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Abstract: Quantitative precipitation prediction is essential for managing water-related disasters,
including floods, landslides, tsunamis, and droughts. Recent advances in data-driven approaches
using deep learning techniques provide improved precipitation nowcasting performance. Moreover,
it has been known that multi-modal information from various sources could improve deep learning
performance. This study introduces the RAIN-F+ dataset, which is the fusion dataset for rainfall
prediction, and proposes the benchmark models for precipitation prediction using the RAIN-F+
dataset. The RAIN-F+ dataset is an integrated weather observation dataset including radar, surface
station, and satellite observations covering the land area over the Korean Peninsula. The benchmark
model is developed based on the U-Net architecture with residual upsampling and downsampling
blocks. We examine the results depending on the number of the integrated dataset for training.
Overall, the results show that the fusion dataset outperforms the radar-only dataset over time.
Moreover, the results with the radar-only dataset show the limitations in predicting heavy rainfall over
10 mm/h. This suggests that the various information from multi-modality is crucial for precipitation
nowcasting when applying the deep learning method.

Keywords: precipitation prediction; weather observations; deep learning approach

1. Introduction

Weather observation provides the state of the atmosphere with various types of
information from in situ and remote measurements. Surface observations are from the
in situ sensors that provide direct atmospheric state observations such as temperature,
humidity, or pressure, while many remote sensing data from radar and satellites provide
radiance and reflectivity measurements over distance. Historically, observations have been
used to analyze the current atmospheric state or the past weather phenomenon. However,
recent advances in deep learning techniques provide data-driven weather forecasting using
weather observations and show great potential for improving forecasting performance.

Weather forecasting using deep learning approaches is an interesting research topic in
the weather and climate community and the computer vision community since weather
data are considered a typical spatial-temporal dataset related to many applications in image
prediction. Therefore, there have been many studies related to weather forecasting using
deep learning approaches, and the famous Conv-LSTM architecture [1] is developed to
predict future precipitation using radar observations in the Hong Kong area and is applied
to various image prediction applications.

However, quantitative precipitation prediction has still been challenging because the
physical process of clouds and precipitation should be considered from the particle for-
mation in the microscale to the precipitation system within the synoptic scale for accurate
precipitation prediction. Due to the limited representative resolution of observations and
model simulations, understanding clouds and precipitation are difficult. According to
their physical conditions, various types of clouds and precipitation microphysics parame-
terization methods predict clouds and precipitation processes in the numerical weather
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forecasting model [2]. Since most numerical models have limitations for predicting cloud
and precipitation in 1–3 h due to the cold start of the physical process, radar observation
has been widely used for the nowcasting based on the extrapolation method. However,
extrapolation methods do not consider the lifecycle of the precipitation system. Recently,
there are attempts to overcome the limitations of the extrapolation method [3–6]. Ref-
erence [6] proposed the model to predict the growth and decay of vertically integrated
liquid based on an autoregressive integrated process and showed improved prediction
skill scores compared to the conventional method. Reference [7] blended the radar-based
nowcasting with the numerical weather prediction model, and the results showed that
prediction skills with blending techniques are outperformed compared with radar-only
nowcasting and numerical weather forecasts with data assimilation. Moreover, recent
advances in data-driven approaches using deep learning also provide the great possibility
to predict precipitation with improved prediction skills. Google’s MetNet [8] predicts
precipitation over the continental United States up to 8 h from the past radar and satellite
observations using deep neural networks. The MetNet outperforms the prediction results
from the operational numerical weather prediction model, High-Resolution Rapid Refresh
(HRRR), of the National Oceanic and Atmospheric Administration (NOAA). The SmaAT-
Unet [9], the Convcast [10], the Rainnet [11], and the Rainbench [12] are also proposed
for precipitation nowcasting. The SmaAT-Unet uses the UNet architecture with attention
modules and depthwise-separable convolutions, and the input data are the radar maps
over the Netherlands. The Convcast uses ConvLSTM architectures, and the Integrated
Multi-satelliteE Retrievals for Global precipitation measurement (IMERG) dataset was used
for the input data. The results from them were all reasonable for rain or no-rain separations
and light rainfall. However, the results for the heavy rain rate over 10 mm/h showed
the significant limitation for predictions in advance. Moreover, heavy rainfall occurrence
numbers a few, providing limited information for physical understanding.

