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Abstract: The multichannel synthetic aperture radar (SAR) system can effectively overcome the
fundamental limitation between high-resolution and wide-swath. However, the unavoidable channel
errors will result in a mismatch of the reconstruction filter and false targets in pairs. To address this
issue, a novel channel errors calibration method is proposed based on the idea of minimizing the mean
square error (MMSE) between the signal subspace and the space spanned by the practical steering
vectors. The practical steering matrix of each Doppler bin can be constructed according to the Doppler
spectrum. Compared with the time-domain correlation method, the proposed method no longer
depends on the accuracy of the Doppler centroid estimation. Besides, compared with the orthogonal
subspace method, the proposed method has the advantage of robustness under the condition of
large samples by using the diagonal loading technique. To evaluate the performance, the results
of simulation data and the real data acquired by the GF-3 dual-channel SAR system demonstrate
that the proposed method has higher accuracy and more robustness than the conventional methods,
especially in the case of low SNRs and high non-uniformity.

Keywords: channel errors estimation; virtual calibration source; minimum mean square error
(MMSE); multichannel synthetic aperture radar (SAR)

1. Introduction

With the development of synthetic aperture radar (SAR) imaging technology, the de-
mand for high-resolution and wide-swath has gradually increased [1–6]. For conventional
spaceborne SAR systems, it is difficult to achieve high-resolution and wide-swath at the
same time. The improvement of the azimuth resolution requires a short antenna in order
to obtain a large Doppler bandwidth and a sufficiently high pulse repetition frequency
(PRF) to achieve azimuth oversampling, while the wide-swath requires a low PRF in order
to avoid range ambiguity [1–3]. To effectively overcome these fundamental limitations,
in this study, a multichannel SAR system is combined with digital beamforming technology
by adding multiple receiving channels in azimuth (see Figure 1). In other words, spatial
sampling is used to compensate for the lack of temporal sampling [1,2]. Then, the non-
uniformly sampled SAR signal can be suppressed using the digital beamforming (DBF)
method [3] or the space-time adaptive processing (STAP) method [4].

However, in practical engineering, errors between the receiving channels are unavoid-
able. These include the antenna gain, phase, position, and range sampling time delay errors,
which will lead to a serious mismatch of the reconstruction filter and result in false targets
in pairs. Therefore, it is necessary to accurately calibrate the channel errors in order to
improve the performance of ambiguity suppression. During the last few decades, a number
of channel calibration methods have been proposed to deal with this problem [5–19]. The
gain inconsistency error can be calibrated relatively easily by channel balancing [5]. In gen-
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eral, the channel phase error calibration methods can be classified into three categories: the
inner calibration [6], time-domain calibration [7–9], and range-Doppler domain calibration
methods [10–19].
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Figure 1. Geometry of a multichannel SAR system with one transmitter and five receivers in azimuth.

In [6], Chen et al. proposed an inner calibration method (ICM) based on the gain-
phase characteristics of each channel, which estimates phase errors by comparing the gain
and phase at the peak value of the signal received by the calibration route. However,
the ICM may suffer from performance degradation when the channel mismatch is caused
by the antenna because the calibration route bypasses the antenna and directly receives
the transmitted signal. To address this issue, the time-domain correlation method (TDCM)
was proposed in [7–9], which estimates the phase errors as well as the Doppler centroid
frequency based on the spatial correlation between adjacent channels. Unfortunately,
the estimation of the channel phase errors by the TDCM depends heavily on the accuracy of
the Doppler centroid. Meanwhile, with an increase in the number of channels, the average
root mean square error of the phase errors increases. To solve these issues, Doppler
domain-based calibration methods have been developed on the basis that the spectral
components of each Doppler bin can be regarded as virtual signal sources from different
known directions. Such methods include subspace-based methods [10–17] and optimal
beamforming methods [18,19].

By incorporation with multiple signal classification (MUSIC), Li et al. [10–12] proposed
the orthogonal subspace method (OSM), which is based on the fact that the signal subspace
spanned by the practical steering vectors is orthogonal to the noise subspace. Nevertheless,
the performance of the OSM may deteriorate when the number of channels is equal to
the ambiguity indexes of the spectrum, because there are not enough degrees of freedom
to construct the signal subspace. Meanwhile, in the case of larger samples, the matrices
(∑ ΓHaH

i UNUH
N aiΓ) of some Doppler bins are close to the singular value, which may lead

