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Abstract: Object detection plays an important role in autonomous driving, disaster rescue, robot
navigation, intelligent video surveillance, and many other fields. Nonetheless, visible images are poor
under weak illumination conditions, and thermal infrared images are noisy and have low resolution.
Consequently, neither of these two data sources yields satisfactory results when used alone. While
some scholars have combined visible and thermal images for object detection, most did not consider
the illumination conditions and the different contributions of diverse data sources to the results. In
addition, few studies have made use of the temperature characteristics of thermal images. Therefore,
in the present study, visible and thermal images are utilized as the dataset, and RetinaNet is used as
the baseline to fuse features from different data sources for object detection. Moreover, a dynamic
weight fusion method, which is based on channel attention according to different illumination
conditions, is used in the fusion component, and the channel attention and a priori temperature mask
(CAPTM) module is proposed; the CAPTM can be applied to a deep learning network as a priori
knowledge and maximizes the advantage of temperature information from thermal images. The
main innovations of the present research include the following: (1) the consideration of different
illumination conditions and the use of different fusion parameters for different conditions in the
feature fusion of visible and thermal images; (2) the dynamic fusion of different data sources in
the feature fusion of visible and thermal images; (3) the use of temperature information as a priori
knowledge (CAPTM) in feature extraction. To a certain extent, the proposed methods improve the
accuracy of object detection at night or under other weak illumination conditions and with a single
data source. Compared with the state-of-the-art (SOTA) method, the proposed method is found to
achieve superior detection accuracy with an overall mean average precision (mAP) improvement of
0.69%, including an AP improvement of 2.55% for the detection of the Person category. The results
demonstrate the effectiveness of the research methods for object detection, especially temperature
information-rich object detection.

Keywords: object detection; multi-spectral fusion; visible and thermal images; RetinaNet; illumination
conditions; dynamic weight fusion; temperature information; a priori knowledge

1. Introduction

Object detection is a popular direction in computer vision and digital image processing,
and is widely used in many fields such as autonomous driving, disaster rescue, robot
navigation, intelligent video surveillance, etc. Object detection is also a fundamental type
of algorithm in the field of pan-identity recognition, and plays a crucial role in subsequent
tasks such as face recognition, gait recognition, crowd size assessment, and instance
segmentation.

From the comprehensive perspective of international-related research, most object
detection studies are based on visible images. However, for images taken at nighttime or
those with insufficient illumination conditions, it is difficult for visible light-based object
detection methods to achieve the expected results. While thermal imaging can significantly
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compensate for the shortcomings of visible imaging, thermal images also have some defects
such as high noise, low contrast, non-uniformity, and poor spatial resolution [1], so the
results are not ideal when applied to target detection alone. Moreover, because individual
objects are represented differently in thermal infrared images, the temperature information
contained in thermal infrared images can be applied as a priori knowledge for target
detection.

Therefore, in the present study, the channel attention method is applied to the dynamic
weighted fusion of multiple data sources. Furthermore, the temperature information of
thermal infrared images is also applied to a deep learning model to improve the detection
accuracy.

2. Related Works

In early research, Choi et al. [2] used low-level image fusion to fuse the best features of
two types of sensor to achieve superior performance in human detection. They proposed
a new joint bilateral filter that is useful for the fusion of the edge information in a visible
image and the white region in a thermal image. While the results of experiments demon-
strated the effective and easy human detection by the proposed algorithm, its detection
accuracy was found to be relatively low.

In recent years, the development of deep learning, models that fuse visible and
thermal images have become a popular research direction, which has led to significant
improvements in the accuracy of object detection. According to the location of fusion in
the model, related studies can be divided into those conducted on data-level, feature-level,
and decision-level fusion [3], among which the most studied methods are feature-level and
decision-level fusion. Wagner et al. [4] was the first to conduct research on convolutional
neural network (CNN)-based multispectral pedestrian detection, and he evaluated the
results of feature-level-based early and late fusion, which showed that late fusion achieved
superior accuracy. Chen et al. [5] proposed a feature-level-based novel multi-layer fused
CNN (MLF-CNN) for the detection of pedestrians under adverse illumination conditions,
and they used the sum fusion method for the integration of the two convolutional layers.
The detection accuracy of the proposed method was found to be 28.62% better than the
baseline and 11.35% better than the well-known faster R-CNN halfway fusion [6] in the
KAIST multispectral pedestrian dataset.

