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Abstract: The rapid development of the urban city has led to great changes in the urban spatial 
structure. Thus, analyses of polycentric urban spatial structures are important for understanding 
these kinds of structures. In order to accurately evaluate the polycentric spatial structure of urban 
agglomerations and judge the differences between the actual development situation and overall 
planning of urban agglomerations, this study proposes a new method to identify the polycentric 
spatial structure of urban agglomerations in the Pearl River Delta based on the fusion of nighttime 
light (NTL) data, point of interest (POI) data, and Tencent migration data (TMG). In the first step, 
the NTL, POI, and TMG data are fused via wavelet transform; in the second step, Anselin local 
Moran's I (LMI) and geographically weighted regression (GWR) were used to identify the main 
centers and subcenters, respectively. In the third step, the accuracy of the results of this study was 
further verified and discussed in the context of overall planning. The results show that the accuracy 
of urban polycenter identification via LMI and GWR after data fusion was 92.84%, and the Kappa 
value was 0.8971, which was higher than the results of polycenter identification via the traditional 
relative threshold. After comparing the identification results with the overall planning, firstly, we 
see that the fusion of multi-source big data can help to accurately evaluate the polycentric spatial 
structure within the urban agglomeration. Secondly, the fusion of dynamic data and static data can 
help identify the polycentric spatial structure of urban space more accurately. Therefore, this study 
can provide a new design for urban polycentric spatial structures, and further provide a reliable 
reference for the spatial optimization of urban agglomeration and the formulation of regional spa-
tial development policies. 

Keywords: nighttime light (NTL) data; point of interest (POI) data; tencent migration data (TMG); 
anselin local moran's I (LMI); geographically weighted regression (GWR) 
 

1. Introduction 
China has made rapid progress in its urbanization construction in more than 40 years 

since 1978 [1], which is embodied in the following aspects: first of all, the urbanization 
rate increased by 42.44% from 17.90% in 1978 to 60.34% in 2020 [2], and the urbanization 
rate of first-tier cities, including Beijing, Shanghai, and Guangzhou exceeded 70% [3], es-
pecially Shenzhen, whose urbanization rate reached 88% in 2020 [4]. Secondly, rapid ur-
banization has shifted the focus of human activities, resulting in the rapid outflow of the 
population from urbanized areas [5]. According to statistics, in the past 40 years, more 
than 97.7% of the regional population in northeast China has flowed into the eastern 
coastal regions of China [6]. The rapid growth of population has led to great changes in 
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the spatial structure, function, and nature of the urban interior, and many polycentric cit-
ies have gradually emerged [7,8]. The reason for such change is that previously relatively 
closed and independent cities have gradually evolved into a larger and more integrated 
urban system on a geographical scale [9]. As an area with a high concentration of popula-
tion, economy, and production factors [10], although the urban center is the most innova-
tive and diverse region in urban development [11], there will still be social problems such 
as traffic congestion, environmental pollution [12], including pseudo-urbanization. Alt-
hough a large number of rural industrial workers living in cities are regarded as urban 
populations, they have not settled in cities. This phenomenon is particularly obvious in 
developing countries. All these problems have caused serious impacts on the sustainable 
development of urban centers [13,14]. Although the population continues to migrate to 
urban centers at the local scale [15,16], it restricts the sustainable development of cities to 
a certain extent [17]. At the same time, the polycentric urban spatial structure is a rapid 
and sustainable urban development model, which can alleviate these urban problems 
[18,19]. Moreover, polycentric urban spatial structures cover multiple cities and their af-
filiated towns and rural areas [20,21]. Therefore, the study on polycentric urban spatial 
structure will not only help to understand the characteristics of cities but will also help to 
formulate corresponding urban planning and management policies, which will, in turn, 
result in the polycentric urban spatial structure development model becoming favored by 
urban planners and decision-makers. Last but not least, as the urbanization process of 
urban areas is ahead of that of township areas, there will be an obvious siphon effect 
within the city [22], which means that population and resources gradually flow to the 
urban center, and the polycentric spatial structure becomes more and more obvious [23]. 
However, although the overall planning process of many big cities in China generally 
employs the polycentric urban spatial structure development model, the implementation 
of such strategic planning often takes decades. Furthermore, there is a dearth of effective 
and objective methods to analyze and judge whether the urban development is consistent 
with the planning intention [24,25]. Therefore, to accurately evaluate the spatial structure 
of polycentric cities by using scientific methods is the basis for understanding the current 
status of urban development, and the core of this study is to provide a reliable polycenter 
development model for the sustainable development of internal urban space on the basis 
of accurate evaluation of the implementation of planning policies. 