to inaccurate estimation results. To solve this issue, with reference to direction of arrival
(DOA) estimation, Yang et al. [13,14] proposed the signal subspace comparison method
(SSCM), which is based on the fact that the space spanned by the signal eigenvectors
is equal to that by the practical steering vectors. Thus, the projection matrices of the
two subspaces are unique. Unfortunately, in practice, there exists a transition matrix in
transformation of basic between the projection spaces, which may degrade the phase error
estimation performance of this method. To solve the problem, Zhou et al. [17] proposed
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a subspace-based method by minimizing the minimum mean square error of the signal
subspace. However, the phase error is estimated by the Newton–Raphson method or
the optimizer tool, which requires a high computational load. Besides, Zhang et al. [18]
proposed a robust phase error calibration method via maximizing the minimum variance
distortionless response (MVDR) beamformer output power. However, the performance
of the MVDR may be hindered by the fact that the MVDR only maintains the gain of the
desired signal constant, neglecting to suppress the unwanted signal. Considering this
problem, Huang et al. [19] proposed the orthogonal projection method (OPM), which is
based on the idea that the energy of each ambiguity component extracted by the orthogonal
projection method is maximized. Unfortunately, the OPM may suffer from a performance
degradation because the weight vector of the OPM depends heavily on the array geometry
of the SAR system. Furthermore, without using the covariance matrix of the echo data,
the weight vector is independent of the signal environment.

Motivated by the work in [20], the capon spectrum has been introduced to observe
the index of ambiguity. Regarding the channel phase error, its influence on the Doppler
spectrum is manifested in a frequency shift. Therefore, the practical steering matrix of each
Doppler bin can be constructed according to the Doppler spectrum. Taking the previous
work into consideration, a robust channel error calibration method that demonstrates
high accuracy and low computational load is proposed here. For the proposed method,
the error of each channel is estimated by minimizing the mean square error (MMSE)
between the signal subspace and the space spanned by the practical steering vectors.
The signal subspace can be acquired by decomposing the covariance matrix of echo data.
After the gain-phase error is compensated and the non-uniform signal is reconstructed,
the unambiguous image can be obtained by a conventional imaging algorithm [21,22].
Compared to the TDCM, the proposed method successfully eliminates the dependence
on the accuracy of the Doppler centroid. At the same time, compared with the methods
presented in [10–12], it can effectively estimate the channel errors without the need for
redundant channels. Compared with the method proposed in [17], the result of phase error
estimation generated by our method is a closed-form expression, which can reduce the
computational load. Finally, the diagonal loading technique is introduced to improve the
robustness of the method.

This paper is organized as follows. The error model of the multichannel SAR signal is
shown in Section 2. In Section 3, the channel errors calibration method and the diagonal
loading technique are presented in detail. The effectiveness of the proposed method is
verified by simulation and real data processing in Section 4, followed by some discussion
in Section 5. Finally, conclusions are drawn in Section 6.

2. Error Model of Multichannel SAR Signal

The geometry of the multichannel SAR system in azimuth is shown in Figure 1, where
the satellite platform moves along the x-axis at the velocity vs. The z-axis is located away
from the center of the Earth, and the three-dimensional Cartesian coordinate system is
formed by three coordinate axes. A radar pulse, transmitted by the middle sub-aperture, is
usually adopted with low PRF in the HRWS SAR system, while the other five sub-apertures
receive echo.

After compensating for a constant phase, the multichannel SAR signal can be derived
from the monostatic signal with a time delay [2]. Unavoidably, the central electronic
equipment, antenna array, and satellite platform will produce inconsistency, resulting in
the gain and phase errors of different channels. The echo received by the mth channel in
the time-domain can be expressed as

sm(η, τ) ≈ ρmejξm s0(η +
∆xm

2vs
, τ) (1)
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where ρm and ξm are, respectively, defined as the gain and phase error of the mth channel.
The interval of the effective phase center of the mth channel compared to the reference
channel is written as

∆xm = (m− M + 1
2

)d 1 ≤ m ≤ M (2)

where M denotes the number of azimuth channels, η is the azimuth slow time, and τ is the
range fast time. s0(η, τ) represents the echo received by the reference channel.

As the Doppler bandwidth is larger than the PRF, the ambiguous spectrum by mth
channel in the range-Doppler domain can be expressed as [23]

Sm( fη , τ)≈ ρmejξm
I

∑
i=−I

S0( fη + i · PRF, τ)

×e+jπ( fη+i·PRF)·∆xm/vs + Nm( fη , τ) (3)

where fη is the azimuth frequency, and − fp/2 ≤ fη ≤ fp/2, fp represents the PRF. Besides,
the ambiguity number is defined as (2I + 1). In order to effectively suppress azimuth
ambiguities, the (2I + 1) · PRF should be no larger than M · PRF. S0( fη + i · PRF, τ) is
the equivalent unambiguous envelope of the single-channel strip-map SAR signal s( fη , τ).
The index i represents a shift of i · PRF in the range-Doppler domain, and Nm( fη , τ) is the
white Gaussian noise.