These priori studies were all based on feature-level fusion without the consideration
of the illumination conditions. In fact, the contribution proportions of visible and thermal
images under different illumination conditions should be different; visible light contributes
more under bright conditions, while thermal infrared light contributes more under dark
conditions.

To consider the ratio of the contributions of different source images to the detection
results, Li et al. [7] designed an illumination-aware Faster R-CNN-based [8] structure;
they adaptively merged color and thermal sub-networks via a gate function defined
over the illumination value. Furthermore, Guan et al. [9] proposed a novel illumination-
aware weighting mechanism that incorporates illumination information into two-stream
deep CNNs to learn multispectral human-related features under different illumination
conditions (daytime and nighttime) to accurately depict the illumination condition of a
scene. These studied both improved detection accuracy of pedestrians, but the fusion
strategies are decision-level, i.e., the detection results are obtained separately using two
branched networks, and the results are then weighted and fused using the coefficients
determined by the illumination conditions. However, both methods demand more network
parameters, higher computational intensity, and higher platform requirements; in addition,
the determination of the image illumination conditions is not specific.

The methods proposed in these studies all deal with thermal images in the same way
as visible images, which means that only the semantic information of the visual layer is
utilized, whereas the temperature information associated with the objects is not. In reality,
the temperature of pedestrians on the road is distinct from that of the background; thus, in
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theory, the a priori knowledge of temperature can be fully exploited to further improve the
object detection accuracy.

Zhao et al. [10] constructed an image-temperature transformation formula based
on infrared image formation theory, converted infrared images into corresponding tem-
perature maps, and trained a temperature network for detection. However, the method
first uses a deep learning network to obtain the pedestrian frame with the highest confi-
dence, after which the original image is converted to the temperature map based on the
pedestrian frame, and the converted temperature map is finally fed into the model for
relearning. Thus, via this method, the model trained twice, making the process repetitive
and time-consuming.

To this end, the present study explores a feature-level-based fusion method. First,
the spatial attention method is used to dynamically learn different channel weights at
the feature level to improve the rationality of the fusion process. Then, different fusion
parameters are selected according to different illumination scenarios. Furthermore, the a
priori knowledge of temperature is applied to the preliminary feature extraction, instead of
spatial attention, to achieve guided a priori judgment, thereby achieving the reduction of the
computational volume and the improvement of the detection accuracy. The contributions
of this study are as follows:

1 Different fusion parameters are provided for different scenes in the visible-thermal
image feature fusion process, which allows the effects caused by different illumination
conditions to be taken into account;

2 The channel attention mechanism is used when fusing feature maps from different
data sources to allow for the dynamic learning of the fusion weights;

3 Temperature information is used as a priori knowledge to accelerate model conver-
gence and improve the detection accuracy;

4 As compared to previous similar studies (mainly refers to decision-level-based meth-
ods such as [7,9]), fewer parameters and simpler models are used;

5 The proposed temperature information module is plug-and-play, and can be applied
to all temperature-related target detection applications.

The remainder of this paper is organized as follows. Section 3 introduces the research
methodology, and Section 4 presents the experiments. Then, Sections 5 and 6 analyze and
discuss the experimental results. Finally, Section 7 presents the conclusions of this research.

3. Methodology

The flowchart of this research based on RetinaNet [11] is presented in Figure 1. First,
the dataset is used to train an illumination condition classification model. Second, two
branch networks are used to extract the feature information of visible and thermal images,
respectively. Moreover, the channel attention and a priori temperature mask (CAPTM)
module is proposed to facilitate feature extraction by using the temperature information as
a priori knowledge. Third, based on the classification results, the features are fused before
ResNet [12] and followed by a feature pyramid network (FPN [13]). The detailed fusion
structure is presented in Section 3.4. Different from the traditional sum fusion method,
a channel attention mechanism is introduced and different channel weights are used for
different illumination conditions to fully exploit the visible or thermal image information.
Finally, the fused feature map is ultimately used to obtain the object detection results.
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Figure 1. The flowchart of the research framework.

3.1. Illumination Conditions Discrimination

To choose the most suitable fusion parameters, the illumination conditions (day or
night) of the image must be determined in advance.

