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Abstract: Cloud, one of the poor atmospheric conditions, significantly reduces the usability of optical
remote-sensing data and hampers follow-up applications. Thus, the identification of cloud remains a
priority for various remote-sensing activities, such as product retrieval, land-use/cover classification,
object detection, and especially for change detection. However, the complexity of clouds themselves
make it difficult to detect thin clouds and small isolated clouds. To accurately detect clouds in
satellite imagery, we propose a novel neural network named the Pyramid Contextual Network
(PCNet). Considering the limited applicability of a regular convolution kernel, we employed a
Dilated Residual Block (DRB) to extend the receptive field of the network, which contains a dilated
convolution and residual connection. To improve the detection ability for thin clouds, the proposed
new model, pyramid contextual block (PCB), was used to generate global information at different
scales. FengYun-3D MERSI-II remote-sensing images covering China with 14,165 × 24,659 pixels,
acquired on 17 July 2019, are processed to conduct cloud-detection experiments. Experimental results
show that the overall precision rates of the trained network reach 97.1% and the overall recall rates
reach 93.2%, which performs better both in quantity and quality than U-Net, UNet++, UNet3+,
PSPNet and DeepLabV3+.

Keywords: cloud detection; FY-3D remote-sensing images; pyramid contextual; deep learning

1. Introduction

With the rapid development of remote-sensing technology, more and more remote-
sensing images are employed for farmland monitoring, land use, target detection and so
on in production and supporting living [1]. Image quality is equally as important as the
processing algorithms. Due to the influence of complex atmospheric environments, most
images cannot be directly used, and among these influencing factors is the presence of
clouds. Nearly 70% of the world is often covered with clouds [2] leading to a compromised
determination of the surface reflection information and thus significant impact on the
analysis and application. Hence, improved cloud-detection procedures are essential to
service the requirements of a range of Earth applications.

In recent years, many cloud-detection methods have been proposed. These methods
can be divided into two classes: threshold-based and classification-based approaches.
The threshold-based methods detect clouds with extremely high accuracy and good ro-
bustness by classifying the reflectance and brightness temperature of different spectra.
Iris [3] proposed an Automated Cloud Cover Assessment System to estimate the cloud
cover of Landsat satellite imagery. Oreopoulos [4] improved the clear sky synthesis al-
gorithm of MODIS to evaluate the performance of the cloud mask of Landsat-7 imagery.
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Huang [5] used clear forest pixels as a reference to define the cloud boundary in the spectral
temperature space, and predicted shadows based on the geometric relationship between
cloud height and solar elevation. Zhu and Woodcock [6] proposed a scene threshold-
based object-matching algorithm Fmask to detect the clouds and their shadows. Though
threshold-based methods perform well for certain features, they do not perform well in
some complex circumstances such as urban and mountainous environments [7,8]. This
effect arises because the threshold set for the specific pixels of the image, such as clear sky,
is not constant since it is limited by spectral domains. Meanwhile, these threshold-based
methods generally need to manually determine concise values.

In contrast to threshold-based methods, methods based on classification can automati-
cally detect clouds with high reliability. The fields of machine learning, pattern recognition
and computer vision have made great progress recently. Some automatic classification
algorithms have been transferred and used in cloud detection [9–14]. This enables cloud
detection to omit threshold selection and the description of feature values, which greatly
improves the efficiency of cloud detection. Tan [15] applied a neural network classifier
to track the changes of clouds in a series of images by using temporal changes of texture
information. André Hollstein [16] presented several ready-to-use classification algorithms
based on a publicly available database of manually classified Sentinel-2A images and
showed excellent performance concerning classification skill and processing performance.
Shao [17] proposed a fuzzy auto-encoder neural network to integrate feature information
to detect cloud and its shadow. Joshi [18] proposed a novel algorithm (STmask) combining
tasseled cap band 4 (TC4) with shortwave infrared spectral band 2, SWIR2 (2.107–2.294 µm)
for generating cloud, water, shadow, snow and vegetation masks. Wei [19] proposed a
method by combining the random forest approach and extracted superpixels to detect
clouds. To achieve higher detection accuracy rates, the machine-learning-based approach
needs to manually design the proper features and perform massive feature calculations.

Beyond machine learning, the deep-learning neural network has attracted much
attention from academia since Alexnet achieved excellent performance on Imagenet in
2012 [20]. Owing to the powerful feature extraction capabilities and minimal manual
intervention, the neural network has been widely used in target detection [21–24], land
cover/use [25–28] and change detection tasks [29–32]. Based on automatically extracted
geographical and semantic features from a network, the performance of the cloud-detection
algorithm is accelerated by deep-learning techniques in image classification tasks [33]. In
recent research, deep learning has also been used for cloud detection in satellite images.
Mateo-García [34] designed a simple convolutional neural network (CNN) architecture for
cloud masking of Proba-V multispectral images. Their experimental results demonstrate
that compared with traditional machine-learning algorithms, CNN can improve cloudy
area detection. Li [35] proposed a convolutional network using multi-scale features to detect
clouds and their shadows. Shao [36] integrated spectral information from visible, near-
infrared (NIR), shortwave infrared (SWIR), and thermal infrared (TIR) bands as the input
of CNN to detect cloud, learning the more comprehensive characteristics of clouds. Liu [37]
used superpixels to assist cloud detection, and improved the accuracy of cloud detection
by classifying pixels into thick clouds, cirrus clouds, buildings, and other land features.
However, this method was still restricted by the requirement to generate superpixels.
Yang [38] used a Feature Pyramid Module (FPM) and Boundary Refinement Module
(BR) to effectively extract the cloud mask from the RSI thumbnail (i.e., preview image,
which contains the information of the original multispectral or panchromatic image). This
solution effectively solved the loss of resolution and spectrum information when detecting
clouds from thumbnails. Luotamo [39] proposed an architecture of two cascaded CNNs
processing the under-sampled and full-resolution images simultaneously. Mwigereri [40]
proposed a multi-feature fusion convolutional network with coarse–fine structure to detect
clouds. Kanu [41] proposed a robust encoder–decoder architecture with Atrous Spatial
Pyramid Pooling (ASPP) and separable convolutional layers to make the network more
efficient. Nevertheless, the previous methods seldom highlighted thin clouds. The feature
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of transparency makes its detection easily affected by complex ground information while
the thin clouds have a great impact on cloud removal and other image applications.