Recently, the multimodal deep learning technique is considered for rich and di-
verse information from the various data sources by combining them into the training
dataset [13–15]. The multimodal knowledge from weather and climate observations is
also used for data-driven weather analysis and predictions in many studies [16–19]. Refer-
ence [16] introduces the input data structures composed of Delay-Doppler maps (DDM)
and all satellite receiver status (SRS) parameters for retrieving ocean wind speed. They
proposed a heterogeneous multimodal deep learning method, and they compared the
heterogeneous model to the homogeneous multimodal approach, which extracts the fea-
tures from each data source using only a multilayer perceptron (MLP). Their proposed
heterogeneous multimodal approach uses a convolutional neural network (CNN) and two
MLPs for extracting features from DDM, SAS parameters, and wind speed, respectively.
The results showed that the heterogeneous approach outperformed the homogeneous
approaches, showing improved prediction accuracy at 7.7%. Reference [17] proposed
the LightningNet for lightning nowcasting from three different types of observations: a
geostationary meteorological satellite, Doppler weather radar network, and CG lightning
location system. These three different sources of the dataset are interpolated to the uniform
resolution. The lightningNet has an encoder and decoder network with three-dimensional
convolutional layers, and the prediction results showed that the performance is improved
more than 50% when all three data sources are used for training. Reference [18] proposed a
multimodal semisupervised deep graph learning framework for precipitation nowcasting.
They merged different data from meteorological and non-meteorological observations,
including radar echo maps, air humidity images, satellite images, temperature images,
a topographic map, and available precipitation maps. They also showed reduced mean
squared errors with multiple data sources such as input data for training. Reference [19]
introduced a Geoscience Data Integration Platform (GeoDIP) to manage big geoscience data
based on high-performance computing clusters, and the integrated data from satellite and
reanalysis products are used to predict precipitation based on deep learning approaches.
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The results showed that the performance with the integrated dataset does not decline as
much as the results, with only one dataset when prediction time goes by.

This study proposed the fusion dataset and the benchmark model for rainfall predic-
tion based on a deep learning approach. The precipitation prediction using multimodal
dataset is also performed in [12] that used three different types of weather data, including
the simulated satellite data, numerical reanalysis data, and IMERG global precipitation
estimates. Since RainBench focuses on global precipitation forecasting, their multimodal
information covers the global area, and the training dataset is converted into the 5.625◦

spatial resolution images. Comparing with their research, the RAIN-F+ uses the real-world
dataset from weather observation data at higher spatial resolutions covering the land area
over the Korean peninsula.

We aim to address the following goals in our study: (1) to introduce the integrated
real-world weather observation dataset named RAIN-F+ for rainfall prediction; (2) to
propose the rainfall prediction algorithm based on the U-Net with residual blocks; (3)
and to evaluate the prediction performance according to the number of modalities using
RAIN-F+ dataset.

2. Data Descriptions

The fusion dataset for this study is named RAIN-F+. It comprises four types of
weather observation data related to precipitation:

• The operational radar system over the Korean Peninsula;
• The surface weather observations provided by Korea Meteorological Administration

(KMA);
• The version 6 of IMERG products from the National Aeronautics and Space Adminis-

tration (NASA);
• The Himawari-8 satellite from Japan Meteorological Agency (JMA).

2.1. Radar Observations

A meteorological radar system is primarily designed to measure the precipitation
location, intensity, and motion by detecting the signals reflected back to the radar by
precipitating particles in the atmosphere. The radar products for this study are provided by
KMA. The KMA has operated a weather radar network composed of S-band weather radars.
The radar coverage is represented in Figure 1a. In this study, the Hybrid Surface Rainfall
(HSR) data are used to train the benchmark model. Moreover, we used HSR products as a
reference dataset for model evaluation because the radar observation provides the most
accurate precipitation measurements. The HSR developed by [20] is a 2D radar image
generated using dual-polarization parameters and the hybrid scan method. The HSR
consists of the lowest radar bins that are immune to ground clutter and non-meteorological
echoes. The radar reflectivity fields have a spatial resolution of 500 m with 2305 pixels in
longitude and 2881 pixels in latitude and a temporal resolution of 5 min.