Using the vector notation, the model of multichannel SAR signal can be reformulated
as follows [24]:

S( fη , τ) = Γ(γ)A( fη)S0( fη , τ) + N( fη , τ) (4)

where
S( fη , τ) = [S1( fη , τ), · · · , Si( fη , τ), · · · , SM( fη , τ)]T (5)

Γ(γ) = diag{γ1, · · · , γi, · · · , γM} (6)

γ = [ρ1ejξ1 , · · · , ρiejξi , · · · , ρMejξM ]T (7)

A( fη) = [a−I( fη), · · · , ai( fη), · · · , aI( fη)] (8)

ai( fη) = [e+jπ( fη+i·PRF)·∆x1/vs , · · · , e+jπ( fη+i·PRF)·∆xM/vs ]T (9)

S0( fη , τ) = [S0( fη − I · PRF, τ), · · · , S0( fη + I · PRF, τ)]T (10)

N( fη , τ) = [N1( fη , τ), · · · , Ni( fη , τ), · · · , NM( fη , τ)]T (11)

where diag(•) denotes a square diagonal matrix with the elements of a vector on the main
diagonal and (•)T denotes the vector transpose operation.

3. Proposed Algorithm

In this section, the Doppler spectrum against PRF is briefly analyzed. Then, from the
perspective of the signal subspace, the calibration method of the channel errors between dif-
ferent channels is discussed in detail. Finally, the diagonal loading technique is introduced
to improve the robustness of the method.

3.1. The Doppler Spectrum of Ground Echoes

As the PRF of the multichannel SAR system is smaller than the Doppler bandwidth
Ba, the Doppler spectrum of the echo signal received by each channel is aliased. More-
over, the PRF usually needs to be adjusted according to the beam position for different
observation areas [25]. Therefore, under the influence of the PRF and Doppler centroid,
the aliasing mode of the Doppler spectrum changes dynamically. Meanwhile, conven-
tional channel calibration and signal reconstruction methods often rely heavily on the
accuracy of the steering vector [17]. Thus, it is necessary to construct the practical steering
matrix accurately. For simplicity, a three-channel SAR system is used in the subsequent
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analysis. The spatial distribution of samples of the three-channel is shown in Figure 2.
Then, the Doppler spectrum of the corresponding spatial sampling distribution is shown
in Figure 3. Obviously, the Doppler spectrum is a dynamic piecewise function against PRF.
Equation (8) can be expressed in the following four ways.

Pulse1 Pulse2

/ 2d / 2d / 2d

Flight derection

(a)

Pulse1 Pulse2

Flight derection

/ 2d / 2d / 4d

(b)

Pulse1 Pulse2

Flight derection

/ 2d / 2d

(c)

Pulse1 Pulse2

Flight derection

/ 2d / 2d

/ 4d

(d)

Figure 2. Spatial distribution of samples in a three-channel SAR system. (a) Uniform sampling.
(b) Nonuniform sampling with spatial proximity of channels 1 and 3. (c) Nonuniform sampling with
spatially coinciding samples of channels 1 and 3. (d) Nonuniform sampling with spatially interleaved
samples of channels 1 and 3. The effective phase centers are depicted as squares, circles, and triangles.
The three colors (red, green, and blue), respectively, represent CH-1, CH-2, and CH-3.

Uniform sampling:

A( fη) =
[
a−1( fη), a0( fη), a1( fη)

]
fη ∈ D1 (12)

Nonuniform sampling with spatial proximity of channels 1 and 3:

A( fη) =


[
a0( fη), a1( fη)

]
fη ∈ D1[

a−1( fη), a0( fη), a1( fη)
]

fη ∈ D2[
a−1( fη), a0( fη)

]
fη ∈ D3

(13)

Nonuniform sampling with spatially coinciding samples of channels 1 and 3:

A( fη) =

{[
a0( fη), a1( fη)

]
fη ∈ D1[

a−1( fη), a0( fη)
]

fη ∈ D3
(14)

Nonuniform sampling with spatially interleaved samples of channels 1 and 3:

A( fη) =


[
a0( fη), a1( fη)

]
fη ∈ D1[

a0( fη)
]

fη ∈ D2[
a−1( fη), a0( fη)

]
fη ∈ D3

(15)

where D1, D2, and D3 are the independent variable ranges of the shades of gray, orange,
and purple in Figure 3, respectively.
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Figure 3. Doppler spectrum of ground echoes in a three-channel SAR system. (a) Uniform sampling.
(b) Nonuniform sampling with spatial proximity of channels 1 and 3. (c) Nonuniform sampling
with spatially coinciding samples of channels 1 and 3. (d) Nonuniform sampling with spatially
interleaved samples of channels 1 and 3. The curved line represents the spectrum amplitude. The
dotted line indicates that the Doppler is unambiguous while the shadow denotes that the Doppler is
ambiguous due to azimuth undersampling. The line segments of three colors (yellow, red, and green)
represent the spectrums with different index of ambiguity. The different shadows represent different
distribution of ambiguity indexes in the Doppler spectrum.