In the internal spatial structure of a city, the city center usually consists of a main 
center and subcenter. The main center of a city is its core and generally refers to the central 
business district and the areas where human activity is most concentrated, while the sub-
center refers to areas wherein the human activity is significantly different. The latter will 
usually include satellite cities, airport cities, and so on [26,27]. The urban subcenter can 
not only share the functions of the urban main center, but it can also provide more con-
venient commuting services for urban residents, and it exhibits lower land costs for busi-
nesses [28]. This is similar to the heterogeneity of landscape patterns. The structure, func-
tion, nature, and status of urban interior space are largely determined by the heterogene-
ity of urban spatial landscape patterns [29]. The urban center, as the region with the most 
perfect urban function and structure, is the direct embodiment of the heterogeneity of 
landscape patterns. Therefore, the polycenter urban spatial structure has a significant ef-
fect on enriching the heterogeneity of urban spatial landscape pattern. At present, the de-
velopment planning of most cities, especially first-tier cities, all clearly require the reali-
zation of urban polycentric development [30] when formulating policies or reaching the 
standard of a polycentric city within the planning period [31]. In the formulation of de-
velopment planning policies for first-tier cities, urban development and construction in 
the coming decades will be considered. Therefore, the formulation of polycentric devel-
opment planning policies is also conducive to the sustainable development of urban cities 
[32]. All in all, it is necessary to accurately evaluate the polycentric spatial structure of 
urban space in order to alleviate urban expansion and realize the sustainable development 
of the city [33,34].  
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However, due to the limitations in the data, the study of urban polycentric spatial 
structures is itself limited, which manifests as follows: first of all, previous studies mainly 
relied on traditional statistical data, including census data and socioeconomic data [35,36]. 
For example, areas with high employment density are defined as urban centers according 
to economic data [37]. Secondly, traditional studies have only used population data to 
conduct multi-scale urban center analyses of multiple regions in China [38]. Fortunately, 
in 2003, McMillen developed a complex but accurate method for identifying the spatial 
structure of urban polycenters based on census data—using the local weighted regression 
method and employment index, the urban subcenter can be defined as an area within a 
certain distance of the urban main center and whose population density is significantly 
higher than the average threshold value. This method has been widely approved because 
it improves the accuracy of studies of urban polycentricity [39–41]. However, this method 
requires a certain basic understanding of the study area, which is mainly reflected in the 
following aspects: firstly, the location of urban main center needs to be determined. With-
out a detailed understanding of the study area, it would be very difficult to define the 
urban main center. Secondly, with the rapid development of cities, the number of urban 
main centers is not necessarily just one. Thirdly, census data have a long renewal cycle, 
which makes the identification of the spatial structure of polycentric cities more compli-
cated [42,43]. 

Compared with traditional methods, remote sensing image data, including NTL 
data, can provide the spatial characteristics of the urban landscape and urban infrastruc-
ture [44]. Moreover, NTL data can capture the brightness of city lights at night, reflecting 
the nature of urban activities, for which reason NTL data are widely used in urban space 
research. At present, many studies are being carried out on the application of NTL data, 
such as those from the Defence Meteorological Program Operational Line-Scan System, 

the Suomi National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer 
Suite, Luojia-01, and data that combines lidar and remote sensing are used to identify 
urban built-up areas and judge urban agglomeration expansion, as well as to identify ur-
ban forms and spatial structures [45–47], and socioeconomic assessments and predictions 
of urban development [48,49]. However, NTL data have limitations that cannot be ig-
nored. Firstly, although the spatial correlation between urban activities and night light is 
an important basis for the application of NTL data in urban-related studies, different spa-
tial resolutions of NTL data will lead to different results on urban spatial structure [50]. 
Secondly, compared with traditional data, although NTL data have greater spatial stabil-
ity and objectivity, they cannot reflect the nature of the human activities, they cannot re-
flect the nature of the human activities especially in the daytime period. Moreover, the 
spillover effect of NTL data would lead to errors in the assessment of urban spatial struc-
ture [51]. However, the combination of lidar and remote sensing to identify urban spatial 
structure can achieve quite high accuracy, but it takes too long to deal with large-scale 
urban agglomeration, which means it cannot be widely promoted [52] 

In recent years, big data based on location services and social platforms has played 
an important role in urban-related studies, which in turn offer new methods for observing 
human activities and spatial characteristics, such as POI data and location-based services 
[53,54]. There is a significant correlation between big data and human activities. Com-
pared with static data (such as census data), big data can provide better spatial and tem-
poral observations, and thus more accurately reflect the spatial characteristics of urban 
residents [55,56]. As a category of point data obtained from online maps, POI data offer 
an abstract representation of geographical entities in virtual space, with the advantage of 
wider coverage and a faster updating speed [57]. At present, studies on POI data in urban 
space mainly focus on urban built-up areas [58], the identification of the urban center [59], 
the delineation of urban boundaries, and the distribution of population space [60,61]. For 
example, in urban center identification, some studies have used POI data to identify the 
boundary of the Guangzhou commercial center and discuss the commercial space in 
Guangzhou [62]. There are also some studies that have identified the urban center system 
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of the Beijing metropolitan area via the center agglomeration effect of different industries 
[63]. Tencent is an Internet company focusing on social and communication services. It 
owns apps including Wechat, QQ, and Amap (Amap is an online electronic map). When 
users use social communication tools such as Wechat and QQ, location tags with 
timestamps will be generated. Tencent's Amap application service [64,65] will generate 
population migration data according to these location tags, which is also known as Ten-
cent-migration data (TMG). Tencent migration (TMG) data constitute one of the most im-
portant indexes reflecting population migration and are provided by Amap. TMG data 
reflect changes in population movements within a certain time and region and thus offer 
a wider collection range and higher accuracy. As such, they play an important role in 
studies of population movement [66], especially in the period of COVID-19, in which they 
provide an important basis for city health decision-making by reflecting population move-
ments [67]. 

There is a significant correlation between NTL data and POI data in space. It has also 
been reflected by previous studies that fusing different data sets can significantly improve 
the accuracy of research on urban spatial structure in terms of both extracting urban built-
up areas and delineating urban agglomeration boundaries [1]. That said, data fusion is 
still relatively rare in studies on urban spatial structure, especially in the identification 
and evaluation of the polycentric spatial structures of urban cities and urban agglomera-
tions. Furthermore, at present, few studies have focused on the impacts of inter-city factor 
flow, such as population migration [68], on the polycentric evaluation of urban agglom-
erations. Moreover, in previous studies on polycentric spatial structure, instead of dis-
cussing how to evaluate the identified polycentric spatial structure, such as assessing the 
accuracy of the identified urban center and comparing it with the urban planning results, 
scholars have been shown to be more likely to use different methods to identify the poly-
centric spatial structure [69,70]. Therefore, in order to evaluate the polycentric spatial 
structure of urban agglomerations and judge the differences between the actual develop-
ment and planning proposed by urban agglomerations, this study proposes an effective 
way to accurately identify the polycentric spatial structure of urban agglomerations on 
the basis of data fusion. In addition, the results of polycentric evaluations of urban ag-
glomerations facilitate further objective verification, which is useful for urban planning. 
In other words, compared with the existing research, the new contribution of this study is 
to propose a new method and approach to evaluate the urban polycentric spatial struc-
ture, and this new method and approach are validated effectively. The main contents of 
this study are as follows: firstly, NTL data, POI data, and TMG data are fused by wavelet 
transformation; secondly, LMI and GWR are used to identify the main center and sub-
center of the PRD urban agglomeration. Then, the results derived from different data 
sources are compared with those derived via the threshold method, and the accuracy is 
verified. Finally, a comparison with the polycentric spatial structure of the overall plan in 
the urban agglomeration is carried out. 