Figure 1. The observation station location and dataset coverage for (a) KMA radar network, (b) surface observations
stations, and (c) the RAIN-F+ dataset.
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2.2. AWS and ASOS Observations

The Automatic Weather Station (AWS) and Automatic Surface Observing System
(ASOS) are the surface observation stations operated by the KMA. The station locations
are in Figure 1b. There are 102 ASOS and 510 AWS stations. As shown in the figure, the
AWS and ASOS stations are irregularly located over the land area. The average spatial
resolution is approximately 13 km, and the temporal resolution is one minute. The common
atmospheric state variables observed from both stations are temperature, wind direction
and speed, rain rate, surface pressure, sea level pressure, and humidity. The ASOS has
observed more variables such as solar radiation and evaporation quantity. This study only
used common variables because we considered AWS and ASOS data as the same surface
observation category for the RAIN-F+ dataset. Among the common variables, surface
and sea level pressure observations are excluded for the RAIN-F+ dataset because both
pressure observation have more than 58% of missing values among the total observations,
while the ratio of those from other variables is mostly less than 0.4%. The spatial resolution
of RAIN-F+ is 0.1◦, which is comparable to the approximated average resolution of surface
stations. Since surface rain rate is accumulated for every hour, the temporal resolution of
surface observation for the RAIN-F+ dataset is one hour.

2.3. IMERG Products

The IMERG is intended to merge and intercalibrate the Global Precipitation Measure-
ment (GPM) satellite constellation [21]. The GPM mission deploys a GPM core satellite
led by NASA and the Japanese Aerospace Exploration Agency (JAXA) and 11 microwave
satellites from several international partners, including the European Organization for
the Exploitation of Meteorological Satellites, Megha-Tropiques satellite provided by the
Centre National D’Etudies Spatiales of France, and the Indian Space Research Organisation.
Microwave satellites have been used to measure precipitation from space since the 1970s
because microwave signatures have physical relations with precipitating particles [22–25].
The IMERG product provide precipitation measurements with the physical relations on
a global scale. The spatial resolution is 0.1◦, and the temporal resolution is 30 min. The
IMERG has three different types of products, ‘Early’, ‘Late’, and ‘Final’, according to their
data distribution time. In this study, we used ‘Late’ products for RAIN-F+ data fusion.

2.4. Himawari Products

The Himawari-8 satellite is a geostationary satellite launched in October 2014. The
Advanced Himawari Imager (AHI) is a payload of the Himawari satellite with a visible
and infrared (IR) sensor of 16 channels. We used Himawari-8 gridded data covering
85◦ E–205◦ E and 60◦ S–60◦ N area distributed by the Center for Environmental Remote
Sensing(CEReS), Chiba University, Japan [26,27]. The spatial resolution is 0.02◦ (approx-
imately 2 km), and the temporal resolution is 10 min. Among the 16 channels of AHI,
we used Brightness Temperature (TB) from two IR channels of 6.2 µm and 10.4 µm. The
channel at 6.2 µm is known for an upper-level water vapor channel, and the channel at
10.4 µm is known for a Window Channel.

2.5. RAIN-F+ Overviews

The RAIN-F+ is a new version for RAIN-F [28,29] that is a Radar, AWS and ASOS,
and IMERG Network fusion dataset for rainfall prediction. The geostationary satellite
observations are added to the RAIN-F dataset, and pressure observations are excluded.
Since the RAIN-F+ dataset includes atmospheric variables and TB products, it can also be
used to retrieve atmospheric variables from satellite observations or to predict atmospheric
states as well as precipitation. The RAIN-F+ dataset covers the land area over the Korean
peninsula, as shown in Figure 1c. The observation data were collected for three years, from
2017 to 2019. In Korea, Jang-Ma and typhoons are the primary factors occurring heavy
rainfall in the summer season. During these three years, the number of typhoons that
affected the Korean Peninsula numbered three, five, and seven in 2017, 2018, and 2019,
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respectively. The average precipitation rates from the Jang-Ma are 291.2 mm, 283.0 mm, and
291.1 mm for 2017, 2018, and 2019, respectively. The number of typhoon cases increased
while the precipitation rate from Jang-Ma decreased compared with the average annual
precipitation from Jang-Ma. Figure 2 showed the histograms of rain rate from IMERG,
radar, and surface observations in the RAIN-F+ dataset. The three datasets have a different
number of pixels for each rainfall, and the radar product has more pixels for heavy rains
greater than 10 mm/h. Since wintertime precipitation over Korea includes the snow, we
used the data from spring (April) to fall (October). The one example of the RAIN-F+ dataset
at 12 UTC on 30 August 2018 is in Figure 3. Since the four data sources have different spatial
and temporal resolutions, coverage, data types, and map projection, it is necessary to unify
them. We interpolated them into the gridded 2D images by finding the nearest locations
with the temporal resolutions of one hour. The gridded subset image sizes of radar, surface
observation, and Himawari are 960× 960 pixels, 30× 30 pixels, and 120× 120 pixels. The
size of the IMERG subset image is the same as the surface observations.