In order to verify the above conclusion from the perspective of the data domain,
the capon method is used to scan the signal in the entire bandwidth. This is based on the
idea of spatial filtering in array signal processing. Therefore, the new steering vector can
be written as

ã( f̃η) = [e+jπ f̃η∆x1/vs , · · · , e+jπ f̃η∆xM/vs ]T (16)

where f̃η is the azimuth frequency, and (−M · PRFuni)/2 ≤ f̃η ≤ (M · PRFuni)/2. Here,
the PRFuni satisfies the anti-DPCA condition. The capon spectrum constructed using the
new steering vector can be written as [20]

Pcapon( f̃ηq, fη p) =
1

ãH( f̃ηq)R−1( fη p)ã( f̃ηq)
(17)

where f̃ηq and fη p represent the frequency points within bandwidth and PRF of SAR
system, respectively. The statistical covariance matrix of the echo signal at the Doppler bin
fη can be expressed as
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R= E
τ

{
S( fη , τ)SH( fη , τ)

}
= Γ(γ)A · E

τ

{
S0( fη , τ)SH

0 ( fη , τ)
}
· AHΓ(γ)H + σ2

n IM (18)

where E{•} denotes the statistical average, (•)H denotes the matrix conjugate transpose
operator, and σ2

n is the noise power. In practice, the statistical covariance matrix of (18) can
be estimated by using the echo samples of the adjacent range bins. The sample covariance
matrix R̂( fη) can be calculated by [4]

R̂( fη) =
1

Nr

Nr

∑
k=1

S( fη , k)SH( fη , k) (19)

where Nr is the number of range bins used to calculate the sample covariance matrix, and
S( fη , k) represents the multichannel output vector from Doppler bin fη and range bin k.

3.2. Channel Errors Calibration

Based on the analysis above, the structure of the Doppler spectrum must be deter-
mined accurately before channel error calibration. The idea of eigendecomposition was
originally used in array signal processing to determine the direction of arrival of the
signal and estimate the gain-phase errors of the system at the time [26]. Furthermore,
the eigendecomposition of covariance matrix R( fη) can be reformulated as follows:

R( fη)= U · Σ ·UH

= US · ΣS ·UH
S + UN · ΣN ·UH

N (20)

In the spaceborne SAR system, the eigenvalues can be acquired in descending order
(λ1 > λ2 > · · · > λ2I+1 � λ2I+2 = · · · = λM = σ2

n) by decomposing the covariance
matrix. In order to satisfy Nyquist sampling theorem (M · PRF ≥ (2I + 1)PRF > Ba),
there must be redundant channels. Where Σ = diag[λ1 · · · λi · · · λM], corresponding to
U = [u1 · · · ui · · · uM ]. US is the M× (2I + 1) signal subspace matrix spanned by the eigen-
vectors corresponding to the (2I + 1) largest eigenvalues, while UN is the
M× (M− (2I + 1)) noise subspace matrix spanned by the eigenvectors corresponding
to the (M− (2I + 1)) smallest eigenvalues. As the space spanned by the signal subspace
US is the same as the space spanned by the steering matrix Γ(γ)A, there exists a unique
non-singular matrix T that satisfies

US = Γ(γ)A( fη)T (21)

As the Γ(γ) is non-singular matrix, for the convenience of subsequent processing,
Equation (21) can be reformulated as follows:

Γ(γ̄)US = A( fη)T (22)

where Γ(γ̄) = Γ−1(γ) = diag{γ̄1, · · · , γ̄i, · · · , ¯γM} and the vector γ̄ can be written as

γ̄ = [ρ−1
1 e−jξ1 , · · · , ρ−1

i e−jξi , · · · , ρ−1
M e−jξM ]T (23)

In the presence of noise, the least square solution of the non-singular matrix T is
estimated by solving the following optimization problem:

min
T̂ ,γ̄

∥∥Γ(γ̄)US − A( fη)T̂
∥∥2

F

s. t. ωHγ̄ = 1 (24)
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where ‖•‖2
F denotes the square of the Frobenius norm. Without loss of generality, the mid-

dle channel can be set as the reference channel, and ω = [0, · · · , 0, 1, 0, · · · , 0]T is an M× 1
vector. The least squares solution of T̂ is written as

T̂ = (AH( fη)A( fη))
−1 AH( fη)Γ(γ̄)US (25)