Additionally, we found that most of the existing methods are based on multispectral
images, which require NIR, SWIR or other bands. Given restrictions on data release, only
RGB data were available. Based on the issues of these methods and the distributions of
clouds in images, we propose a new Pyramid Contextual Network (PCNet) using the
global information at different scales comprehensively. We construct two new modules
in the proposed PCNet: the Dilated Residual Block (DRB) to expand the perception field
of feature extraction and the pyramid contextual block (PCB) to explore the relationship
between each pixel in the image. The PCB could detect isolated small clusters of thick
clouds and thin clouds. To decrease the redundancy of feature maps, we use Channel
Attention Block (CAB) [42] to refine the feature maps. In our network, the multi-scale
global features of thick and thin clouds are automatically extracted that contain global
contextual information at multiple scales. Our method can enhance the connection between
each pixel and all remaining pixels, which makes better delineation for thin clouds.

The remainder of this paper is organized as follows. In Section 2, the data sources and
the proposed methodology for cloud detection is described. Section 3 demonstrates the
design of cloud-detection experiments and corresponding results to validate the superior
performance of the proposed PCNet. In Section 4, the conclusions are presented.

2. Materials and Methods

The FY-3D is a satellite independently developed and launched by China. It has been
widely used in meteorological forecasting, hydrological monitoring, and other tasks [43].
The current cloud-detection methods are mostly based on the algorithms developed for the
Landsat and MODIS satellites. There is none for the FY-3D. There is a long-standing gap of
cloud-detection methods for usage of FY-3D satellite images. Therefore, the cloud-detection
task for the FY-3D satellite remote-sensing image is imminent. All data used in this paper
can be downloaded from http://satellite.nsmc.org.cn/ (accessed on 10 July 2020).

To better show the practicability of our method, the region we selected is the entire
Chinese region, as shown in Figure 1, and the resolution of the image is 250 m. The
dataset contains different types of features such as deserts, grasslands, oceans, etc. We only
use the visible light band for training and testing. In our work, we downloaded several
pieces of FY-3D satellites images, and these data cover different landcovers. Our dataset is
marked and verified individually by an independent and skilled group from the China
Meteorological Administration. A pixel is marked as cloud if more than half the members
agree. According to statistics, most of the ambiguous pixels are cloud boundaries and thin
cloud regions, and these pixels account for no more than 3% of all pixels.

2.1. Preprocessing of Experimental Data

The spatial resolution of the FY-3D remote-sensing imagery used in the experiment is
250 m. This work uses the consensus of several experts to label remote-sensing images to
ensure the correct classification of clouds. We choose the entire Chinese region for research
because this area contains various landcovers, including oceans, deserts, forests, grasslands,
and others. At the same time, the diverse climate in the region leads to clouds with different
shapes, all of which increase the difficulty of detection. After data preprocessing (such as
cropping), the data contains 24,659 × 14,165 pixels. The remote-sensing image is cropped
by a 512× 512 sliding window in 512-pixel steps. In addition, we used random left and
right flips and up and down flips for some data during training, and added “salt and
pepper noise” to increase the size of the dataset and avoid overfitting. There will be a large
number of whole images that are all clouds after cropping. Such a large number of full
cloud and fog samples will make the model difficult to train and reduce the accuracy of
detection. Therefore, we include images with different cloud coverage in the training set
and test set, so that the network can be well trained.

http://satellite.nsmc.org.cn/
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Figure 1. Location and true-color combination 250 m FY-3D data (R, G, B) of the study area. The
region contains many kinds of landcover, including oceans, deserts, forests, plateau, and others.

After our careful selection, the dataset has 6959 images, of which 20% (1392 images)
are used as the test set to verify the proposed model, and 80% (5567 images) are used as
the training set. There are 669, 623, 879 cloud pixels and 789, 731, 769 clear pixels in the
training set, which account for 45.88% and 54.12% of the whole training pixels. On the
other hand, the test set contains 146, 582, 117 cloud pixels and 218, 322, 331 clear pixels,
which occupy 40.17% and 59.83% of the entire testing pixels.

The distribution of image patches with different cloud coverage ratios are roughly
similar in the two datasets. The details of the image patch distribution are summarized in
Table 1.

Table 1. Image distribution of cloud coverage in training and test datasets.

Cloud Coverage Number in Training Set Ratio in Training Set Number in Test Set Ratio in Test Set

0% 6 rate < 25% 1139 20.46% 319 22.87%
25% 6 rate < 50% 1251 22.47% 279 20.05%
50% 6 rate < 75% 1484 26.66% 383 27.55%
75% 6 rate 6 100% 1693 30.41% 411 29.53%

2.2. Our Method

To meet the needs of subsequent experiments, we divided the downloaded satellite
images into a training set and a test set. The training set contains 5567 images, and the
test set contains 1392 images. Coverage of clouds and the types of surface objects are
fully considered when dividing the dataset. Most of the images contain cloud and free
areas. Cloud regions include small, medium, and large clouds; the underlying surface
environment includes vegetation, agricultural, water and snow.

