the operator in matrix form can
be avoided.

We present a reliable, yet stable time-domain implementation of MDD that includes
physical priors as a mechanism to improve kernel conditioning by transforming the model
vector into a domain where the ill-posed nature of the inverse problem is significantly
mitigated. Moreover, selecting a proper hybrid preconditioner turns out to be an efficient
way to accelerate convergence. In this respect, the iterative solver quickly favors a more
stable solution relative to the simple unpreconditioned implementation with no explicit
regularization parameter. This implementation emerges as a numerically attractive MDD
option on large data sets and 3D case studies where direct inverse methods are currently
prohibited or in situations for which the signal-to-noise ratio can potentially worsen the
frequency domain reconstruction as a consequence of inverting the normal equations.
Taking advantage of linear operators, typically built in the Python ecosystem for large-
scale problems, our numerical examples using multiple preconditioners demonstrate the
effectiveness of the proposed method and its ability to handle noise-contaminated input
wavefields in highly complex geological settings.
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