Substitute Equation (25) into Equation (24), the optimization problem in Equation (24)
can be reformulated as follows:

min
γ̄

tr{USUH
S ΓH(γ̄)P⊥A ( fη)Γ(γ̄)}

s. t. ωHγ̄ = 1 (26)

where P⊥A ( fη) denotes a matrix that is orthogonal to the projection matrix of A, and
tr{•} represents the trace of a matrix. After some detailed derivation as shown in the
Appendix A, Equation (26) can be finally rewritten as

min
γ̄

γ̄HG( fη)γ̄

s. t. ωHγ̄ = 1 (27)

where G( fη) = (USUH
S )T ◦ P⊥A ( fη) is an (M×M) Hermitian matrix, and ◦ denotes the

Hadamard product.
By applying Lagrange multiplier method, we define a new function associated with

Equation (27) as follows:

L(γ̄, µ) = γ̄HG( fη)γ̄ + µ(ωHγ̄− 1) (28)

where µ is the Lagrange multiplier. To calculate the stationary points, we differentiate
L(γ̄, µ) with respect to γ̄ and µ. By setting these partial derivatives equal to zero, the La-
grange multiplier can be obtained as µ = 2(ωHG−1( fη)ω)−1. Finally, the optimal solution
can be expressed as follows:

ˆ̄γ fη
= G−1( fη)ω(ωHG−1( fη)ω)−1 (29)

Thus, the gain and phase errors between the mth channel and the reference channel
can be calculated by

ρ̂ fη ,m = abs{1/ ˆ̄γ fη
(m)}, m = 1, 2, · · · , M. (30)

ξ̂ fη ,m = angle{1/ ˆ̄γ fη
(m)}, m = 1, 2, · · · , M. (31)

where abs{•} denotes the modulus of a complex number and angle{•} represents the
phase of a complex number.

According to the Doppler spectrum obtained in Equation (17), the Doppler bin with
redundant space is selected. Then, the gain and phase errors estimated on these Doppler
bins are averaged. Moreover, the final channel errors can be obtained:

ρ̄m =
1
N

fη,N

∑
fη,i= fη,1

ρ̂ fη,i ,m, m = 1, 2, · · · , M. (32)

ξ̄m =
1
N

fη,N

∑
fη,i= fη,1

ξ̂ fη,i ,m, m = 1, 2, · · · , M. (33)

where N indicates the number of redundant Doppler bins. Based on the channel error
estimated above, the calibrated echo signal can be further expressed as
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S′m( fη , τ) =
1

ρ̄m
Sm( fη , τ)e−jξ̄m , m = 1, 2, · · · , M. (34)

where S′m( fη , τ) denotes the signal after the gain-phase error of the mth channel is calibrated.
Besides, the necessary condition for the existence of Equation (29) is that the matrix

G( fη) is the full rank. However, in practical applications, the matrix G( fη) in some Doppler
bins is close to the singular value, making the results may not be accurate. Therefore,
the diagonal loading method was considered [27,28]. Then, we have

G̃( fη) = G( fη) + δI (35)

Equation (33) guarantees that the matrix G( fη) is invertible. Here, δ is a diagonal load-
ing factor. Without loss of generality, δ is usually chosen as a small value. Finally, after the
channel errors are compensated, the azimuth signal can be effectively reconstructed by the
DBF or the STAP method. Based on the above analysis, the main steps of the algorithm
based on the proposed method can be defined. The flow chart of the algorithm is shown in
Figure 4.

1( , )s   ( , )Ms  

1( , )S f  ( , )iS f  ( , )MS f 

Obtain the covariance 

matrix            by (19)( )R f

Obtain Doppler spectrum 

structure by  (16)-(17)

Determine the signal 

subspace SU

Determine the steering 

matrix                   ( )A f

Estimate and calibrate the 

channel errors by (32)-(34)

Multichannel signal 

reconstruction

SAR Image

Azimuth FFT

'

1( , )S f 
'( , )iS f 

' ( , )MS f 

( , )is  

Figure 4. Flow–chart of the proposed estimation method.

Step 1: Carry out azimuth fast Fourier transform for each channel data.
Step 2: Estimate covariance matrix R̂( fη) of each Doppler bin by Equation (19).
Step 3: Obtain Doppler spectrum structure by Equations (16) and (17) and determine

index of ambiguity of each Doppler bin.
Step 4: Obtain the signal subspace US by decomposing R̂( fη) and determine the

steering matrix A( fη).
Step 5: Estimate the gain and phase errors by Equations (32) and (33) and calibrate

the channel errors by Equation (34).
Step 6: Reconstruct signal using the DBF or STAP method.
Step 7: Obtain the unambiguous image by a conventional imaging algorithm.

4. Experiments

In this section, five-channel simulations are carried out. By adding the known phase
error to each channel in advance, the estimated results of the channel phase error can be
compared with true values. The performance of the proposed method is evaluated by
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comparison with the conventional methods. In addition, the real data acquired by the GF-3
dual-channel SAR system are processed to verify the effectiveness of the proposed method.

