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Abstract: It is critical to acquire the information of forest type at the tree species level due to its
strong links with various quantitative and qualitative indicators in forest inventories. The efficiency
of deep-learning classification models for high spatial resolution (HSR) remote sensing image has
been demonstrated with the ongoing development of artificial intelligence technology. However, due
to limited statistical separability and complicated circumstances, completely automatic and highly
accurate forest type mapping at the tree species level remains a challenge. To deal with the problem,
a novel deep fusion uNet model was developed to improve the performance of forest classification
refined at the dominant tree species level by combining the beneficial phenological characteristics of
the multi-temporal imagery and the powerful features of the deep uNet model. The proposed model
was built on a two-branch deep fusion architecture with the deep Res-uNet model functioning as its
backbone. Quantitative assessments of China’s Gaofen-2 (GF-2) HSR satellite data revealed that the
suggested model delivered a competitive performance in the Wangyedian forest farm, with an overall
classification accuracy (OA) of 93.30% and a Kappa coefficient of 0.9229. The studies also yielded
good results in the mapping of plantation species such as the Chinese pine and the Larix principis.

Keywords: forest type; deep learning; multi-temporal; GF-2

1. Introduction

Remote sensing-assisted classification of forest type at the tree species level drives a
wide variety of applications, including issues with sustainable forest management [1,2],
biological and surveillance [3,4], and invasive species monitoring [5].

Over the last four decades, advances in remote sensing technology have enabled
the classification of tree species using various satellite sensors. Meanwhile, with the
widespread availability of satellites and the advancement of sensor manufacturing technol-
ogy, higher spatial resolution images and more detailed classification results were obtained.
Recently, more and more studies have been conducted to obtain more specific informa-
tion of forest types at the tree species level using high spatial resolution (HSR) satellite
images [6–8]. However, it was shown that the spectral response of various tree species
in a forest environment usually displayed complicated patterns as the spatial resolution
improved. This means that several tree species or forest types have the same or comparable
spectral response, which may cause interpretative difficulty when discriminating from the
mono-temporal high-resolution data. As a result, despite substantial breakthroughs in
geographic information science and technology, reliably categorizing forest types at the
tree species level from mono-temporal high-resolution images remains a difficulty [9].
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Due to phenological variations across tree species, multi-temporal satellite image
has the ability to compensate for inadequate spectrum information. Previous research
demonstrated that utilizing multi-temporal satellite images helped improve forest type
categorization results. Nelson (2017) used the multi-temporal satellite images to classify tree
species groups and forest types in central Sweden. The results demonstrated that utilizing
a multi-temporal method could enhance overall classification accuracy [10]. Wessel (2018)
extracted four tree species classifications from multi-temporal satellite images at a German
test site and achieved up to 88% overall accuracy [11]. Persson (2018) demonstrated that
employing multi-temporal satellite images yielded greater performance in tree species
classification than using mono-temporal data [12]. Other research has also underlined
the significance of phenological information contained in multi-season data for forest
type mapping [13].

In terms of methodologies, the researchers successfully employed machine learning
methods such as support vector machine (SVM) and random forest (RF) to the classifi-
cation of forest types based on multi-temporal satellite data and produced satisfactory
classification results. Meanwhile, many comparative analyses of different machine learning
methods for forest type classification based on multi-temporal data have also been con-
ducted [14,15]. The results showed that the key factor for determining the effect of machine
learning algorithm was the feature representation of the satellite data which was always in
the form of manual feature extraction and optimization. However, such operations were
always time-consuming, laborious, and vulnerable to human experience.

Deep learning approaches have shown considerable potential in feature representa-
tion of remote sensing images with the advent of the big data era and the rapid develop-
ment of scientific computing [16]. It has attracted the attention of many researchers as it
demonstrated good classification performance with satellite imagery and overcame many
limitations of traditional classification methods [17–19].

The full convolutional network (FCN) is regarded as a watershed moment in deep
learning for semantic segmentation since it demonstrates how to train a convolutional
neural network (CNN) end-to-end and produce dense predictions with inputs of any
sizes [20]. Due to the connection between semantic segmentation in computer vision
and satellite imagery classification, FCN was used to extract the hierarchical context
characteristics of satellite image pixels in order to classify the land cover and use [21,22].
The model’s core premise is that it converts standard CNN into fully convolutional ones by
replacing fully connected layers with convolutional layers and produces dense per-pixel
labeled outputs using a progressively up-sampling process [23]. Despite its strength and
versatility, the FCN model loses a lot of detail and lacks spatial consistency of pixels owing
to a lot of pooling and up-sampling procedures [24].

The uNet is a symmetric U-shaped FCN that was first employed for image segmen-
tation in biomedicine [25]. The performance of uNet is increased above that of regular
FCN by merging the underlying spatial information gained by down-sampling with the
input of up-sampling via skip connections. Deep learning approaches based on uNet
have made significant progress in the areas of forest type and tree species classification
using remote sensing data in recent years. Wang (2020) used HSR images to classify forest
types using the uNet model. When compared to the classification results of FCN, support
vector machine, and random forest models, the result has been improved considerably [26].
Cao (2020) suggested an enhanced Res-uNet network based on the uNet structure for tree
classification utilizing HSR imagery [27]. To extract the multi-scale feature of an image, the
novel method optimized the uNet with the residual unit of ResNet [28]. The experimental
results revealed that, when compared to uNet and ResNet, the upgraded Res-uNet model
produced superior results since it could extract the spatial and spectral properties of an
image more efficiently.