In this study, the original FLIR dataset [14] was used for model training. The original
FLIR dataset [14] captured vehicles and pedestrians on the streets and highways of Santa
Barbara, California, during daytime (60%) and nighttime (40%) from November to May.
Given the computational intensity, the dataset was divided into only two categories—
daytime and nighttime—according to the illumination scenario, thereby making full use of
the visible and thermal information. For example, during the daytime, both visible and
thermal images are clear, and can be complementary; in contrast, thermal images taken
during nighttime have more semantic information. The examples of different illumination
scenes in the FLIR dataset are shown in Table 1.

The dichotomous classification of image scenarios is a simple and common classifica-
tion task. In this study, ResNet50 [12], in which only visible images were input, was used
to accomplish the task. The classification details are described in Section 4.2.1.

3.2. Fusing Visible and Thermal Feature Maps

The fusion operation occurs at the intersection of the two branch networks, which
forms a composite feature map with the semantic information of both visible and thermal
images via certain operations. The most common fusion operations include the concatenate,
sum, max, and mean operations. Pei et al. [15] explored the effects of these methods on
fusion, and found that sum fusion is superior. The function of the summation operation
can be expressed as Equation (1):

ysum
b,c,h,w = f sum(V, T) = vb,c,h,w + tb,c,h,w, (1)

where vb,c,h,w and tb,c,h,w denote the values of visible and thermal infrared eigenmaps at
(h, w, c, b), respectively, and b, c, h, and w are the batch size, number of channels, height,
and width of the feature maps. In this equation, the coefficients of the variables are the
same, without distinction between different illumination conditions. However, strictly
speaking, different data sources should be given different weights considering their diverse
performance in different scenes, e.g., in dark nighttime situations, thermal images are the
mainstay of object detection.
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Table 1. Examples of different illumination scenes in the FLIR dataset [14].
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For the model to automatically learn the appropriate weights under different lighting
conditions, three preconceived schemes were considered:

1 The first scheme was the improvement of a sum fusion method to a weighted summa-
tion, as given in Equation (2):

yweighted sum
b,c,h,w = λ·vb,c,h,w + (1− λ)·ib,c,h,w, (2)

where λ is a learnable parameter that can be learned in the network. The method is
straightforward and has only one parameter, but the results of an experiment indicated
that λ was updated slowly.

2 The second scheme was convolving the concatenated feature map to a new one. While
previous studies (e.g., [16]) have used this type of method, it has a large number of
parameters, which would substantially increase the model complexity and training
time.

3 The third scheme was the use of the channel attention mechanism to score individual
channels, i.e., to enhance the important channels and suppress the unimportant
channels. This method has a moderate number of parameters and balances the
weights not only of the data sources, but also the feature map channels.

Therefore, based on the comprehensive consideration of these schemes, scheme 3 was
adopted in this work.

There are many available methods for channel attention. In this study, the squeeze-
and-excitation (SE) block [17] was used for feature fusion due to its fewer parameters and
good performance. The SE block consists of three main components, namely the squeeze,
excitation, and scale components. First, the feature map is compressed using a global
pooling layer, after which the corresponding channel weights are learned using two fully
connected (FC) layers, and, finally, the weights are mapped to the original feature map to
enhance and suppress different channels.

Hu et al. [17] embedded the SE block into the residual block, which enabled ResNet [12]
to learn the channel attention of the feature map continuously during extracting features.
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By contrast with this method, in the model proposed in the present study, the SE block is
applied to feature map fusion to learn the weights of the visible and thermal feature map
channels, as shown in Figure 2. Two visible and thermal feature maps are first concatenated,
the SE block is used once for the concatenated feature map, and the weighted feature map
is finally split for the sum operation to obtain the required fused feature map.
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3.3. Utilizing Temperature Information as a Priori Knowledge

As mentioned previously, thermal images provide temperature information in addi-
tion to texture features. Due to the different characteristics of various objects, the objects in
a thermal image have different forms. By using this unique feature, the detection target is
separated from the background by setting a certain pixel threshold, and this can be added
to the model as a priori knowledge.

According to the detection objects considered in this study, the temperature of the
human body is relatively stable; thus, it is easy to segment humans from the background.
A car has a high temperature when the engine is running, but cars are also easy to segment
when the engine is off due to the high reflectivity of the metal or glass material on their
surface. Bicycles are the most challenging objects to differentiate due to their small size
and surface material. According to the lighting scenes considered in this study, thermal
images taken at nighttime are primarily sensitive to the heat emitted by the target itself, so
the segmentation of a person and car is more accurate in nighttime scenes than in daytime
scenes. However, it should be noted that the thresholds selected for segmentation would
be different in the daytime due to the different lighting conditions.