4.1. Simulated Data

The parameters of the five-channel SAR system are listed in Table 1. The SAR data
are sampled at PRF = 813 Hz, PRF = 903 Hz, PRF = 1100 Hz, and PRF = 1357 Hz,
respectively. Then, their Doppler spectrums are observed. It can be seen that the in-
dex of ambiguity is different for different PRFs, such as i = −2,−1, 0, 1, 2 in Figure 5a,
i = −1, 0, 1, 2 on the left side of Figure 5b, i = −2,−1, 0, 1 on the right side of Figure 5b,
and i = −1, 0, 1 in Figure 5d.

Table 1. Main parameters of the simulated data.

Parameter Symbol Value

Wavelength λ 0.055517 m
PRF fp 1015 Hz

Sampling rate fs 133.33 MHz
Signal bandwidth Br 100 MHz

Pulse duration Tr 54.99 µs
Platform velocity vs 7614 m/s

Look-angle θ 35.41◦

Channel number M 5
Adjacent Channel Interval d 3.75 m
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Figure 5. Doppler spectrum of five−channel SAR system versus PRF. (a) Sampling PRF = 813 Hz and
corresponding to the index of ambiguity. (b) Sampling PRF = 903 Hz and corresponding to the index
of ambiguity. (c) Sampling PRF = 1100 Hz and corresponding to the index of ambiguity. (d) Sampling
PRF = 1357 Hz and corresponding to the index of ambiguity.
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Therefore, before the phase error estimation, the steering matrix A( fη) of each Doppler
bin must be constructed accurately according to the specific index of ambiguity. In addition,
the phase errors are added to the five-channel SAR system as follows: 45◦, 21◦, 0◦, 113◦,
and 78◦. The influence of the channel phase errors on the Doppler spectrum is manifested
by the frequency shift, as shown in Figure 6, which implies that the phase errors have
basically no effect on observing the index of ambiguity using the Doppler spectrum. This is
the reason for the mismatch of the reconstruction filter and the appearance of false targets
in pairs in the subsequent processing.
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Figure 6. Doppler spectrum of five−channel SAR system versus channel phase error. (a) Without
channel errors calibration. (b) Using the proposed calibration method.

The third channel is used as the reference channel. The curves of the channel phase
error are calculated by using the proposed method and the conventional methods, respec-
tively, as shown in Figure 7. Moreover, the phase error results estimated by conventional
methods and the proposed method are shown in Table 2 with different SNRs. It is obvious
that the channel phase error estimated by the proposed method is more accurate than
estimations of the TDCM, OSM, SSCM, and MDVR. Because the proposed method does
not depend on the accuracy of the Doppler centroid and can precisely construct the unique
non-singular matrix T .

Table 2. Estimation results of conventional methods and proposed method with different SNRs.

Channel Number Real Phase Error SNR TDCM OSM SSCM MVDR Proposed Method

Channel 1 45◦
10 dB 45.5871◦ 44.4693◦ 44.5184◦ 44.5157◦ 44.7129◦

20 dB 45.6034◦ 44.7021◦ 44.6971◦ 44.7012◦ 44.7366◦

30 dB 45.6128◦ 44.7176◦ 44.7036◦ 44.7157◦ 44.7483◦

Channel 2 21◦
10 dB 21.3586◦ 20.6864◦ 20.7473◦ 21.2746◦ 20.8157◦

20 dB 21.3680◦ 20.9492◦ 20.9427◦ 21.1582◦ 20.9543◦

30 dB 21.3738◦ 21.0033◦ 20.9802◦ 20.9665◦ 20.9856◦

Channel 3 0◦
10 dB 0.0◦ 0.0◦ 0.0◦ 0.0◦ 0.0◦

20 dB 0.0◦ 0.0◦ 0.0◦ 0.0◦ 0.0◦

30 dB 0.0◦ 0.0◦ 0.0◦ 0.0◦ 0.0◦

Channel 4 113◦
10 dB 112.4815◦ 112.6456◦ 112.7573◦ 111.3848◦ 112.8615◦

20 dB 112.4831◦ 112.9002◦ 112.8991◦ 112.7977◦ 112.9169◦

30 dB 112.4858◦ 113.0129◦ 112.9798◦ 112.8825◦ 112.9813◦

Channel 5 78◦
10 dB 76.8194◦ 77.3443◦ 77.4197◦ 77.4258◦ 77.5375◦

20 dB 76.8350◦ 77.6058◦ 77.6123◦ 77.6077◦ 77.6999◦

30 dB 76.8416◦ 77.6395◦ 77.6314◦ 77.6425◦ 77.7244◦
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Figure 7. The results of channel phase error estimation. (a) Estimated result using the TDCM.
(b) Estimated result using the OSM. (c) Estimated result using the MDVR. (d) Estimated result using
the proposed method.