2. Materials and Methods 
2.1. Study Area 

Located in Guangdong Province, China (Figure 1), the PRD urban agglomeration is 
one of the most dynamic economic zones in the Asia-Pacific region, covering 9 cities in-
cluding Guangzhou, Foshan, Zhaoqing, Shenzhen, Dongguan, Huizhou, Zhuhai, and 
Zhongshan Jiangmen (Figure 1). As one of the urban agglomerations in mainland China 
with the largest populations, the strongest innovation capabilities, and the greatest overall 
strength, the total administrative area of the PRD is 42,200 square kilometers, and the per-
manent population exceeds 60 million [71]. Compared with a single city, an urban ag-
glomeration is the most potent economic pole of a country or region within a certain geo-
graphical area. Urban agglomeration plays an important role in economic development 
and population agglomeration in all countries and regions of the world, such as the New 
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York Area and the Tokyo Bay Area [72]. The influence of these urban agglomerations has 
gone far beyond their administrative boundaries. With the rapid absorption of the popu-
lation by urban agglomerations, their urban spatial structures have also undergone drastic 
changes [49]. Due to the unique institutional environment and economic environment in 
China, the evolution of China's urban agglomeration has been significantly different from 
that of other countries. Therefore, with the rapid economic development of China and the 
acceleration of the construction of urban agglomerations, it will be of great value to accu-
rately identify and evaluate the spatial structures of urban agglomerations to ensure their 
sustainable development. 

 
Figure 1. PRD urban agglomeration. 

2.2. Study Data 
In order to achieve the above purpose, this study uses NTL data, which is widely 

used in the study of urban agglomeration spatial structure, as well as POI data and TMG 
data, which has a significant spatial correlation with NTL data in the space and time range. 
The reason for using the above 3 kinds of data is that the 3 kinds of data have strong 
spatial correlation, which means that these 3 types of data can be better fused. Since it is 
necessary to test the accuracy of the polycenter evaluation of urban agglomerations and 
compare the differences with the overall planning, the spatial grid distribution data of the 
population with the highest degree of correlation with the urban center is used to finalize 
the evaluation results. The acquisition methods and temporal-spatial resolutions of differ-
ent data sets are shown in Table 1.  
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Table 1. Data description. 

Data Spatial Data Sources Date 
Luojia-01 130×130 m http://59.175.109.173:8888/index.html 2018.10–2019.03 

POI Density 100×100 m www.amap.com 2020.12 
Tencent Migration 30×30 m www.amap.com 2020.01–2020.12 
Population Distri-

bution 
PRD Overal 

lPlanning 

100×100 m 
 

 PRD 

http://www.geodata.cn/ 
 

http://www.scio.gov.cn/ztk/xwfb/52/9/Do
cument/1057059/1057059.htm 

2020.12 
 

2020.12 

2.2.1. Nighttime Light Data (NTL Data) 
The Luojia-01 experimental satellite, developed by Wuhan University in 2018, can 

provide NTL data with a spatial resolution of 130 meters and a width of 260 km using a 
high-precision night light remote sensing camera [73,74]. Compared with the spatial res-
olutions of 1000 m for the NTL data from the Defence Meteorological Program Opera-
tional Line-Scan System and 500 m for that from the Suomi National Polar-orbiting Part-
nership/Visible Infrared Imaging Radiometer Suite, that of the Luojia-01 is significantly 
better, which makes the study of NTL data in large-scale geographic areas such as urban 
agglomerations more refined. We obtained PRD urban agglomeration data from October 
2018 to March 2019 from the Luojia-01 data download website. Then, radiation correction 
and radiance conversion were performed on these data, followed by multi-period average 
processing to obtain the pre-process result of PRD night light, which is shown in Figure 
2. 

 
Figure 2. Pre-processing NTL data of urban agglomerations in PRD. 

2.2.2. POI Data 
As an abstract, virtual expression of each geographic entity in the urban space, POI 

data can generally be obtained from an electronic map [75]. Incorporating basic attributes 
such as name, latitude and longitude coordinates, category, address, etc., POI data are 
expressed as a point vector data set within the geographic information system, which can 
be used to express the density distribution of infrastructure within a city through spatial 
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analysis and the calculation of data volume and aggregation degree. In this study, there 
were 22 categories and 3,103,761 quantities of POI data obtained for the PRD urban ag-
glomeration in 2021 through the application programming interface of Amap. Since POI 
data directly obtained through the interface will contain some repeated and meaningless 
data, it was necessary to check, screen, check, filter, and clean the POI data. Finally, 
220,175,3 POI data points were obtained from the PRD urban agglomeration, and the den-
sity distribution of the data is shown in Figure 3. 

 
Figure 3. The density distribution of POI data in the PRD urban agglomeration. 