Therefore, the dataset was roughly divided into three scenes, namely sunny day,
cloudy day, and nighttime scenes, and different thresholds were set used to segment
these different scenes. For example, suppose the pixel values of a person, bicycle, and car
based on a thermal infrared sensor under the night condition are respectively 7400–7500,
7200–7400, and 7500–8000; the threshold value of 7200–8000 can be set to segment the
targets from the background. It was experimentally proven that the background noise is
not a concern because the temperature knowledge just provides a general direction for the
detection model.

The part within the threshold was set as 1 and the part beyond the threshold was set
as 0. The resulting visualization of the final temperature mask map is presented in Figure 3.
From top to bottom, the three rows respectively indicate segmentation under the scenes of
a sunny day, cloudy day, and night. From the figure, it can be seen that during the daytime,
people, cars, and bicycles were segmented well but with higher noise; at night, even a
person in the distance was segmented accurately and with less noise. Taken together, these
segmentation maps are relatively noisy, e.g., the street light in the night scene in the third
row of the figure looks like a person in the masked image. However, the proposed model
does not rely entirely on the temperature mask; it also relies on other semantic information
in the original visible-thermal infrared image. Therefore, most of the noise would not be
misidentified.
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Spatial attention, i.e., focusing on local information in the spatial domain, aims to
identify the regions on the feature map that deserve attention, and to ultimately achieve
better detection results. Ordinary spatial attention is obtained computationally and is a
posteriori knowledge. In contrast, the temperature mask obtained from thermal infrared
images can be treated as parameter-free and a priori knowledge-based spatial attention.
Therefore, the CAPTM module, which is based on the convolution block attention module
(CBAM) [18] and fuses the a priori knowledge of temperature, is proposed in this work.
As shown in Figure 4, the spatial attention part of the original module is replaced with
the temperature mask, thereby reducing the number of parameters and simplifying the
complexity of the original CBAM. The channel attention module of the CAPTM module
is identical to that of the original CBAM. However, the spatial attention module of the
CAPTM omits the parameter operations and instead directly uses the weight matrix formed
by the temperature mask. The vector obtained by the channel attention module is then
element-wise multiplied with the weight matrix generated by the temperature mask to
obtain the final output feature map. As shown in Figure 5, the CAPTM module was
inserted into ResNet [12] for feature extraction in practical applications.
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3.4. The Full Structure of the Model Framework

RetinaNet [11] was used as the main framework in this study, and was chosen over
other deep learning models for three reasons. First, RetinaNet is a one-stage detection
method, which runs faster than two-stage detection methods. Second, RetinaNet has a
simple structure but excellent performance, and the structure is clear when exploring
different fusion locations. Finally, RetinaNet contains the FPN [13] structure; thus, it is
more effective for the FLIR dataset [14], which is characterized by a large range of target
sizes.
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RetinaNet consists of three components; the first component is the feature extraction
part composed of ResNet, the second component is the multi-scale feature extraction part
composed of the FPN, and the third component includes the subnets used to classify and
regress the prediction frame. Therefore, to explore the position of the fusion operation, it
is explicit to locate the position before ResNet, before ResNet after FPN, and after FPN,
which can be referred to as early fusion, middle fusion, and late fusion, respectively. Pei
et al. [15] found that middle fusion is superior; thus, middle fusion was used as the base
framework in the present study for further exploration.