Figure 2. The RAIN-F+ dataset examples of nine variables at 12 UTC on 30 August 2018.
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Figure 3. The number of pixels for each rain rate from IMERG, radar, and surface observations in
RAIN-F+ dataset.

3. Methodology
3.1. Model Architecture

The benchmark model for the RAIN-F+ dataset is developed based on the U-Net
architecture with residual upsampling and downsampling blocks. The U-Net is firstly
developed for a segmentation task for biomedical image [30] and is considered as an
efficient deep learning model for precipitation nowcasting in many studies [9,11,19,31].
The proposed model architecture is in Figure 4, and the detailed structure of residual blocks
is in Figure 5. The U-Net is a specific encoder-decoder network with a skip connection. The
skip connection in the U-Net can handle the spatial information by concatenating the high-
resolution information from the downsampling blocks with the low-resolution information
from the upsampling blocks using an alternative path to maximize the information between
layers. In addition, the residual blocks are applied to train the deeper network effectively
and to avoid gradient banishing problem [32]. The model is developed using the open-
source deep learning framework, PyTorch.

Figure 4. The RAIN-F+ benchmark model architecture.
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Figure 5. The detailed description of (a) an downsampling block and (b) a upsampling block.

3.2. Construction of Training and Test Dataset

The integrated nine variable images from multiple sources were used as an input
dataset. Since each variable has different spatial resolutions, we resized them into the same
resolution with three different types: 256× 256 (1.3 km), 64× 64 (5.2 km), and 32× 32
(10.4 km). The interpolation is conducted based on the nearest interpolation method, and
the interpolated images for radar and Himawari-8 images are shown in Figure 6. The
surface observations and IMERG have the lowest resolution; the pixel number is only
changed after interpolation. The multisource sequential data of the past 3 h are used to
predict precipitation for the next one hour. The input data for each variable contain three
channels by stacking the time-sequential images. The ‘early fusion’ method is used for
multi-modal data fusion, which is introduced in [13,33]. The early fusion method is a
simple concatenated based method to extract multi-modal features for training and shows
comparative performances. After the temporal image stacking, the nine variables with
three channels are concatenated at the starting time of the training process. The output of
the model is a single radar reflectivity map one hour later than the last input sequential
image at the same resolution as the input data. Since the purpose of the prediction is to
know the precipitation rate for the next one hour, we calculated the rain rate from radar
reflectivity using the Z–R relationship from Marshall–Palmer (MP) equation, expressed
as follows:

Z = 200R1.6 (1)

where Z is radar reflectivity in linear units (mm6/m) and R is the rain rate in mm/h. This
Z–R relationship is typically used for the radar network over the Korean Peninsula [34].
For the comparisons, the Z–R relationship for the convective rain (Z = 300R1.4) is tested,
and we confirmed that the trends of predicted scores do not show significant differences
among the compositions of the dataset. This study does not propose to find the proper
Z–R relations. Thus, we decided to use the MP equation to calculate the rain rate for this
study. The observed data from 2017 to 2018 year are used for the training process, and the
data from the 2019 year are used for the validation process. In the training process, the
data augmentation techniques are used to multiply the number of training data. Among
the augmentation techniques, geometric transformation techniques such as horizontal flip,
vertical flip, and combined horizontal and vertical flip are applied, and the pixel value is
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maintained to keep the physical meaning. The input values except the variables related to
the rain rate are normalized within the range of 0 and 1. Since the rain rate distribution is
significantly uneven and most rain rate values are concentrated in no-rain and light rain
regions, which is close to zero, the rain rate is excluded for normalization.