2.2.3. Tencent migration (TMG) Data and Population Grid Data 
TMG data show the locations of users of the application affiliated with Tencent, ex-

pressed by different colors. Therefore, they reflect the movements and changes of the pop-
ulation over a certain period of time within a certain area [45], which means that TMG 
data offer an accurate representation of population migration in urban areas. In this study, 
the Tencent migration data for the PRD urban agglomeration from January 2020 to De-
cember 2020 were obtained using Amap for different time periods. The attributes of the 
Tencent migration data obtained in this study include the starting point, terminal point, 
longitude and latitude, population emigration quantity, population immigration quan-
tity, and the ratio of different modes of migration transportation, and average processing 
was performed to obtain the population change in the PRD urban agglomeration (the pop-
ulation change is the amount of population moving in minus the amount of population 
moving out over a fixed period of time and within a given region.), as shown in Figure 4. 
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Figure 4. Population changes in PRD urban agglomeration. 

2.2.4. Grid Data of Population Spatial Distribution 
As for the population spatial distribution data, this was obtained by combining the 

census data of Guangdong Province at the end of 2020 with the land use and economic 
development data. Differently from the demographic data of administrative regions, the 
population spatial distribution data extend the population statistics data to the spatial 
scale, making them an important data source that can be used to assess urban spatial de-
velopment. In this study, the statistical population data of Guangdong Province were 
used in combination with different characteristics of the region, and then the population 
density, traffic conditions, and digital elevation model of urban agglomeration were used 
conjunctly for correction. Finally, all the data were integrated into a 100 m grid to form a 
spatial distribution data graph for the population grid, as shown in Figure 5. 

 
Figure 5. Population grid data of PRD urban agglomeration.  
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2.3. Methods 
2.3.1. Data Fusion 

The method and technical route of this study are shown in Figure 6. 

 
Figure 6. Structure analysis diagram. 

Wavelet transform is an excellent algorithm for fusing different data [45]. As an im-
age fusion algorithm on the pixel-scale, wavelet transform makes use of the relationship 
between time and frequency in different images to enlarge the local features of the image. 
In image transformation, wavelet transform can focus on and analyze part of an image 
through a "time-frequency" dynamic observation window, which means that wavelet 
transform can unify different images in the time and frequency domains from decompo-
sition to fusion [76,77]. Therefore, wavelet transform can decompose the image into rela-
tively independent parts in both the time domain and frequency domain while retaining 
the details of the original image, which can ensure that the best observation is derived 
after image fusion [54]. The formula of wavelet transform is as follows: 

( , ) = ( ) ( ) = 1√ ( ) ( − )  (1)

 

where ( ) is the signal vector of the image, ( ) is the wavelet transform function,  is 
the wavelet transform scale,  is the translation of the image signal, and  is the param-
eters.  

2.3.2. Main Center Identification 
The urban main center is the area with the highest population agglomeration charac-

teristics within the urban space and is usually located in the center of a city. Moran's I can 
reflect spatial autocorrelation (the potential interdependence between observation data of 
some variables in the same distribution area) and is widely applied to identify the main 
center of an urban city [78,79]. Moran's I can be divided into global Moran's I and Anselin 
local Moran's I (LMI) [80]. The former generally reflects the spatial autocorrelation char-
acteristics of spatial computing units [81], and the latter reflects the degree of autocorre-
lation between a single unit and other spatial units [82,83]. Therefore, LMI is used in this 
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study to detect the main center of the Pearl River Delta urban agglomeration. The formula 
of LMI is as follows: 

= −
2 （ − ）=1， ≠  (2)

 

where  is the statistical points of  in LMI,  is the spatial weight matrix,  is the 
attribute value of point ,  is the average value of all attribute values, and  is the var-
iance of all the samples, whose formula is as follows： 

2 = ∑ ( − )2=1, ≠ − 1  (3)
 

After normalizing the spatial weight matrix , the following formula can be ob-
tained: 

=≠=1
 (4)

 

A positive value of  indicates that i has neighbors with similar values; therefore, 
segment i and its neighbors can form a cluster. To identify all of the segments with statis-
tically significant positive LMI values, a z-score is introduced. After introducing the  
score, statistics with similar  values can be obtained, as follows: ( ) = − ( )( ) (5)

 

where ( ) is 

( ) = − ,− 1  (6)( ) = ( ) − ( )  (7)

where the variable of LMI is the value after fusion of several different data of NTL, POI, 
and TMG data.  

2.3.3. Subcenter Identification 
The subcenter is an area with a high density of urban activities, although it is far from 

the main center of the city. From the perspective of geographic space, there is spatial cor-
relation and spatial heterogeneity between urban centers and non-urban centers, and 
GWR can solve this problem by embedding geographical location into regression param-
eters. The results of GWR include standardized residuals, local R², condition numbers, 
and explanatory variable coefficients. Among which, standardized residuals were used to 
measure the reliability of coefficient estimates, while local R² was used to indicate the fit 
degree of the regression model, and the condition number was used to evaluate multicol-
linearity, the explanatory variable coefficient indicates the degree of influence of explan-
atory variable on urban center. Since the urban sub-center is a certain distance from the 
main center of the city and has a high urban activity density, after determining the stand-
ardized residual, the local R², and the condition number, the urban subcenter was deter-
mined by the size of the explanatory variable coefficient. As an area with high urban ac-
tivity density and far from the main urban center, the urban subcenter can be determined 
by the size of the explanatory variable coefficient after determining the standardized re-
sidual, local R², and condition number. The formula of GWR is as follows: 
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= 0( , ) + =1 ( , ) +  (8)

 

where  stands for the density of urban activity, ,  stands for the spatial center, ( , ) stands for the intercept, ( , ) stands for the local estimation coefficient, 
and  stands for the residual value. Variables of GWR include dependent variables and 
explanatory variables, where the dependent variable is the calculated urban center value 
of LMI (geographically weighted dummy variables have been carried out to ensure that 
there is no multicollinearity), and the explanatory variable is the distance from the non-
urban center value to the urban center calculated by LMI. 