Middle fusion occurs after ResNet and before the FPN, as shown in Figure 6. After
determining the image illumination conditions, the visible and thermal images first re-
spectively pass through two convolutional layers and ReLU layers with the same settings.
Then, they pass through their respective branches of ResNet (where the CAPTM module
is applied). The features extracted in the last three layers of ResNet are then fused layer-
by-layer according to the illumination conditions. At this point, the two branch networks
converge into one (Pei et al. [15] used sum fusion at this stage, whereas the proposed model
uses a dynamic fusion method based on spatial attention). Finally, the fused features pass
through the class and box subnets to obtain the final result. It should be noted that the
parameters of the branch networks used to extract the image features are not shared.
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Lin et al. proposed an improved cross-entropy (CE loss) loss function called focal
loss [11]; in this function, the original CE loss is multiplied by an exponent that weakens
the contribution of the easily detectable targets. This enables focal loss to successfully
overcome the problem of common loss functions being swayed by a large number of
negative samples under the condition of an extreme imbalance of positive and negative
samples. This expression is given by Equation (3). However, the final focal loss [11] also
includes the introduction of the coefficient α so that it can balance the difficult and easy
samples, and its expression is given by Equation (4). The model proposed in this paper
employs the smooth L1 as the prediction frame regression loss function, focal loss as the
category classification loss function, and the sum of the two as the total loss function, as
given by Equation (5).

FL(pt) = −(1− pt)
γlog(pt), (3)
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FL(pt) = −αt(1− pt)
γlog(pt) (4)

L = smooth_L1 + FL (5)

4. Experiments
4.1. Experimental Platform and Data

All experiments conducted in this study were based on a Dell PowerEdge T640 tower
server, the configuration of which is described in Table 2. The training and evaluation of
the deep network in this study were performed on this platform using PyTorch.

Table 2. The configuration of the experimental platform.

Configuration Items Configuration Content

Central Processing Unit (CPU) Intel Xeon Silver 4116 @ 2.10 GHz × 4
Random Access Memory (RAM) 128 G

Hard Disk Drive (HDD) 4T RAID6
Graphics Processing Unit (GPU) NVIDIA GTX 1080 Ti 11 GB × 4

The FLIR dataset [14] provides the annotated thermal imaging dataset and corre-
sponding unannotated RGB images for training (85%, 8353) and validation (15%, 1267). It
(the original FLIR dataset) captured vehicles and pedestrians on the streets and highways
of Santa Barbara, California, during daytime (60%, 6190) and nighttime (40%, 3430) from
November to May. However, the visible and thermal images in this dataset are not aligned.
Therefore, the aligned dataset from Zhang et al. [19] was used, in which the unaligned
image pairs were eliminated from the FLIR dataset [14] and 4129 pairs of training data and
1013 pairs of test data were ultimately retained. The images in the aligned dataset have
a resolution of 640 × 512 and were captured by an FLIR Tau2 Camera. Approximately
80% (4130) of the images were captured during the daytime, and 20% (1012) images were
captured during the nighttime.

The aligned FLIR dataset [19] includes four categories of objects, namely Car, Person,
Bicycle, and Dog. The statistics are reported in Table 3, from which it can be seen that
the number of Dog objects is too small; thus, only Car, Person, and Bicycle objects were
considered in this study.

Table 3. The statistics on the number of classes in the aligned FLIR dataset.

Class Name Number of Each Class

Car 24,732
Person 13,094
Bicycle 2926

Dog 108

4.2. Parameter Configuration
4.2.1. Illumination Discrimination Network

ResNet50 [12] was used as the illumination discrimination network. The number of
neurons in the final fully connected layer was modified to two (day and night). The model
was initialized with the parameters of the ResNet50 model pre-trained on ImageNet, and
was fine-tuned with the original FLIR dataset [14] for 10 epochs. The reason for choosing
the original FLIR dataset for training rather than the aligned FLIR dataset is that the former
has a closer sample size of 1:1 for daytime and nighttime. Then, a classification accuracy of
99.22% was reached.

4.2.2. Temperature Mask Extraction

The FLIR dataset [14] includes original thermal TIFF files in addition to RGB images,
which is a feature unavailable in other visible-thermal infrared datasets. Because the
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thermal RGB images of a common dataset are obtained by stretching and converting TIFF
files, the same pixel value of different images does not represent the same radiation value
of the original TIFF images. Consequently, the original TIFF images must be used if the
temperature information of the thermal infrared images is to be extracted, which is why
the FLIR dataset was chosen for use in the present study.