Figure 6. The input images at different resolutions for the radar and Himawari-8 data.

3.3. Model Evaluation

The loss function for the training process used the SmoothL1Loss in the PyTorch
library, which is less sensitive to outliers than mean squared error loss. The SmothL1Loss
can be observed as a combination of L1-Loss and L2-loss. It behaves as a L1-loss when the
absolute difference between prediction (P) and true (T) values is high, while it behaves as
L2-loss when the difference is close to zero. The equation is expressed as follows.

Loss =

{
0.5× (P− T)2/β, i f |P− T| < β

|P− T| − 0.5× β, otherwise.
(2)

We used five metrics for model evaluation: mean absolute error (MAE), Pearson
product-moment correlation coefficients (R2), precision, recall, and F1-score. The MAE and
R2 are used for performance evaluations in order to compare the predicted and reference
rain rates from the perspective of the rain rate regression problem. The precision, recall,
and F1-score are used for the evaluations by measuring a binary-classified result with
three different rain rate thresholds, 0.1, 1.0, and 5.0 mm/h. The F1-score is expressed
as following:

F1 = (2× precision× recall)/(precision + recall) (3)

where precision is the ratio of relevant results, while recall is the ratio of correctly classified
results among the predicted results. Since the precision-recall trade-off is a well-known
problem, F1-score provides a single score considering both precision and recall.
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4. Results and Discussion

We conducted eight experiments for three input resolutions to evaluate the fusion
dataset depending on the types of fusion dataset for training. Because the weather observa-
tions for this study have different spatial resolutions, the effect of other spatial resolutions
is examined for the prediction performance of training with the multi-modal information.
The best models for each experiment are decided with the trained model with the lowest
validation loss within 50 epochs. The evaluation results of each experiment are shown in
Tables 1–3.

Table 1. Evaluation results for precipitation prediction in next one hour with the resolution of 256× 256.

Data Set
Greater than 0.1 Greater than 1.0 Greater than 5.0

MAE ↓ R2 ↑ Precision Recall ↑ F1-Score ↑ Precision ↑ Recall ↑ F1-Score ↑ Precision ↑ Recall ↑ F1-Score ↑

Ra 0.922 0.616 0.669 0.741 0.703 0.735 0.483 0.583 0.690 0.024 0.047
Ra+Im 0.907 0.627 0.660 0.742 0.699 0.709 0.534 0.609 0.538 0.131 0.211
Ra+Sf 0.930 0.617 0.649 0.757 0.699 0.747 0.468 0.576 0.687 0.011 0.021
Ra+Hi 0.907 0.622 0.665 0.746 0.703 0.733 0.502 0.596 0.701 0.054 0.100

Ra+Im+Sf 0.911 0.622 0.640 0.768 0.698 0.760 0.476 0.586 0.631 0.059 0.108
Ra+Im+Hi 0.920 0.624 0.680 0.732 0.705 0.777 0.449 0.569 0.610 0.053 0.098
Ra+Sf+hi 0.931 0.617 0.656 0.752 0.700 0.749 0.471 0.578 0.654 0.012 0.023
RAIN-F+ 0.914 0.621 0.647 0.762 0.700 0.763 0.477 0.587 0.627 0.035 0.066

Table 2. Evaluation results for precipitation prediction in next one hour with the resolution of 64× 64.