3. Results 
3.1. Polycentric Spatial Structure of Urban Agglomerations Identified by Different Data 
3.1.1. Polycentric Spatial Structure of Urban Agglomerations Identified by NTL Data 

The results were analyzed based on the spatial resolution of the original data, which 
was more refined than the administrative boundary. It can be seen from the NTL image 
in Figure 2 that the highest NTL values were mainly distributed in Guangzhou and Shen-
zhen, while the lowest NTL values were in the east and west sides of the PRD, such as in 
Zhaoqing, Kaiping, and Huizhou. This shows that there were significant differences in the 
development levels within the PRD urban agglomeration. The main center of urban ag-
glomeration, identified by the NTL data through LMI, is shown in Figure 7. Here, two 
main centers, Guangzhou and Shenzhen, were identified. The area of the main center is 
1118.14 square kilometers, accounting for 2.65% of the total administrative area. However, 
after GWR analysis, 10 subcenters were obtained, excluding the 2 main centers of Guang-
zhou and Shenzhen. The subcenters were mainly distributed in Zhuhai, Huizhou, Jiang-
men, and Zhongshan. The identified subcenters cover 686.29 square kilometers, account-
ing for 1.63% of the total administrative area. 

 
Figure 7. Main and subcenters of PRD identified by NTL data. 
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By analyzing the urban main center and subcenters of the PRD as identified by NTL 
data, it can be found that Guangzhou and Shenzhen, as first-tier cities, play a dominant 
role in the development of urban agglomeration, and the areas of their main centers also 
far exceed those of other urban subcenters. Besides Guangzhou and Shenzhen, the sub-
centers are mainly distributed in the municipal city centers, such as Zhuhai and 
Zhongshan. On the whole, the numbers of main centers and subcenters of the PRD urban 
agglomeration identified by NTL data depend on the light value of NTL data, which 
means that areas with high brightness and concentration of light values were identified 
as urban centers, such as the administrative centers of cities, while areas with low light 
values, such as the mountainous areas on the east and west sides of the PRD, were not 
identified as urban centers. 

3.1.2. Polycentric Spatial Structure of Urban Agglomerations Identified by NTL_POI 
(NP) 

By comparing Figures 2 and 3, it can be seen that the brightness value of NTL data 
gradually decreased from the urban center to the rural fringe, while the number of POI 
data points also shows an obvious downward trend from the center to the rural fringe. 
Therefore, it can be concluded that the higher the light value, the more concentrated the 
POI data in the region, which means that there is a strong spatial connection between NTL 
data and POI data. 

Wavelet transform highlights the characteristic parts of different original images 
through a time-frequency window, given that characteristic parts correspond to the abso-
lute value of the wavelet coefficient. This means that in the wavelet transform, as long as 
the absolute value of the wavelet coefficient is maximized, the featured parts of the trans-
formed image will be obvious [84]. As can be seen in the coefficient variance diagram of 
the wavelet transform, Figure 8a, the optimum scale for the fusion of NTL and POI data 
is 9. The fused diagram is shown in Figure 9. It can be seen from the figure that the highest 
values of NP (NTL_POI) were mainly concentrated in Guangzhou, Foshan, Shenzhen, 
Zhuhai, and some other places, among which Guangzhou and Foshan, and Shenzhen and 
Dongguan, showed trends of integration. There were also more high values in other mu-
nicipal administrative regions, which was more representative of the current situation of 
urbanization in the PRD [85]. 

  
(a) (b) 

Figure 8. Variance diagram of wavelet coefficients ((a) is the variance diagram of wavelet coeffi-
cients of NTL_POI, and (b) is the variance diagram of wavelet coefficients of NTL_POI_TMG). 
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Figure 9. Fusion results of NTL data and POI data in PRD. 

By analyzing the urban main center of the PRD, as identified by LMI Figure 10, two 
main centers were identified, Guangzhou and Shenzhen, with an area of 1913.36 square 
kilometers, accounting for 4.53% of the administrative area. Foshan and Dongguan were 
identified as the main center of the city by LMI, which differs from the main center iden-
tified by NTL data, due to the integrations of Guangzhou and Foshan, and Shenzhen and 
Dongguan. After carrying out the GWR analysis, 11 subcenters were identified besides 
Guangzhou and Shenzhen. The identified subcenters occupy a total area of 1001.73 square 
kilometers, accounting for 2.37% of the administrative area. The Shunde subcenter was 
identified by NP, which differs from the result of the NTL data. 

 
Figure 10. The urban main center and subcenter of PRD, identified by NP. 
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It can be concluded that the main centers and subcenters identified by NP after fusing 
with POI data were basically the same as those identified by NTL data, with Guangzhou 
and Shenzhen as the urban main centers and Dongguan and Zhuhai as the subcenters. 
However, compared with the main centers and subcenters identified by NTL data, the 
scopes and areas of the main centers and subcenters identified by NP were expanded. 
Furthermore, there were trends of integration between Guangzhou and Foshan, and 
Dongguan and Shenzhen. NP further helps identify the development state of urban infra-
structure by identifying the main centers and subcenters, which accurately reflects the 
development of the PRD urban agglomeration. 