Deep learning has been widely used in various tasks of remote-sensing image process-
ing. Convolutional neural networks are used in tasks such as object detection, semantic
segmentation, saliency detection, because of its excellent fitting ability. The Feature Pyra-
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mid Network [44] is adopted in many tasks because of its ability to synthesize features from
different scales. Large-scale features can ensure that details are mined, while small-scale
features can make the global information easily extracted. Non-Local Block [45] is intro-
duced to build the connection between the global information and the local information,
which allows for a better characterization and exploitation of clouds by combining rich
global and local information. These two ideas are both important to the task of cloud
detection, so we combine these two blocks to exploit long-range correlation information to
detect cloud. The network structure is shown in Figure 2.

Figure 2. The architecture of the proposed Pyramid Contextual Network for cloud detection contains Dilated Residual
Blocks (DRB), Pyramid Contextual Blocks (PCB), and Channel Attention Block (CAB). The DRB includes dilated convolution
and residual connection to acquire a wider receptive field. The PCB is designed for grasping global contextual information.
The CAB is used for choosing the best channel to make the cloud mask. The network takes a cloud image as input and
outputs the cloud mask.

2.2.1. Dilated Residual Block

In cloud detection, because of the existence of large clouds, we should pay more
attention to global information when extracting features. Dilated convolution [46] is
adopted because of its excellent ability to extract features. Dilated convolution is embedded
holes in the regular convolution which increases the receptive field. It has one more hyper-
parameter called dilation rate, which refers to the number of kernel intervals, e.g., the
dilated rate of regular convolution is 1.

The architecture of DRB is shown in Figure 3. First, the input feature map is fed into
dilated convolution and then normalizes the feature values through the Batch Normal-
ization layer. Finally, it is activated by LeakyReLU layer. Our DRB contains five blocks;
each block is composed of Dilated Conv-BN-LeakyReLU. All the size of convolution kernel
is (3, 3), and the dilatation ratios are 1, 2, 4, 2, 1; the padding sizes are also 1, 2, 4, 2, 1 to
ensure the size of feature maps remains unchanged, the details are shown in Table 2. To
preserve the information of the first group, we also add the residual connection to ensure
that there is no loss of information from the beginning layers. The number of blocks and
the dilated rates will be detailed in Section 3.3.2.

Figure 3. Architecture of Dilated Residual Block. The input feature is fed into DRB block and go through five Dilated
Conv-BN-LeakyReLU groups. To preserve the information of the input feature, we add the residual connection to ensure
that there is no loss of information from the beginning layers. K, S, D, P mean kernel size, stride, dilated rate and padding
size, respectively.
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Table 2. The structure of Dilated Residual Block (input size = 512× 512× 64).

Layer Kernal Stride Dilated Rate Padding Output

Dilated Convolution 3 1 1 1 512× 512× 64
BN + LeakyReLU

Residual 512× 512× 64

Dilated Convolution 3 1 2 2 512× 512× 64
BN + LeakyReLU

Residual 512× 512× 64

Dilated Convolution 3 1 4 4 512× 512× 64
BN + LeakyReLU

Residual 512× 512× 64

Dilated Convolution 3 1 2 2 512× 512× 64
BN + LeakyReLU

Residual 512× 512× 64

Dilated Convolution 3 1 1 1 512× 512× 64
BN + LeakyReLU

Residual 512× 512× 64

2.2.2. Pyramid Contextual Block

After the image is processed by the initial convolution and DRB, we obtain feature
map F(H ×W × C), H, W, C representing height, weight and channel, respectively. Before
we introduce pyramid contextual block, we first review non-local block [45], specified
as follows:

F̂ = T
(

1
D(F)

M(F)G(F)
)
+ F, (1)

F̂ means the feature map processed by non-local block. M(F)
D(F) ∈ R(HW × HW) is atten-

tion map,
Mi,j
Di,j

means similarity between i pixel and j pixel of the original feature maps.

G(F) ∈ R(HW × N) is feature map embedded to N-dimension. D is a diagonal matrix for
normalization purposes. T (.) is a transforming function to recover the channel of feature
map to C as equal as the original feature F. In this way, the feature map can be globally
enhanced by the whole position of the feature map and the correlation between all pixels.
Additionally, in [45], it can be constructed by taking the linear embedded Gaussian kernel
to compute the feature mapM, and the linear function to calculate G:

M(F) = exp
(
Femb(F, Wθ)Femb

(
F, Wφ

)T
)
= exp

(
F2FT

1

)
, (2)

M(F)
D(F)

=
exp(F2FT

1 )

∑ exp(F2FT
1 )

= so f tmax(F2FT
1 ) (3)

G(F) = Femb
(

F, Wg
)
= F3, (4)

Femb is convolutional operation with parameters of W. When generatingM, we use Wθ

and Wφ as the convolution kernels. Femb(F, Wθ) and Femb(F, Wφ) have the same size. To
compress the features in channel dimension and reduce the amount of calculation, all
convolutions use kernel size of 1× 1 [45].