However, when collecting thermal infrared images, the sensor receives not only the
radiation of the object itself, but also environmental radiation. Therefore, the pixel values
of the same object imaged in different environments will be different. Generally, if the
dataset contains weather information, a TIFF file pixel value-temperature model can be
constructed to obtain the temperature image, after which a single temperature threshold
can be set for mask extraction. The FLIR dataset is not labeled with weather conditions, so
a ResNet classifier (designed to pre-process the dataset) was used to classify the original
dataset into three categories according to the illumination conditions (sunny day, cloudy
day, and night), and different thresholds were set under the three illumination conditions,
namely 7500–7700, 7300–7500, and 7200–8000 respectively. Similar to Section 4.2.1, the
number of neurons in the final fully connected layer of this classifier was modified to three
(sunny day, cloudy day, and night). The model was initialized with the parameters of
the ResNet50 model pre-trained on ImageNet, and was fine-tuned with the aligned FLIR
dataset [19] for 20 epochs. Then, the best classification accuracy of 94.07% was reached at
epoch 13.

As shown in Figure 7, after obtaining the temperature mask, the temperature mask
map must be converted into the weight map with weights within the threshold set to
1 and weights outside the threshold set to w. In the figure, white represents the in-
threshold part and black represents the out-of-threshold part. Via the use of the equation
img = img ∗ (1− w) + w, the transformed weighted map can be obtained, in which the
threshold w should be less than 1 for suppression. Then, as described in Section 3.3, the
CAPTM module is fed into the feature extraction network.
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4.2.3. Parameter Setting of Anchor

Based on the sizes of the input images and output feature map, anchor_areas =

[16× 16, 32× 32, 64× 64, 128× 128, 256× 256] and scale_ratios =
[
1, 2

1
3 , 2

2
3

]
were set.

In addition, the aspect ratios of different categories of target objects in the real sample were
counted to better set the pre-defined anchor frame aspect ratios, and the statistical results
are exhibited in Figure 8. Based on the results, aspect_ratios =

[
1
3 , 1

2 , 1
]

was set.
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4.2.4. Configuration of the Remaining Parameters

In this study, ResNet50 was used as the feature extraction backbone and the input
image size was set to 640 × 512. The ResNet model pre-trained on ImageNet was used to
initialize the network, and the remaining layers were initialized using Xavir [20]. Further-
more, random clipping and flipping were conducted for data enhancement, and stochastic
gradient descent (SGD) was used for backward propagation, for which the momentum
parameter v = 0.9 and weight decay λ = 0.0001. Moreover, gradient clipping was used
to crop the parameter gradients when their L2 norm was greater than 100. Finally, the
learning rate was set as 0.001, and the branch network parameters used to extract visible
and thermal infrared image features were not shared.

5. Results

The performance of the CAPTM module when used for different layers of ResNet
was evaluated, and the results are reported in Table 4. As revealed by the table, the mean
average precision (mAP) was the highest when the CAPTM was applied to the first three
layers of ResNet; however, the accuracy decreased after the CAPTM was applied to all
layers. It is posited that this is because the deeper layers in ResNet extract deeper semantic
information, while the temperature mask is more effective for only primary object detection,
which is prone to false recognition if applied to deeper layers. As shown in Figure 9, the
effects of different values of w of the temperature mask on the results were also evaluated.
It can be seen from the figure that the best results were achieved when w = 0.8. Thus, in
the subsequent experiments, the relevant models were set with w = 0.8.
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Table 4. The results of the CAPTM module after temperature information was inserted into different
layers. Note:

√
indicates the use of the CAPTM module,4 indicates the use of the CBAM module,

and CAPTM_x indicates the use of the CAPTM module for the first x layers in ResNet.

Name
ResNet

mAP
AP

Layer1 Layer2 Layer3 Layer4 Car Person Bicycle

CAPTM_1
√

4 4 4 70.16% 83.29% 74.81% 52.38%
CAPTM _2

√ √
4 4 73.01% 84.28% 76.35% 58.40%

CAPTM _3
√ √ √

4 73.15% 84.61% 77.04% 57.79%
CAPTM _4

√ √ √ √
70.87% 84.02% 75.81% 52.79%
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Some representative images were selected for visualization, and the results are shown
in Figure 10. It is evident from the figure that the results improved from left to right, and
the proposed model using SE and CAPTM_3 was the best. The detection results of the
proposed model using SE and CAPTM_3 were more accurate, and more small objects
at farther distances were detected; moreover, many objects that were not labeled by the
ground truth were detected. These findings prove the important role of the CAPTM
module.
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The floating point operations (FLOPs), the number of parameters and the average
detection time per image of different models are shown in Table 5. As can be seen from
the table, the FLOPs, the number of parameters and the average detection time of all the
models show a trend from rise to decline, reaching the maximum at Model 4. Compared
with Model 4, the proposed model with SE and CAPTM_3 decreases in each metric and
performs better, which indicates that using the temperature mask instead of the spatial
attention method can both improve the accuracy and reduce the model complexity.