3.1.3. Polycentric Spatial Structure of Urban Agglomerations Identified by 
NTL_POI_TMG (NPT)  

Although both NTL and POI data take urban land use and urban spatial function 
into consideration, different cities and clusters in urban agglomerations were spatially 
linked, which was mainly reflected in the exchange and interaction of populations, infor-
mation, and materials [86]. Therefore, the spatial structures of urban agglomerations can-
not be fully reflected by urban land use and urban spatial function alone, and further 
consideration should be given to the interactions between cities and clusters in urban ag-
glomerations. As can be seen from the coefficient variance diagram of the wavelet trans-
form, Figure 8b, the optimum scale for NTL, POI, and TMG fusion is 7. The fused diagram 
is shown in Figure 11. Here, the high values were more intensively distributed, and those 
of Foshan were integrated into those of Guangzhou. In addition, the high values were 
clearly concentrated in the Airport New City and the eastern coastal area. The central 
scope of the city can be preliminarily obtained from Figure 11. 

 
Figure 11. Fusion results of NTL, POI, and TMG data in PRD. 

By analyzing the urban main center of the PRD, as identified by LMI after data fusion. 
Figure 12, three main centers were identified, Guangzhou, Shenzhen, and Dongguan, 
with an area of 3078.19 square kilometers that accounts for 7.29% of the administrative 
area. As compared with NP, the NPT data identified one more main center, which was 
Dongguan, and the integration of Guangzhou and Foshan was increasingly clearer in the 
latter. After carrying out GWR analysis, 11 subcenters other than Guangzhou, Shenzhen, 
and Dongguan were identified. The identified subcenters comprise a total area of 935.48 
square kilometers, accounting for 2.22% of the administrative area. The NPT data identi-
fied one more urban subcenter than the NTL and NP data: Airport New City. 



Remote Sens. 2021, 13, 3639 15 of 25 
 

 

 
Figure 12. The main centers and subcenters identified by NPT. 

There are significant differences between the main centers and subcenters identified 
by the fusion of NP and TMG data and those identified by NTL and NP data. This was 
epitomized by Dongguan, which was previously identified as a subcenter and is now 
identified as a main center, and Airport New City, which is now identified as a subcenter. 
In addition, TMG data can show population interactions among cities and urban agglom-
erations, meaning a larger range of main center and subcenter areas were identified by 
NPT. Guangzhou and Shenzhen can thus form a new main center in the middle, sharing 
the functions of the main center, given their large urban populations. Moreover, a new 
urban subcenter was also formed in the Airport New City as a result of the significant 
flow of population. 

3.2. Comparison and Evaluation 
3.2.1. Competitive Trial 

In order to test the accuracy of this study, the polycentric spatial structure identified 
by the threshold method was compared with that obtained by this study [87]. The thresh-
old method refers to the absolute threshold method and the relative threshold method. 
The relative threshold method generally selects a unit high value greater than 90% in the 
study area as the threshold value, and the highest 10% of the area obtained was defined 
as the urban main center [20]. Therefore, compared with the absolute threshold method, 
the relative threshold method has the advantages of simpler operation and greater objec-
tivity [88]. Comparison results of the polycentric spatial structure identified via relative 
thresholds in this study are shown in Figure 13. 
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Figure 13. Comparison of urban polycenter results identified by different data and methods (the 
orange part represents the urban center identified by the relative threshold, the red part represents 
the main center identified by LMI, and the yellow part represents the city subcenter identified by 
GWR). 

By analyzing Figure 13, we see that the polycentric spatial structure identified by the 
relative threshold method with different data sets not only fails to distinguish the main 
center from the subcenter, but also has a small range and unclear boundary. Furthermore, 
since the different data sets all have the basic attributes of NTL data, the urban centers 
identified by the relative threshold method are primarily airports and ports. As a result, 
the selected high value of 10% immediately identifies the area with the highest nighttime 
light value as the urban center and cannot accurately identify the urban polycenter.  

By comparing the results for the urban polycentric spatial structure identified by LMI 
and GWR with those identified with different data sets, we see that, although different 
data sets can all identify the main centers and subcenters, the identified centers differ sig-
nificantly. For example, the boundary outline of the main center identified using NTL data 
is not complete, with clear jagged sections. Moreover, part of the urban core area is not 
included in the urban main area, and although the boundary outline of the polycentric 
spatial structure identified by NP was effectively revised, and some regions such as 
Guangzhou, Foshan, Shenzhen, and Dongguan have shown trends of integration, only 
the polycentric urban spatial structure identified by NPT was relatively complete, in terms 
of both the central boundary contour and the coverage range. Furthermore, the polycen-
tric spatial structure identified by NPT adheres more closely to the actual urban develop-
ment situation in the PRD in terms of both spatial scope and development trend. 
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The numbers and areas of the urban main centers and subcenters identified by NTL, 
NP, and NPT are shown in Table 2. The numbers of main centers identified by different 
data sets were 2, 2, and 3, and the numbers of subcenters identified by different data sets 
were 10, 11, and 11, respectively. Among these, the area of the main center identified by 
NPT was the largest, followed by NP and NTL, while the area of the subcenter identified 
by NP was the largest, followed by NPT and NTL. 

Table 2. Comparison of main centers and subcenters. 

 Main Centers 
(km²) 

Area/% Number of 
Main Menters 

Subcenters 
(km²) 