As we can see in Figure 4, feature map F(H×W × C) is fed to three 1× 1 convolution
layers to generate F1(H×W ×m), F2(H×W ×m), F3(H×W × n) and then reshape them
to F1(m× HW), F2(HW × m), F3(HW × n). We obtain the attention map A by SoftMax
the result of multiplying F1 and F2, attention map indicates the similarity of each pixel. F′

is calculated by multiplying the attention map and F3, then recover the channel of F′ by
feeding it to a 1× 1 convolution layer. Finally, we obtain the enhanced feature map F̂ by
adding F′′ and F.
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Figure 4. The architecture of non-local block [45]. “
⊗

” denotes matrix multiplication, and “
⊕

”
denotes the element-wise sum. The SoftMax operation is performed on each row. A is the attention
map which can capture long-range dependencies. The gray boxes denote 1× 1× 1 convolutions, (k,
s, f) mean kernel size k, stride s and number of filters f.

Please note that the non-local block is a brilliant attention mechanism, but there is
a major trade-off. The attention map is generated by two feature maps, whose sizes are
H ×W ×m. The computational costs and memory consumptions of non-local block arise
quadratically as the spatial size of input feature map increases. To solve this problem
and to obtain long-range correlation of the whole image, we use multi-scale features and
different sizes of convolution kernels to reduce the parameters. From the structure of our
block in Figure 5, we can see that our block contains three branches, E is the result of
the input feature map to 1× 1 convolution, E1

θ and E1
g are the feature maps obtained by

4× 4 convolution layers. The size of E1
θ and E1

g becomes HW/16, the sizes of E2
θ and E2

g,
E3

θ and E3
g are HW/(8× 8), HW/(16× 16) respectively, which greatly reduces the cost of

computation, such that the global information can be grasped by the larger kernel sizes
and the larger strides.

Figure 5. The architecture of our Pyramid Contextual Block. “
⊗

” denotes matrix multiplication, and “
⊕

” denotes element-
wise sum. The SoftMax operation is performed on each row. Compared with non-local block, we use multi-scale features
and different sizes of convolution kernels to reduce the parameters and obtain long-range correlation of the whole image.
Ê1, Ê2 and Ê3 are the enhanced features generated by multi-scale attention maps. F̂ is the output feature of PCB. The gray
boxes denote convolutional layers, (k, s, f) mean kernel size k, stride s and number of filters f.
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Then, the feature map of each of our branches can be expressed by the following equation:

Êi =
1

Di exp
{

Ei
θ(E)T

}
Ei

g = so f tmax
(

Ei
θ(E)T

)
Ei

g, (5)

Finally, we concatenate the features from all the branches and feed the result to 1× 1
convolution to change channels of the result to be consistent with the input feature map,
and add the input feature to obtain the F̂.

F̂ = FΨ

({
Ê1, Ê2, Ê3

}
, Wψ

)
+ F, (6)

Di is a diagonal matrix for normalization purposes, Êi is result of the ith branch. FΨ(, Wψ)
is the final 1× 1 convolution layer.

Under the premise of reducing the amount of calculation, PCB fully uses the informa-
tion from multi-scale features to capture clouds with different sizes. Moreover, it can exploit
the long-range connection between each pixel. In cloud detection, we should expand the
receptive field to the entire image because the cloud can exist anywhere and have any size.

2.2.3. Channel Attention Block

After DRB and PCB have processed the feature map, it has used the contextual
information in the image to perceive the area where clouds and fog exist. As shown in
Figure 2, the feature map passes through the last PCB and concatenates the features of the
previous layer together. There will inevitably be some redundant feature layers. We used
SE Block [42] to select the appropriate channels that adaptively recalibrates channel-wise
feature responses by explicitly modelling interdependencies between channels.

The input features are first passed through squeeze and resample operations (Global
Pooling, FC, ReLU, FC shown in Figure 6), which aggregates the feature maps across
spatial dimensions H ×W to produce a channel descriptor. This descriptor embeds the
global distribution of channel-wise feature responses, enabling information from the global
receptive field of the network to be fully used. This is followed by an excitation operation
(Sigmoid shown in Figure 6), in which sample-specific activations, learned for each channel
by a self-gating mechanism based on channel dependence, govern the excitation of each
channel. The feature maps are then reweighted to generate the output which can be fed
directly into subsequent layers.

Figure 6. The architecture of Channel Attention Block. The feature map obtains a channel descriptor
of 1× 1×C after squeeze and resampling operations. Then, it is activated by a self-gating mechanism
based on channel dependence. The feature maps are reweighted to generate the output which can be
fed directly into subsequent layers.
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In Figure 6, sigmoid is set as the second activation function to obtain the normalized
channel weights because it can remap any real number to (0, 1) and keep the original
information in channel dimension [42].

2.2.4. Pyramid Contextual Network

Our proposed network as shown in Figure 2. The input is processed by two convolu-
tion layers to calculate the feature map F0 with H ×W × 64,

F0 = Fentry
(

I, Wentry
)
, (7)

where I is the input image and Fentry(, Wentry) is the initial convolution layers. Subse-
quently, we send F0 to our enhanced block, where each block contains DRB and PCB, we
assume Fm is the output of the mth block,

Fm = FPCB(FDRB(Fm−1, Wm
DRB), Wm

PCB), (8)

FPCB and FDRB is PCB and DRB, WPCB and WDRB is the weight of them. After
the same processing twice, we concatenate the final output feature map of each module
together and output it after processing by the output convolutional layer.

2.2.5. Loss Function Optimization

Cloud detection is a binary classification problem, so we use cross-entropy as our loss
function to obtain the cloud mask with high accuracy,

L = −∑[Fr log(Fgt) + (1− Fr) log(1− Fgt)], (9)

where Fr is the classification result generated by our network, Fgt is the true cloud mask.