Table 5. The floating point operations (FLOPs), the number of parameters and the average detection time per image of
different models.

Model Name Flops
(G)(Input Size=224×224)

Number of Parameters
(M)

Average Detecting Time
per Image (ms)

Model 1 RetinaNet-sum-fusion 29.058 59.620 76.130
Model 3 Ours (+SE) 29.067 62.402 83.098

Model 4 Ours (+SE) + CBAM 29.114 67.435 157.708
Model 5 Ours (+SE, +CAPTM_3) 29.109 67.433 105.178

The proposed model was compared with other models, and the results are reported
in Table 6. Due to the misalignment in the original dataset, almost no studies have used
the FLIR dataset for multispectral object detection. Zhang et al. [19] published the aligned
FLIR dataset and performed multispectral object detection; thus, it was considered as the
current state-of-the-art (SOTA) method in this study. As presented in Table 5, Models 3
and 1 were compared to effectively prove the effectiveness of the proposed fusion method
based on the illumination conditions and the channel attention mechanism; Models 5
(the proposed model) and 4 were compared to prove the effectiveness of the proposed
CAPTM module; Models 5 and 2 (SOTA) were compared to prove the validity of all the
proposed methods. It can be seen that the proposed model (Model 5) achieved a great
improvement in accuracy as compared with Models 1, 3, and 4, and the accuracy on the
Person object category exhibited a greater improvement as compared with that of Model 2,
which proves that the proposed model is more suitable for the detection of objects with
richer temperature information. However, compared with Models 2 and 3, the mAP of the
Car object category was reduced, which is likely due to the existence of many unlabeled
objects in the ground truth; as shown in Figure 11, many vehicles parked on the roadside
were detected by the proposed model while they were not labeled in the ground truth.
These objects can increase the number of false-positive results and consequently reduce the
mAP value.

Table 6. Results of different models.

Model Name mAP
AP

Car Person Bicycl
Model 1 RetinaNet-sum-fusion 67.80% 82.27% 72.09% 49.04%
Model 2 FSSD-CFR_3 (SOTA) 72.39% 84.91% 74.49% 57.77%

Model 3 Ours (+SE) 72.45% 85.60% 75.10% 56.65%
Model 4 Ours (+SE) + CBAM 71.06% 84.00% 74.88% 54.30%

Model 5 Ours (+SE, +CAPTM_3) 73.15% 84.61% 77.04% 57.79%
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6. Discussion
6.1. Whether the Aligned FLIR Dataset Has a Class Imbalance Problem

As described in Section 4.1, the number ratio of daytime images to nighttime images
in the aligned FLIR dataset is not close to 1:1 (80% of daytime images and 20% of nighttime
images), so there is a high probability of class imbalance. To examine whether this ratio
causes class imbalance, the daytime images and nighttime images in the test set were split
for accuracy verification, and the results are shown in Table 7. From the table, it can be seen
that the mAP in the nighttime scene is similar to that in the daytime scene, which indicates
that although the number of images in the nighttime is less than that in the daytime, it is
sufficient for training to achieve the desired accuracy. Actually, the sample ratio of the class
imbalance problem is generally 10:1 or higher.

Table 7. Detection accuracy comparisons in daytime and nighttime scenes.

Model Name

Daytime Nighttime

mAP
AP

mAP
AP

Car Person Bicycl Car Person Bicycle
Model 1 RetinaNet-sum-fusion 68.24% 82.62% 68.75% 53.35% 66.44% 85.42% 79.91% 34.00%

Model 3 Ours (+SE) 71.92% 83.83% 72.43% 59.50% 72.68% 89.34% 81.43% 47.28%
Model 4 Ours (+SE) + CBAM 70.67% 82.64% 72.18% 57.18% 70.07% 86.91% 81.13% 42.16%

Model 5 Ours
(+SE, +CAPTM_3)

72.95% 83.05% 73.97% 61.82% 72.13% 88.16% 84.10% 44.14%

From the horizontal comparison point of view, the accuracy of both Car and Person
categories is higher at night than during the day; the accuracy of Bicycle category is lower
at night than during the day. It is speculated that it is due to that both Car and Person
categories have richer temperature information at night, while Bicycle category has weaker
temperature information and can hardly be distinguished by thermal infrared sensors at
night. From the longitudinal comparison point of view, the proposed model (Model 5) has
higher accuracy in the Person category and reaches the highest accuracy in the nighttime
scene; the Car category has higher accuracy than Models 1 and 4, but lower accuracy than
Model 3. It is speculated that it is due to the Person category has the richest temperature
information, in addition to the inaccurate labeling of the Car category in the dataset as
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mentioned above. Comprehensive results demonstrate the effectiveness of the proposed
method for objects with rich temperature information.