Data Set
Greater than 0.1 Greater than 1.0 Greater than 5.0

MAE ↓ R2 ↑ Precision Recall ↑ F1-Score ↑ Precision ↑ Recall ↑ F1-Score ↑ Precision ↑ Recall ↑ F1-Score ↑

Ra 0.910 0.629 0.675 0.737 0.704 0.749 0.485 0.589 0.664 0.045 0.085
Ra+Im 0.918 0.624 0.634 0.766 0.694 0.810 0.408 0.542 0.658 0.025 0.048
Ra+Sf 0.918 0.624 0.660 0.748 0.701 0.753 0.480 0.587 0.680 0.031 0.060
Ra+Hi 0.909 0.620 0.667 0.743 0.703 0.734 0.502 0.596 0.684 0.031 0.060

Ra+Im+Sf 0.910 0.624 0.645 0.760 0.697 0.740 0.500 0.597 0.502 0.116 0.189
Ra+Im+Hi 0.905 0.619 0.652 0.753 0.699 0.788 0.424 0.552 0.568 0.055 0.100
Ra+Sf+hi 0.931 0.615 0.659 0.750 0.702 0.711 0.535 0.610 0.658 0.036 0.068
RAIN-F+ 0.906 0.623 0.654 0.749 0.698 0.722 0.523 0.607 0.523 0.141 0.222

Table 3. Evaluation results for precipitation prediction in next one hour with the resolution of 32× 32.

Data Set
Greater than 0.1 Greater than 1.0 Greater than 5.0

MAE ↓ R2 ↑ Precision Recall ↑ F1-Score ↑ Precision ↑ Recall ↑ F1-Score ↑ Precision ↑ Recall ↑ F1-Score ↑

Ra 0.915 0.624 0.659 0.742 0.698 0.750 0.483 0.588 0.644 0.037 0.070
Ra+Im 0.905 0.620 0.660 0.745 0.700 0.750 0.502 0.602 0.661 0.041 0.077
Ra+Sf 0.904 0.622 0.664 0.737 0.699 0.703 0.539 0.610 0.590 0.108 0.183
Ra+Hi 0.928 0.618 0.665 0.737 0.700 0.762 0.475 0.585 0.640 0.003 0.006

Ra+Im+Sf 0.907 0.623 0.662 0.743 0.700 0.741 0.504 0.600 0.658 0.061 0.111
Ra+Im+Hi 0.910 0.630 0.688 0.721 0.704 0.737 0.518 0.608 0.325 0.018 0.035
Ra+Sf+hi 0.919 0.620 0.678 0.727 0.702 0.753 0.485 0.590 0.646 0.031 0.059
RAIN-F+ 0.908 0.630 0.655 0.746 0.698 0.773 0.476 0.589 0.571 0.083 0.145

We also evaluated the prediction performance over time steps, and the F1-scores of
predicted results are represented in Figure 7. This figure showed that the F1-scores are
not significantly different for the prediction results after one or two hours, depending
on the fused of the dataset. However, after three hours, the F1-scores with the RAIN-F+
dataset showed better performance among those with other fusion datasets for all input
resolutions. This indicates that the multi-modal information could help to improve the
prediction performance over time regardless of the resolution. Moreover, the results with
an input resolution of 64× 64 showed slightly better performance for F1-scores of rain rate
over 5 mm/h and the prediction results after three hours.
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Figure 7. The F1-scores with the rain rate threshold of 0.1 mm/h depending on the fused dataset
and the input resolution for the prediction time (R: Radar; I: IMERG; S: Surface observations; H:
Himawari).

For the comparisons depending on the rain rate thresholds, in Tables 1–3, the pre-
diction results with the rain rate greater than 0.1 mm/h are not significantly different
depending on the dataset for all input resolutions. However, the scores from the multi-
modal dataset for the rain rate greater than 5.0 mm/h showed better performance compared
to the results using only the radar dataset. In addition, the maximum scores from the fusion
dataset, depending on the rain rate thresholds, have similar values regardless of resolution.
It suggests that no trend explains which combination of a fusion dataset has a significant
benefit. Therefore, the question of what to fuse is a matter when applying multi-modal
information in the training process.