3. Results and Discussion
3.1. Implementation Details
3.1.1. Input Data

All the prepared sample data, including three original bands, namely R, G, B and the
corresponding ground truth labels were used as inputs to the Pyramid Contextual Net.
The input data used by the deep neural network are shown in Figure 7.

3.1.2. Set of Hyperparameters

Due to the complexity of our network structure, we need to initialize the network pa-
rameters. The weight of the convolution operation is initialized to a Gaussian distribution
with a mean of 0 and a variance of 0.01, the bias is 0.1, and the weight of Batch Normal-
ization is set to 0.1. To fit the network as quickly as possible, we use Adam optimizer [47]
to optimize the network. The exponential decay rates for the first and second moment
estimates are set to 0.9 and 0.999, respectively. The initial learning rate is set to 1 × 10−4,
and reduced to half of the original number every 20 epochs, a total of 100 epochs, and the
batch size is set to 1. All the output probabilities of each pixel from a Sigmoid classifier
are translated to binary values with a threshold of 0.5 (0.5 as a default setting in a binary
segmentation) [48].

3.2. Experimental Results

In this section, we compared our model with other state-of-the-art methods to verify
the validity of our model. The training and testing environments are as follows: Our
proposed model was implemented using the open-source Pytorch framework provided by
Facebook in Python. Our platform is Ubuntu 20.04 with NVIDIA GTX 3090 GPU (24 GB).
After 100 epochs, our model achieved state-of-the-art results on the dataset (Figure 8).
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(a) (b) (c) (d)

Figure 7. Some samples in our dataset. Our dataset contains different landcovers, including oceans, deserts, forests,
grasslands, and others. (a,c) Cloud Images; (b,d) Masks.
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(a) (b)

Figure 8. Loss and F1 Score of PCNet for training and validating the datasets. (a) The training and validation loss change
with the epochs on the datasets. (b) The training and validation F1 Score change with the epochs on the datasets.

3.2.1. Quantitative Analysis

In this section, we will compare the quantitative performance of our model. This work
is compared with some new methods, including U-Net [49], UNet++ [50], UNet3+ [51],
PSPNet [52] and DeepLabV3+ [53] to evaluate the effectiveness of the proposed PCNet
in detecting cloud from remote-sensing images. The methods mentioned above are open-
source and available on https://github.com/ (accessed on 15 February 2021). All methods
have been trained and tested on the same dataset. The dataset has 6959 images, of which
20% (1392 images) are used as the test set and 80% (5567 images) are used as the training
set. Compared with U-Net, UNet++ adds Dense Connections to re-use the feature maps.
UNet3+ adds Full-scale Skip Connections to explore the full-scale ability of sufficient
information and uses Full-scale Deep Supervision to constrain the intermediate features
extracted by the network and improves the network’s capabilities. PSPNet is also listed as
a comparison method. PSPNet uses the Pyramid pooling Module to collect hierarchical
information to classify the pixels in the image better. Moreover, we also compare with
DeepLabV3+. DeepLabV3+, as the best method in the DeepLab family, uses Atrous Spatial
Pyramid Pooling to obtain a larger field of perception. In addition, the network is also
improved an encoder–decoder structure to preserve feature information. To show the
outstanding performance of our method, we compared with the current commonly used
U-Net, UNet++, UNet3+, PSPNet and DeepLabV3+.

We used precision, recall, F1 Score and accuracy [36,38,54] to quantitatively evaluate
the performance of our model in detecting clouds from remote-sensing images. These
measurements are defined as follows:

Precision = TP/(TP + FP), (10)

Recall = TP/(TP + FN), (11)

F1 = 2PR/(P + R), (12)

Accuracy = (TP + TN)/(TP + FP + FN + TN), (13)

where TP is true positive, TN is true negative, FP is false positive and FN is false negative.
P and R are Precision and Recall, respectively. The accuracy assessment was performed
as binary, all non-cloud features were combined into one feature. The results are shown
in Table 3. The overall precision of our model reached 97.1%, and the F1 score reached
0.951, which proved that our proposed method was excellent in detecting clouds from the
remote-sensing imagery.

https://github.com/
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Table 3. Quantitative comparison of cloud detection with Precision, Recall, F1 Score and Accuracy.
The best results are marked in bold font.

Method Precision Recall F1 Score Accuracy

U-Net [49] 0.965 0.849 0.903 0.850
UNet++ [50] 0.973 0.845 0.905 0.846
UNet3+ [51] 0.969 0.917 0.942 0.901
PSPNet [52] 0.951 0.860 0.903 0.855

DeepLabv3+ [53] 0.963 0.881 0.919 0.862
Our method 0.971 0.932 0.951 0.917

The experimental results in Table 3 prove the better performance of our proposed
method. The F1 Score of PCNet was 0.951, which is higher than the other four results
generated by U-Net, UNet++, UNet3+, PSPNet and DeepLabV3+. Our approach considers
accuracy while maintaining a high recall rate and a low missed detection rate. Thanks
to pyramid contextual block, the network has a better detection accuracy for small iso-
lated clouds in the image. Dilated Residual Block with dilated convolution and residual
connection allows the model to retain information from different stages and have a larger
receptive field. We will test the effectiveness of these two modules in ablation experiments.

3.2.2. Quality Analysis

After analyzing the quantitative results, we will compare our results with the other
four results qualitatively. All these samples are typical and have varying degrees of
complexity, involving oceans, deserts, forests, etc. Particular diagnoses for different features
also include clouds with different morphological characteristics such as thin clouds and
thick clouds.