To further verify performance of the method, Monte Carlo trials based on 200 runs
are conducted. Then, the phase errors added to the five-channel SAR system are uni-
formly distributed in [−π, π]. The average root mean square error (ARMSE) of phase
errors estimation versus SNR and the uniformity factor Fu [29] are used to evaluate the
performance of the proposed calibration method compared with the conventional TDCM,
OSM, and MDVR. Here, Fu is defined as the ratio of d/2 to vs/(M · PRF). From the result
shown in Figure 8a, it is clear that the proposed method has higher accuracy than the
TDCM, the OSM and the MDVR versus SNR, especially in regard to low SNRs. In addition,
the proposed method is more robust than the TDCM, the OSM and the MDVR versus the
uniformity factor Fu, especially in the case of high non-uniformity (see Figure 8b).
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Figure 8. ARMSE of channel phase errors versus SNR and Fu. (a) ARMSE of the channel phase errors
versus SNR. (b) ARMSE of the channel phase errors versus Fu.
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4.2. Real Data

In this experiment with dual-channel GF-3 SAR data, the performance of the proposed
calibration method is evaluated in comparison with the TDCM, OSM, and MVDR. The
system works in the C-band, with a satellite speed of approximately 7480 m/s and a
Doppler bandwidth of approximately 3534 Hz. At the same time, the azimuth sampling is
achieved only at the PRF of 1948 Hz, so the uniformity factor Fu is approximately 0.9766.
The Doppler spectrum is observed before and after the channel phase error calibration.
From the results shown in Figure 9, the GF-3 dual-channel SAR system is nearly uniformly
sampled and the channel phase error has a great influence on the Doppler spectrum.
Therefore, the steering matrix A( fη) of each Doppler bin needs to be adjusted in time
according to the index of ambiguity. As shown in Figure 9a, under the weighting of the
antenna pattern, the energy is mainly concentrated in the subspace spanned by the steering
vector a0( fη). Thus, in the following processing, the steering matrix A( fη) = a0( fη)
is applied.
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Figure 9. Doppler spectrum of GF−3 dual−channel mode versus channel phase error. (a) Without
channel errors calibration. (b) Using the proposed calibration method.

Due to the weak scattering of the sea surface, there is more obvious azimuth ambiguity
at the boundary between land and sea, as shown in Figure 10b. Obviously, performing
HRWS reconstruction directly before channel phase error calibration will result in false
targets in pairs. The CH-1 is the reference channel, and the CH-2 is the channel to be
calibrated. The curve of the channel gain error is calculated by using the method proposed
in this paper, as shown in Figure 11a. As can be seen in Figure 11b, the spectrum of CH-2
is larger than that of CH-1, and it is clear that, after the gain error calibration, the CH-2
coincides with the signal of the CH-1. The above analysis also verifies the effectiveness of
the proposed method in gain calibration.

The curve of the channel phase error is calculated by using the proposed method
and the conventional methods, respectively, as shown in Figure 12. It is obvious that
the channel phase error is basically stable during the entire operation of the satellite. In
addition, the average phase errors estimated by the proposed method, TDCM, OSM,
and MDVR are −156.9447◦, −154.0712◦, −156.2613◦, and −156.1321◦, respectively. As
shown in Figure 13a, the phase errors of some Doppler bins estimated by the OSM are
ill-conditioned. The proposed method successfully overcomes the shortcoming by using
the diagonal loading technique, as shown in Figure 13b. Then, after the gain-phase error is
compensated and the non-uniform signal is reconstructed, the unambiguous image can
be obtained by a conventional imaging algorithm. Figure 10a shows the corresponding
optical image. Figure 10c,d shows the imaging results using TDCM and the proposed
method, respectively. Magnified images of the results of the different calibration methods
for strong scatters are shown in Figure 14, including the TDCM and the proposed method.
It is obvious that the proposed method can effectively calibrate channel phase errors and
improve the image quality.
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(a) (b)

(c) (d)

Figure 10. Imaging results of GF-3 dual-channel mode of different calibration methods. (a) Corre-
sponding optical image. (b) Imaging result without channel errors calibration. (c) Imaging result
using the time-domain correlation method. (d) Imaging result using the proposed method.
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Figure 11. The channel gain error and the azimuth spectrum of GF−3 dual−channel mode. (a) Esti-
mated result using the proposed method. (b) The azimuth spectrum of each channel signal, where
the red and blue lines correspond to the CH-1 and CH-2 before gain error calibration, respectively,
while the red • corresponds to CH-2 after gain error calibration.
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Figure 12. The results of channel phase error estimation of the GF−3 dual−channel mode. (a)
Estimated result using the TDCM. (b) Estimated result using the OSM. (c) Estimated result using the
MVDR. (d) Estimated result using the proposed method.
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Figure 13. The results of channel phase error estimation and the local zooming. (a) Estimated result
using the OSM. (b) Estimated result using the proposed method.
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Figure 14. Local zooming of imaging results of the GF-3 dual-channel mode of different calibration
methods. (a) Without channel errors calibration. (b) Using the time-domain correlation method.
(c) Using the proposed method.