Moreover, we confirmed that the recall scores dropped notably, while precision scores
slightly decreased as the greater threshold is used. This means that the false negative
increased much more than the false positive. A false negative (positive) is the opposite
error where the prediction incorrectly fails to indicate the presence (absence) of rainfall
over the threshold. Thus, the rainfall regions in the prediction results are not correctly
detected when the rain becomes heavier. This trend can also be found in Figure 8, which
shows the three examples of predicted rain maps depending on the fusion dataset and the
radar rain map calculated from observed radar reflectivity for three different resolutions.
For the references, Figure 9 represents the rain maps from the RAIN-F+ dataset at the
same precipitation case with Figure 8. It is confirmed that there are differences among
reference rain maps because the resolution and characteristics are different. The Radar and
IMERG observations are considered instantaneous measurements. However, the IMERG
data are from the GPM mission with the low-Earth orbit satellites that travel and take
approximately 90 min to circle the entire Earth in order to measure global precipitation,
while radar measures the same region at every observation time. Therefore, the observation
times over the same region from radar and the IMERG can be different. Moreover, the
rain rate from surface observations is a cumulative value from the past one hour. Among
these reference rain observations, this study trained the supervised model with the radar
observation as ground truth because the radar observation provides the 2D rain map with
the highest resolution. Figure 8 showed that the predicted rain map does not represent
the accurate location of heavy rainfall shaded in red color and detailed features of the
precipitation system. Compared with the radar observations, the heavy rainfall regions are
predicted over the continuous area with blurred features. Blurring is a well-known problem
in the image prediction task due to the average process in the loss function. In addition, the
resolutions of surface observations, the IMERG, and Himawari products in the RAIN-F+
dataset are lower than radar observations. It may cause additional blurred features of
prediction in this study. Among all experiments, the Radar and IMERG dataset results of
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the examples in Figure 8 showed the most similar patterns with radar observations for
heavy rainfall regions.

Figure 8. The examples on 01 UTC 27 July 2019 of prediction results with RAIN-F+ dataset, radar and IMERG fusion dataset,
radar only dataset, and reference radar observations depending on the resolution of 32× 32 (upper row), 64× 64 (middle
row), and 256× 256 (bottom row).

Figure 9. The reference rain maps on 01 UTC 27 July 2019 of radar, IMERG, and surface observations
from RAIN-F+ dataset.

For all input resolution types, the radar-only dataset shows underestimated prediction
results, while the results from the multi-modal dataset show heavier rainfall over the
comparative coverage of the area. This trend is also shown in the scatter plots for all
validation dataset represented in Figure 10. The scatter plots from the radar-only dataset
showed the limitation in predicting rain rate over 10 mm/h for all input resolution types.
The scatter plots from the RAIN-F+ dataset are not much different for the various input
resolution, while others are considerably varies depending on the resolution.
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Figure 10. The scatter plots of prediction results depending on the fused data sources and the input resolution of 32× 32
(upper row), 64× 64 (middle row), and 256× 256 (bottom row).

5. Discussion and Future Work

There are various types of weather observation dataset that provide different char-
acteristics of the atmospheric state. This study is an attempt to use all available weather
observation data for precipitation prediction. We generated the RAIN-F+ dataset, which is
the fusion dataset from four different types of weather observation related to precipitation.
We evaluated the performance of ablation studies with different combinations of a fusion
dataset in order to explore the influence of the different modalities. The benchmark model
is trained and validated with the radar reflectivity product as reference data because the
radar observation provides the most accurate measurements for precipitation. The results
showed that the RAIN-F+ dataset still has the limitation to predict rainfall for rain rate over
10 mm/h. It may be caused by the small number of rain rate pixels over 10 mm/h in the
training dataset. However, with the multi-modality, there is the possibility to improve the
performance comparing with the radar-only dataset, which shows significant underestima-
tion for the rain rate over 10 mm/h. Since the RAIN-F+ dataset provides the atmospheric
state variables, including temperature, humidity, wind from surface observations, and radi-
ance with clouds and water vapor information from a geostationary satellite, multi-modal
information from RAIN-F+ helps to improve the precipitation prediction performance over
time. This result suggested that data fusion for multi-modality is essential for precipitation
prediction when applying data-driven approaches. The primary purpose of this study is to
introduce the RAIN-F+ dataset and the benchmark model for the fusion dataset. Therefore,
we only used the early fusion method for simple approaches and validated the results with
only radar observations. In the future, we aim to apply various fusion methods in order
to evaluate the performance improvement depending on the combination of the fusion
dataset and in order to validate the benchmark model with different precipitation products
for the purpose of finding the proper reference data for precipitation. In addition, we will
consider integrating the model parameters and the topography information for the next
version of the RAIN-F dataset and examine the effect of each parameter for prediction
performance depending on the various precipitation system categories.
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