As can be seen from Table 3, due to the relatively low F1 Score of results generated by
the U-Net and PSPNet, the predictions of these two methods will not be shown here; only
UNet++, UNet3+, DeepLabV3+, and our model are compared. In Figure 9, the first line
where UNet++ misses more detections may be because the method does not have strong
constraints on the intermediate results and cannot perceive the global information of the
image. Because DeepLabV3+ uses the ASPP module, it has a robust global perception
of the image, but it treats some bright objects such as clouds, which causes more false
detections. In addition to our method, the thin cloud area in the second row is more or less
missed by the other three ways. The data in the 5th and 7th columns of Figure 9 show that
the blue area in the DeepLabV3+ prediction result is much smaller than the other areas.
This finding indicates that the perception ability of DeepLabV3+ model is more potent than
UNet++ and UNet3+. The analysis of the network structure of the DeepLabV3+ shows
that the model using dilated convolution and ASPP can effectively capture multi-scale
information and improve the performance of cloud detection. We found that the blue area
is significantly reduced in our results, but the red area has increased. This finding indicates
that our method has vital data=fitting ability and can effectively mine the relationship
between pixels to ensure precision while ensuring recall. The boundaries of some clouds
are over-fitted, some non-cloud areas are classified as clouds because of the usage of PCB.
Although some overfitting cases have been found, the overall performance of PCNet in
cloud detection is still better than other pixel classification models.
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(a) (b) (c) (d) (e) (f)

Figure 9. The visualization of cloud detection. The first column (a) is the actual color of the FY-3D remote-sensing imagery;
the second column (b) shows the corresponding ground truth; the third column (c) shows the results generated by UNet++
and the fourth column (d) shows the results generated by UNet3+; the fifth column (e) shows the prediction results of
DeepLabV3+; the sixth column (f) shows the prediction results of our method. White, red, blue and black mean the TP, FP,
FN and TN, respectively. (a) Input; (b) Ground Truth; (c) UNet++ [50]; (d) UNet3+ [51]; (e) DeepLabV3+ [53]; (f) Our.
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3.2.3. Extended Experiments

(a) Experiments in large-scale FY-3D true-color imagery

In the quantitative analysis and quality analysis mentioned earlier, the performance
of our model has been intuitively reflected. To visually prove the superiority of PCNet, we
selected some remote-sensing images of China in different periods to show the improved
performance of our method. The size of the image is so large that it cannot be fed into the
network, so we crop the image to a size of 512× 512, and there is a 50% overlap between
each patch.

It can be seen from Figure 10 that the FY-3D images we used can cover the entire Chi-
nese region. The sizes of the three images are as follows: 13,108 × 17,968, 13,108 × 17,968
and 14,165 × 24,659. Our method can also be better processed for large images. From the
Figure 10b,d,f, the prediction results show that our method can detect both thin clouds,
thick clouds and some isolated cloud clusters. Although we divide the whole picture into
512× 512 patches, there is no sense of division between blocks without any post-processing,
which is enough to show the superiority of our method.

(a) (b)

(c) (d)

(e) (f)

Figure 10. The visualization of results for Chinese region. (a,c,e) True-color remote-sensing image
of FY-3D MERSI 250 m. (b,d,f) The cloud masks generated by our method. (a) 1 April 2018, FY-3D
MERSI-250 m actual color image of China. (b) The result generated by our method. (c) 1 June 2019,
FY-3D MERSI-250 m actual color image of China. (d) The result generated by our method. (e) 3 July
2020, FY-3D MERSI-250 m actual color image of China. (f) The result generated by our method.
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As the plateau area presented the left side of Figure 10, clouds and snow are hard to
distinguish considering the confused visual features of the RGB images. According to the
corresponding detection result by PCNet in the right side of Figure 10, snow was falsely
detected as clouds.

(b) Experiments in Landsat 8 true-color imagery

To show the applicability of our method, we added some experiments in Landsat 8
true-color imagery. We obtained the test images in https://earthexplorer.usgs.gov/ (ac-
cessed on 27 August 2021), and the serial numbers are LC08_L1TP_015032_20210614_2021062
2_01_T1 and LC08_L1TP_199026_20210420_20210430_01_T1, respectively.

We employed the trained model using the FY-3D dataset to test in Landsat 8 true-color
remote-sensing imagery. As we can see in Figures 11 and 12, our method can acquire
superior results for both isolated small clouds and clustered large clouds. However, some
thin clouds are not detected because the model is not fine-tuned with Landsat 8 data.

(a) (b)

Figure 11. The visualization of results for LC08_L1TP_015032_20210614_20210622_01_T1. (a) True-
color imagery of Landsat 8. (b) The cloud mask generated by our method.

(a) (b)

Figure 12. The visualization of results for LC08_L1TP_199026_20210420_20210430_01_T1. (a) True-
color imagery of Landsat 8. (b) The cloud mask generated by our method.

https://earthexplorer.usgs.gov/
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3.3. Ablation Study

To evaluate our network, we analyze the effect of each block and hyper-parameter
used in our model. To make a fair comparison, all cases are trained, validated and tested,
and conducted objective and fair investigations on the same dataset.

3.3.1. Effectiveness of Threshold for Sigmoid Classifier

The feature map is fed into a sigmoid classifier to generate the final result. As we can
see in Table 4, we choose different thresholds to make comparisons, and they are set to 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8.

Table 4. The effectiveness of threshold for sigmoid classifier.