5. Discussion

In Section 4, the proposed method has been confirmed by processing the simulations
of the five-channel system and the real data acquired by the GF-3 dual-channel. As shown
in Figure 5, it is crucial to adjust the steering matrix A( fη) of each Doppler bin in time
through the Doppler spectrum. Figure 8a demonstrates that the proposed method has
higher accuracy than the TDCM, the OSM and the MDVR versus SNR, especially in regard
to low SNRs. Meanwhile, compared with the conventional methods, the proposed method
is more robust versus the uniformity factor Fu, as shown in Figure 8b, especially in the case
of high non-uniformity. For the OSM, when the PRF is close to the anti-DPCA condition
(Fu = 1) [25], there are not enough redundant channels to construct the signal subspace.
Moreover, the MVDR only maintains the gain of the desired signal constant, neglecting
to suppress the unwanted signal, which will significantly affect the performance. The
result of the proposed method is a closed-form expression, contrary to the result of the
method presented in [17], which will greatly reduce the computational load due to the
need for iteration.

The imaging results of the real data acquired by the GF-3 dual-channel system, shown
in Figure 10, indicate that the proposed method has better performance than the TDCM
method, as the proposed method does not depend on the accuracy of the Doppler centroid.
Moreover, as the number of channels increases, the correlation between adjacent channels
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decreases and the channel phase errors accumulate. The proposed method eliminates
the phase error accumulation, because the phase error between each channel and the
reference channel is directly calculated. The phase errors of some Doppler bins estimated
by OSM are ill-conditioned. Because, under the condition of large samples, the matrices
(∑ ΓHaH

i UNUH
N aiΓ) of some Doppler bins are close to singular values, which will lead to

the possibility of its inverse matrix being ill-conditioned. Averaging the estimated results
of the phase error may be inaccurate due to these ill-conditioned values. As shown in
Figure 13, the diagonal loading technology can successfully overcome the shortcoming.

6. Conclusions

A novel channel error calibration algorithm for the multichannel in the azimuth
HRWS SAR system is presented. Prior to the channel error estimation, the steering matrix
A( fη) of each Doppler bin can be adjusted in time according to the Doppler spectrum.
This will greatly improve the accuracy of phase error estimation. The proposed method
is based on the idea of minimizing the mean square error between the signal subspace
and the space spanned by the practical steering vectors. Compared with the TDCM,
the proposed method no longer depends on the accuracy of the Doppler centroid estimation.
In addition, the proposed method is more stable than the OSM as it uses the diagonal
loading technique compared with OSM. Moreover, compared with the OSM, there is no
restriction on redundant channels. In the performance evaluation, the simulation results
and real data processing demonstrate that the proposed method has higher accuracy and
robustness than the conventional methods, especially in the case of low SNRs and the case
of high non-uniformity.
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Substitute Equation (25) into Equation (24), the optimization problem in Equation (24)
can be reformulated as follows:∥∥Γ(γ̄)US − A( fη)T̂

∥∥2
F =

∥∥Γ(γ̄)US − PA( fη)Γ(γ̄)US
∥∥2

F

=
∥∥∥P⊥A ( fη)Γ(γ̄)US

∥∥∥2

F

= tr{(P⊥A ( fη)Γ(γ̄)US)
H(P⊥A ( fη)Γ(γ̄)US)}

= tr{USUH
S ΓH(γ̄)P⊥A ( fη)Γ(γ̄)} (A1)

Here, we define Q and C as an M×M matrix. Meanwhile, an M×M diagonal matrix
B = diag{b1, b2, · · · , bM} is defined. The general form of Equation (26) can be written as

tr{QBHCB} =
M

∑
i=1

M

∑
j=1

bi b̄jqijcji (A2)

where Q = USUH
S , B = Γ(γ̄) and C = P⊥A . Besides, the vector b can be written as

b = [b1, · · · , bi, · · · , bM]T (A3)

tr{bH(QT ◦ C)b} =
M

∑
i=1

M

∑
j=1

bi b̄jqijcji (A4)

Then, based on the above analysis,

tr{QBHCB} = tr{bH(QT ◦ C)b} (A5)

Thus, Equation (A1) can be rewritten as

tr{USUH
S Γ(γ̄)P⊥A ( fη)Γ(γ̄)} = γ̄H(USUH

S )T ◦ P⊥A ( fη)γ̄

= γ̄HG( fη)γ̄ (A6)

Finally, Equation (A6) is consistent with Equation (27).
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