Area/% Number of Sub-
centers 

NTL 1118.14 2.65% 2 686.29 1.63% 10 
NP 1913.36 4.53% 2 1001.73 2.37% 11 

NPT 3078.19 7.29% 3 935.48 2.22% 11 

The spatial structures identified by the NTL, NP, and NPT data types were similar. 
The high values were mainly distributed in the vicinity of Guangzhou, Shenzhen, 
Dongguan, and Zhuhai, while the high values in other areas were mainly distributed in 
the urban center, and the low values were mainly distributed in the east and west sides of 
the PRD. Although the distribution characteristics of the high and low values identified 
by the three types of data all show a significant downward trend from urban center to 
rural fringe, the centers identified by different data were very different. For example, since 
there was only a single light attribute in the NTL data, there were obvious differences in 
light brightness between the main urban road network and urban areas, resulting in many 
light holes. Moreover, the fragmentation of inner space in urban agglomerations will af-
fect the identification of urban centers. However, after the fusion of NP and POI data, 
many light holes emerged in the POI data. The amplification of the density attributed to 
the POI data narrows the difference between high and low values after the fusion with 
NTL images, which means the NP images were better equipped to explain the urbaniza-
tion differences within urban agglomerations. Furthermore, after the fusion of NPT with 
TMG data, the range of high values within urban agglomerations was greater than that 
which was derived after NTL and NP were fused. This is because, as a static form of ex-
pression, NTL and POI data only reflect the urban land and function, but the communi-
cation between different cities and clusters in the urban agglomeration was dynamic. 
Therefore, the fusion of TMG data greatly strengthens the internal spatial connection 
within urban agglomerations, which makes the spatial structure of urban agglomerations 
more dynamic and complete. 

3.2.2. Precision Validation 
It is very difficult to determine the accuracy of urban polycentric structure identifi-

cation. In this regard, this study uses the spatial distribution data of the permanent pop-
ulation at the end of 2020 to conduct a consistency test with urban polycentricity. This is 
because there is a significant correlation between the concentration of permanent popula-
tion and urban centers, which means that in large cities, urban centers are often also cen-
ters of the urban population [89]. The spatial distribution data of permanent populations 
are derived from statistical data, which are spatialized census data with greater accuracy. 
A fine spatial pattern of population distribution can be obtained through the grid pro-
cessing of spatial population distribution data [90]. Consistency tests were carried out be-
tween the spatial distributions of permanent-resident populations and the main centers 
and subcenters identified by LMI and GWR, and the verification results are shown in Ta-
ble 3.  
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Table 3. Confusion matrix. 

Data 
Relative Threshold LMI + GWR 
OA Kappa OA Kappa 

NTL 16.38% 0.018 79.33% 0.6264 
NP 18.48% 0.033 88.17% 0.7911 

NPT 19.72% 0.037 92.48% 0.8871 

It can be seen from Table 3 that there were significant differences in the identification 
accuracies of main centers and subcenters when using different methods. Therefore, com-
pared with the relative threshold method, the accuracy of the LMI and GWR method in 
identifying polycentric spatial structures is more than 60% better, meaning the LMI+GWR 
method has a higher accuracy than the threshold method. From the perspective of the 
spatial distribution accuracy of polycentric cities identified via different data sets, NPT 
identified main centers and subcenters most accurately, followed by NP, and finally NTL. 

To sum up, on the one hand, compared with the threshold method, the LMI+GWR 
method can identify the urban polycentric spatial structure more accurately. On the other 
hand, after fusion with POI data, NTL data can improve the integrity of the internal spatial 
structure of the urban agglomeration, and after continuous fusion with TMG data, NTL 
data can strengthen the spatial dynamic connection among cities and clusters within the 
urban agglomeration, which makes the identification of polycentric spatial structures 
more accurate. 

4. Discussion 
NTL data are amongst the most important for the study of urban space, and although 

they can represent its distribution characteristics by reflecting the distribution of high and 
low values of light brightness, the characteristics of NTL data often make the study results 
prone to error [44]. Therefore, researchers have tried to solve this problem via data fusion 
[53]. It has been shown that the fusion of POI and NTL data can have very good effects, 
where the accuracy of urban polycentric identification can be significantly improved [43]. 
By analyzing the characteristics of NTL and POI data in urban space, this study further 
incorporates population dynamics data while taking into account the static space within 
the urban agglomeration. The main centers and subcenters of the urban agglomeration 
identified by this study are combined with dynamic and static forces, which provides a 
significant advantage in identifying the polycentric spatial structure of the city. 

4.1. Comparison of Experimental Results and Planning Results 
In order to evaluate the effectiveness of the implementation of urban spatial overall 

planning, this study evaluates the accuracy of the polycentric spatial structure identifica-
tion results for the PRD urban agglomeration and compares them with the overall plan-
ning results of the PRD. The overall planning proposition was to make the PRD urban 
agglomeration into an innovative and advanced manufacturing center with a world influ-
ence, with a spatial pattern of "two regional main centers, one regional subcenter, six pro-
vincial main centers and several provincial subcenters". In addition, several regional de-
velopment axes and poles should be formed. 

In total, three main centers and 11 subcenters were identified in the PRD urban ag-
glomeration, with the highest identification accuracy reaching 92.48%. The difference be-
tween urban spatial overall planning and the actual development of urban agglomeration 
can be judged via a comparison with the overall planning of the PRD. It can also be con-
cluded after a comparison that the main centers of the urban agglomeration are Guang-
zhou and Shenzhen, and the main center of Guangzhou and the subcenter Foshan are 
developed in an integrated way, forming a regional development circle, which is com-
pletely consistent with the overall planning approach. However, although a third main 
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center has been identified in this study, it is described as a subcenter in the planning re-
port. The reason for this is that the regular urban communication between the two main 
centers of Guangzhou and Shenzhen has resulted in the formation of a new urban center 
in the middle of the two cities, which adopts the function of the original urban center. 

The overall planning report identifies a main center, a subcenter, a third-level center, 
and a fourth-level center. The main center refers to the main center of the PRD urban ag-
glomeration—Guangzhou and Shenzhen; the subcenter refers to the subcenter—Zhuhai; 
the third-level center refers to the prefectural-level city of the PRD-Zhongshan, 
Dongguan, etc.; the fourth-level center is an area with the characteristics of a city center 
minus those of an urban center in a prefectural-level city. Only the main center and sub-
center were identified in this study. After comparing the subcenter identification results 
obtained in this study with the subcenter, third-level center, and fourth-level center iden-
tification results proposed in the overall planning report, we see that the subcenters of the 
urban agglomeration identified by NPT (using LMI and GWR) in this study included not 
only all the subcenters in the overall planning report, but also the areas far from the main 
center in the east and west of the city and the Airport New City, except for the Kaishan 
subcenter. Therefore, it can be concluded that the polycentric spatial structure identified 
in this study is consistent with the overall planning report, from the perspective of both 
the number of identified main centers and subcenters and the distribution range of the 
centers. The discussion and the comparisons with the overall planning further demon-
strate the high accuracy of the polycentric spatial structure identified in this study (Figure 
14). 