Threshold Precision Recall F1 Score Accuracy

0.2 0.617 0.998 0.762 0.835
0.3 0.821 0.986 0.896 0.887
0.4 0.932 0.950 0.941 0.899
0.5 0.971 0.932 0.951 0.917
0.6 0.986 0.909 0.946 0.914
0.7 0.991 0.850 0.915 0.882
0.8 0.997 0.589 0.741 0.827

In Table 4, we can see that the values of precision rise and the values of recall fall as
the number of thresholds increases. We choose 0.5 as our threshold number because the
value of F1 Score and accuracy is the highest. All the output probabilities of each pixel from
a sigmoid classifier are translated to binary values with a threshold of 0.5 in our method.
When the value of the output probabilities is greater than 0.5, we set it to 1 (cloud pixels).
Otherwise, it is set to 0 (non-cloud pixels).

3.3.2. Effectiveness with Different Number of Blocks and Dilated Rates in DRB

In Figure 3, the input feature is fed into a DRB block and goes through five Dilated
Conv-BN-LeakyReLU groups. To illustrate the effectiveness with different numbers of
blocks and dilated rates in DRB, we choose different blocks and dilated rates to make
comparisons. As shown in Table 5, when the number of blocks is four, we set the dilated
rates as[1, 1, 1, 1], [1, 2, 2, 1], [2, 2, 2, 2]; The dilated rates are set to [1, 1, 1, 1, 1], [1, 2, 2, 2, 1],
[1, 4, 4, 4, 1], [2, 2, 2, 2, 2], [4, 4, 4, 4, 4] and [1, 2, 4, 2, 1] when the number of blocks is five. Fur-
thermore, we compared the results which dilated rates are set to [1, 1, 1, 1, 1, 1], [1, 2, 2, 2, 2, 1],
[2, 2, 2, 2, 2, 2]. Please note that dilated rates are equal to padding sizes in DRB.

Table 5. This is effect analysis of the number of blocks and dilated rates.

The Number of Blocks Dilated Rate Precision Recall F1 Score Accuracy

[1, 1, 1, 1] 0.904 0.827 0.864 0.845
4 [1, 2, 2, 1] 0.924 0.885 0.904 0.861

[2, 2, 2, 2] 0.911 0.863 0.886 0.855

[1, 1, 1, 1, 1] 0.953 0.864 0.906 0.881
[1, 2, 2, 2, 1] 0.969 0.915 0.941 0.901
[1, 4, 4, 4, 1] 0.961 0.925 0.942 0.903

5 [2, 2, 2, 2, 2] 0.955 0.911 0.932 0.894
[4, 4, 4, 4, 4] 0.947 0.915 0.930 0.893

Our method 0.971 0.932 0.951 0.917

[1, 1, 1, 1, 1, 1] 0.873 0.801 0.835 0.822
6 [1, 2, 2, 2, 2, 1] 0.884 0.833 0.858 0.837

[2, 2, 2, 2, 2, 2] 0.902 0.876 0.889 0.856



Remote Sens. 2021, 13, 3670 17 of 22

When dilated rate = [1, 1, 1, 1, 1], it is regular convolution. In this case, the indicators
are the worst when there are five blocks in DRB because the receptive fields are too small to
consider the global information of the feature map. We can see that the precision is higher
when dilated rate = [1, 2, 2, 2, 1] than it when dilated rate = [1, 4, 4, 4, 1], and the recall is
higher when dilated rate = [1, 4, 4, 4, 1] than it when dilated rate = [1, 2, 2, 2, 1]. It indicated
that the network’s perception field is more extensive to correlate a larger area when dilated
rate = [1, 4, 4, 4, 1], the bright objects may also be regarded as clouds, so the precision is
low. When there are four Conv-BN-LeakyReLU groups in DRB, the network has difficulty
fitting the distribution pattern of the dataset, which makes the results inferior to the results
generated by five blocks. The results of the six blocks are the worst in Table 5, because the
network has too many parameters to converge. To guarantee both precision and recall, we
choose dilated rate = [1, 2, 4, 2, 1] in our network.

We only show the visualized results generated by the DRB, which has five Conv-BN-
LeakyReLU blocks. In Figure 13, it is a regular convolution when dilated rate = [1, 1, 1, 1, 1],
and the result of this case is the worst. When dilated rate = [1, 2, 2, 2, 1], Figure 14 shows
that there are still more missed detections because the receptive field is relatively small com-
pared with others; when dilated rate = [1, 4, 4, 4, 1], the receptive field is too large to classify
the light pixels into clouds, resulting in more false detections. Figures 13 and 14 show that
the dilated rate adopted in our network can generate the most optimal prediction results.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Cloud-detection results comparisons. From left to right are (a) input; (b) ground truth; (c) dilated rate = [1, 1, 1, 1, 1];
(d) dilated rate = [1, 2, 2, 2, 1]; (e) dilated rate = [1, 4, 4, 4, 1]; (f) dilated rate = [2, 2, 2, 2, 2]; (g) dilated rate = [4, 4, 4, 4, 4]; (h) dilated
rate = [1, 2, 4, 2, 1]. White, red, blue and black mean the TP, FP, FN and TN, respectively.

3.3.3. Effectiveness with Different Number of Kernel Sizes in PCB

After determining the dilated rate as [1, 2, 4, 2, 1], since the effect of wider receptive
field is obvious, we will compare the different kernel sizes in PCB, including [2, 4, 8],
[4, 8, 16] and [8, 16, 32].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Cloud-detection result comparisons. From left to right are (a) input; (b) ground truth; (c) dilated rate = [1, 1, 1, 1, 1];
(d) dilated rate = [1, 2, 2, 2, 1]; (e) dilated rate = [1, 4, 4, 4, 1]; (f) dilated rate = [2, 2, 2, 2, 2]; (g) dilated rate = [4, 4, 4, 4, 4]; (h) dilated
rate = [1, 2, 4, 2, 1]. White, red, blue and black mean the TP, FP, FN and TN, respectively.