6.2. Threshold Setting in Temperature Mask Extraction

One of the objectives of the experimental design of this study is to maximize the
exploitation of thermal infrared images. The temperature information used in the CAPTM
model proposed in this paper is a priori and known, which means that the environmental
information of the application scene when using the model can be readily accessible, and
then the appropriate threshold for extracting the corresponding temperature mask file can
be set.

For this study, the most ideal dataset should have the following conditions:

1 Having visible and thermal infrared images in the same place and same time for
feature fusion;

2 Having raw thermal infrared data (TIFF file) instead of stretched and processed
thermal infrared images (jpg/jpeg file), for extracting temperature mask information;

3 Having environmental information, such as light, temperature, humidity, atmospheric
pressure, etc., for extracting the temperature mask by constructing a TIFF file pixel
value-temperature model.

If a dataset satisfies conditions 1 and 2 along with condition 3, then a TIFF file pixel
value-temperature model can be constructed and the temperature mask can be extracted by
setting a fixed temperature threshold, e.g., if the human body temperature is kept between
20–40 ◦C, then a threshold of 20–40 can be set for extracting the Person category.

However, there is no publicly available dataset that fulfills all the conditions, and only
the FLIR dataset satisfies conditions 1 and 2. Therefore, a ResNet50 was used to classify
the data illumination scenes and the thresholds with good results were used for mask
extraction (any classifier can be used as long as good results can be obtained).

6.3. Noise in the Temperature Mask Files

The background of the temperature mask file extracted by setting the temperature
threshold generates lots of noise, and shadows, buildings, street lights, etc. may be extracted
(as shown in Figures 3a and 12a). However, this study only applies the CAPTM module
to the shallower part of the feature extraction network (the first three layers of ResNet) to
obtain the shallow semantic information. Moreover, in this study, the temperature mask
as a priori information only provides a general direction for the object detection and does
not directly interfere with the final detection results. The graph of the detection results in
Figure 12b can effectively prove the above arguments, and even the street light in the third
row, which has a very person-like silhouette, was not falsely detected.

Since the noise of the temperature mask does not unduly affect the final detection
results, the threshold values for extracting the mask file do not need to be too precise.
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7. Conclusions

Based on previous studies, this research proposed a multi-data-source feature fusion
method with a channel attention mechanism. Moreover, for the first time, the temperature
information contained in thermal infrared images was used as a priori knowledge to
improve the accuracy of object detection. First, the FLIR dataset [14] was used to train an
illumination condition classification model. Second, two branch networks were respectively
used to extract the feature information of visible and thermal images with the proposed
CAPTM module. Then, the features were fused based on the classification results with a
channel attention method before ResNet followed by the FPN. Finally, the object detection
results were obtained. The results of experiments demonstrate that the proposed method is
very effective. Compared with the existing SOTA method, the overall mAP of the proposed
model was found to be improved by 0.69%, and the AP of the Person object category was
improved by 2.55%, which is because the temperature information of people is richer in
any environment. The results also validate the effectiveness of the proposed methods and
indicate their importance for many fields, such as autonomous driving, disaster rescue,
robot navigation, and intelligent video surveillance.

However, the proposed method only classifies, and does not quantify, the illumination
conditions, which is one direction that could be improved in the future. Secondly, because
the FLIR dataset does not include specific environmental information (e.g., temperature,
humidity, time, etc.), different thresholds were only set for temperature mask extraction
according to different scenes. Furthermore, these experiments were not tested on other
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datasets. In future studies, the original images and corresponding environmental data
can be collected to construct a pixel value-temperature model of TIFF files so that a single
temperature threshold can be set for mask extraction, and the proposed methods can be
tested on a bigger dataset.
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