 
Figure 14. Discussion and comparison of experimental results and overall planning. 

4.2. Study Contribution 
The identification and evaluation of a traditional polycentric spatial structure mainly 

rely on demographic survey data and socioeconomic development data, which are both 
highly subjective [20]. Furthermore, instead of focusing on the evaluation of identification 
results and on whether they meet planning requirements, traditional studies pay more 
attention to the initial acquisition of identification results [91,92]. Generally speaking, 
there is still a lack of scientific and objective methods for the evaluation of results of urban 
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polycentric space planning. Based on the fusion of NTL data, POI data, and TMG data, 
this study identifies the polycentric spatial structure of the PRD urban agglomeration, 
then accurately evaluates the polycentric spatial structure with experimental comparisons 
and accuracy verifications, and finally compares the evaluation results with the overall 
plan of the PRD to objectively evaluate whether the urban spatial planning is consistent 
with the actual development. In conclusion, this study proposes an accurate and reason-
able method with which to evaluate the effects of urban spatial planning implementation. 

As the spatial development of urban agglomerations includes obvious regional im-
balance, one of the purposes of spatial planning of urban agglomerations is to formulate 
reasonable spatial development policies in order to reduce this imbalance, such as the 
series of spatial planning policies being carried out by China, including urban integration 
development, regional development, etc. [93,94]. In the spatial development of urban ag-
glomeration, there is regional developmental inequality between main centers and sub-
centers. This inequality is manifested in the significant difference between urban agglom-
eration and urban expansion [95], which makes it difficult to implement policies such as 
regional development and integrated development. Regional spatial development poli-
cies can balance such significant differences, which makes them very important in urban 
system decision-making and spatial planning [96]. This study further seeks to accurately 
identify the polycentric spatial structure of the urban agglomeration, and finally compares 
the results with those of urban agglomeration spatial planning, which is helpful in not 
only understanding the differences between actual development status and the spatial 
planning of the PRD urban agglomeration but also makes important practical contribu-
tions to the formulation of regional spatial development policies. 

4.3. The Deficiencies and Prospects of the Study 
There are still some limitations in this study and some possibilities for further re-

search. First of all, as a form of population positioning data obtained via Tencent apps, 
although Tencent migration data can objectively reflect movement changes in the popu-
lation over a certain period of time, Tencent migration data cannot reflect everyone's mo-
bile information, especially those of the elderly and children, given that the popularity of 
smart phones is not very widespread [45]. Secondly, in the Discussion of this study, alt-
hough the identification results of polycenters are compared with the results of the overall 
planning, the planning results only represent a location on a map without containing ac-
tual vector information. Therefore, it is necessary to verify the consistency between the 
vector information obtained by field confirmation, including the boundary, and the iden-
tified polycentric spatial structure, in order to further evaluate the accuracy of this study. 

5. Conclusions 
Polycentric spatial structure is an inevitable phenomenon arising with rapid urban 

development. In this study, NTL data, POI data, and TMG data were fused to identify the 
polycentric spatial structure of urban agglomeration. The accuracy of the polycenter iden-
tification by NTL data was 79.33%, and the Kappa value was 0.6264. After fusion with POI 
data, the accuracy of polycentric identification by NTL data became 88.17%, and the 
Kappa value became 0.7911. After continuous fusion with TMG data, the accuracy of pol-
ycentric identification became 92.84%, and the Kappa value became 0.8871. This study 
further compares the results identified here with the results identified by the relative 
threshold method and finally discusses and compares with the overall planning, which 
verifies the correctness of this study, and makes the identification and evaluation of pol-
ycentric urban spatial structure more objective. Therefore, the study method can also be 
extended to other rapidly developing urban spatial structures. In general, this study con-
cludes a theoretical approach that can effectively evaluate the polycentric spatial structure 
of urban agglomerations through experimental demonstration and analysis, and since this 
theoretical approach can compare the difference between the actual development of urban 
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agglomerations and the planning scheme, which not only plays a significant role in pro-
moting the research on the spatial structure of urban agglomerations, but also provides a 
new method and path for the research on the spatial structure of urban agglomerations. 

The solution to the problem of unbalanced spatial development within urban ag-
glomerations is essentially a spatial strategy of urban planning, which involves optimiz-
ing the allocation of various elements of urban agglomerations. Spatial balance in devel-
opment is an important part of the high-quality development of urban agglomerations 
and the formulation of a regional spatial development strategy. By comparing the evalu-
ated polycentric spatial structure of the PRD urban agglomeration with the existing over-
all planning, it can be found that although the implementation effect of the overall plan-
ning is good, the government still needs to strengthen the establishment of the eastern 
and western regions with weak urban development strength in the agglomeration thus as 
to better complete the development strategy of the polycentric urban agglomeration men-
tioned in the overall planning. Last but not least, by discussing the fusion of multi-source 
big data to identify the urban agglomeration polycentric spatial structure that develops 
with rapid urbanization, this study identifies the distribution characteristics of polycentric 
spatial structure by combining dynamic with static urban space. This has important prac-
tical value when evaluating the results of urban planning and further formulating reason-
able regional spatial development policies for the efficient development of urban agglom-
erations. 
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