As we can see in Table 6, the precision is the highest when kernel sizes = [2, 4, 8]. To
take into account precision and recall, we choose [4, 8, 16] as our kernel sizes. Additionally,
there are some results shown in Figure 15. It can be seen from the first row that when
strides = [2, 4, 8], the red part is small, which indicates the precision is higher as similar to
the results shown in Table 6. Compared to the other two cases, our result has a higher recall.

(a) (b) (c) (d) (e)

Figure 15. Cloud-detection results comparisons. From left to right are (a) input; (b) ground truth; (c) strides = [2, 4, 8];
(d) strides = [8, 16, 32]; (e) strides = [4, 8, 16]. White, red, blue and black mean the TP, FP, FN and TN, respectively.

Table 6. The effectiveness of different numbers of kernel sizes in PCB for cloud detection.

Strides Precision Recall F1 Score Accuracy

(2, 4, 8) 0.973 0.905 0.938 0.898
(8, 16, 32) 0.964 0.874 0.917 0.859

(4, 8, 16) (Our method) 0.971 0.932 0.951 0.917
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3.3.4. Effectiveness of PCB Part

When the kernel sizes in PCB are determined, we will verify the necessity of PCB.
We set two situations to confirm the robustness of PCB. Since the non-local block [45] is a
widely used self-attention mechanism, we add one case that replaces PCB with Non-Local
Block. “Only DRB” means replace the PCB with DRB, “NLB” means replace the PCB
with Non-Local Block, “Params” refers to the number of variables that the model can
automatically learn from the data. “MACs” refers to the number of multiply-accumulate
operations and 1MAC ≈ 2FLOPs.

It can be seen from Table 7 that the Params of the module with only DRB have the
smallest value. The Params and MACs of the module with PCB are similar to the module
with non-local block but can achieve better results. There are also some results shown in
Figure 16.

(a) (b) (c) (d) (e)

Figure 16. Cloud-detection result comparisons. From left to right are (a) input; (b) ground truth; (c) replace the PCB with DRB;
(d) replace the PCB with Non-Local Block; (e) Our method. White, red, blue and black mean the TP, FP, FN and TN, respectively.

Table 7. The effectiveness of PCB for cloud detection. The Params and MACs are calculated at the
input size is 256× 256× 3.

Method Precision Recall F1 Score Accuracy Params(K) MACs(G)

Only DRB 0.913 0.788 0.846 0.784 885.057 58.014
NLB 0.969 0.883 0.924 0.866 4533.377 34.966
PCB 0.971 0.932 0.951 0.917 4666.497 37.630

3.3.5. Effectiveness of CAB Part

The feature map is concatenated and fed into the CAB after going through the DRB
and PCB in Figure 2. Because the number of input feature channels is too large, there will
inevitably be many useless feature maps. To alleviate this kind of problem, we added the
CAB as our channel selector. “w/o CAB” means without CAB part, and “CAB” means with
CAB part. As we can see from Table 8, if the CAB is not added, the result is slightly inferior
to that which adds the CAB module. That is easy to say, during the training process, there
is some redundant information in the feature maps.

Table 8. The effectiveness of CAB for cloud detection.

Method Precision Recall F1 Score Accuracy

w/o CAB 0.965 0.927 0.945 0.905
CAB 0.971 0.932 0.951 0.917
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In Table 8, we see that the quantitative result is slightly raised when adding the CAB,
but the parameters of the network are increased. If a lighter model is required, we can
choose the network without CAB.

4. Conclusions

Remote-sensing images from Landsat and MODIS are mostly investigated in cloud-
detection research. The present research explores, for the first time, the effective cloud-
detection method for the images from FY-3D. To this end, we generated a new dataset
based on the FY-3D satellite and proposed a new cloud-detection model Pyramid Con-
textual Network. Based on the characteristics of clouds, a series of targeted modules are
constructed: First, because of the small receptive field of regular convolutional blocks, we
proposed DRB to expand the perception field of feature extraction. Second, we proposed
PCB to explore the relationship between each pixel in the image for detecting isolated small
clusters of thick clouds and thin clouds. Third, to reduce the redundancy of the feature
maps, we used CAB to refine the feature maps.

The comparative experiments and adaptation to large-size remote-sensing imageries
all proved the superiority of the proposed PCNet in cloud extraction. Moreover, in terms
of the effectiveness of each module in the PCNet, a series of ablation experiments were
conducted and evaluated by Precision, Recall, F1 Score, Params, etc. The proposed PC-
Net provides new insights into automatic cloud detection and is shown to outperform
other typical deep-learning methods. Nevertheless, this work still has some unresolved
problems. The proposed PCNet fails to distinguish clouds from snow at high latitudes
since only RGB bands were used. In the future, more wavelengths will be used to support
higher completeness and correctness of cloud detection. Additionally, we will focus on
implementing a geoscience-knowledge-guided network and a network with extraordinary
transferability. Geographical knowledge is barely integrated deeply to guide the network
in detection of clouds and fog. For instance, thick clouds will not appear in desert areas as
water vapor rarely exists. In terms of transferability, it is necessary that the PCNet or more
networks in future to adapt to different satellite sensors and diverse geo-scenes.
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