Despite the fact that the optimized Res-uNet model offered new possibilities for tree
species classification in HSR images, it failed to consider the advantages of multi-temporal
imaging in classifying forest types and tree species. Meanwhile, the enhanced model did



Remote Sens. 2021, 13, 3613 3 of 20

not integrate the deeper Resnet model with the original uNet network, instead using simply
a three-level residual unit to replace the traditional convolutional block in the uNet. It
overlooked the fact that, to some extent, the depth of representations is critical for many
visual identification tasks [28].

With the development of artificial intelligence technologies, several studies explored
the optimized the deep learning model for the land cover classification [29–31]. Recent
studies also investigated the fusion of multiple branch classifiers into a FCN model for
forest type at tree species level classification, which further enhanced the classification
ability of single classifier in a manner of multi-classifier ensemble. Guo (2020) presented a
two-branch FCN8s approach to improve forest type classification based on China’s Gaofen-
2 (GF-2) HSR imagery by fusing with two sub-FCN8s models which were constructed with
the multi-spectral channels and pretrain model, respectively [32,33]. The results showed
that the suggested model could improve the classification performance by combining two
classifiers. More recently, Guo (2020) further exploited the deep fusion model constructed
in an end-to-end manner for mapping forests at tree species levels with HSR satellite
imagery, which further enhanced the classification ability of single classifier in a manner
of combining a two-branch FCN8s model and a conditional random field as recurrent
neural network [34]. However, the advantage of phenological information extracted from
multi-temporal images in forest type and tree species classification was also unemployed
to the constructed model in the above previous studies. Moreover, while the uNet model
has shown its performance in the classification of forest type and tree species, the backbone
model used in the deep fusion model was mostly based on FCN8s method, which lacked
investigating the effect of uNet model as its backbone.

It could be noted that: (1) Despite the fact that multi-temporal high-resolution satel-
lite data are favored for better performance in forest type classification, few research
have studied the performance of building deep learning models with such data to cope
with such a job. (2) Although an improved Res-uNet network has been successfully
applied in the tree species classification, the investigation of combining deeper Resnet
such as 18-layer, 34-layer, 50-layer, and 101-layer residual nets with uNet was insufficient.
(3) Furthermore, while Res-uNet and the deep fusion model have tremendous promise to
answer the challenge of enhancing forest classification accuracy at the tree species level,
research into developing the model by fusing the aforementioned two approaches utilizing
multi-temporal satellite data have been rarely investigated.

As a result, the paper suggested a novel deep fusion uNet model based on multi-
temporal HSR satellite data for mapping forest types at the tree species level. The suggested
model was built on a two-branch deep fusion architecture that employed the deep Res-uNet
model as its backbone and was named dual-uNet-Resnet in the study.

The remainder of the paper is structured as follows. Section 2 presents the Materials
and Methods in detail. Section 3 gives the results, while Section 4 discusses the feasibility
of the optimized model. Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Study Areas

The study area was located within the Wangyedian farm in Northern China at the
intersection between the Inner Mongolia, Hebei and Liaoning Provinces, south-west of
Harqin Banner City, the Autonomous Region of Inner Mongolia, China (Figure 1). The
location is a mountainous region of 800–1890 m above sea level, with a slope of 15–35◦. The
zone is a moderately temperate continental mountain climate with an average long-term
annual precipitation of 400 mm and an annual mean temperature of 7.4 ◦C. The entire area
of the experimental area is 24,700 ha, of which 23,300 ha are forests with 92.10% coverage.
Chinese pine (Pinus tabuliformisCarrière), Larix principis (Larix principis-rupprechtii May),
White birch (Betula platyphylla), and Aspen (Populus davidiana) are the principal tree species
in this area.
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Figure 1. Schematic diagram of study area location and data source. WYD: Wangyedian forest farm;
GF-2 satellite (bands 4, 3, 2 false-color combinations).

2.2. Test Data
2.2.1. Land Cover Types, Forest, and Tree Species Definition

The classification of land cover, forest, and tree species adopted in this study is pri-
marily based on the regulation of forest resources planning, design, and measurement [35],
which are technical standards of the national forest resources planning and design survey.
Based on the analysis of potential land classification results through pre-classifications from
multi-temporal China’s GF-2 images, the classification system of this study was determined
as shown in Table 1. The classes were divided into 10 categories, including Chinese pine
(Pinus tabulaeformis), Larix principis (Larix principis-rupprechtii), Korean pine (Pinus koraiensis),
White birch and Aspen (Betula platyphylla and Populus davidiana), Mongolian oak (Quercus
mongolica), Shrub land, Cultivated land, Grassland, Construction land, and other non-forest
lands. For simplicity, the above types were abbreviated as CP, LP, KP, WA, MO, SL, CUL,
GL, COL, and ONFL as shown in Table 1.

Table 1. Classification system of the Wangyedian study areas.

Test Area Level One Level Two Level Three

The Wangyedian forest farm

Forest land Woodland

Chinese pine (CP)
Larix principis (LP)
Korean pine (KP)

White birch and aspen (WA)
Mongolian oak (MO)

Shrub land (SL) /

Non-forest land

Cultivated land (CUL) /
Grassland (GL) /

Construction land (COL) /
Other non-forest land (ONFL) /

2.2.2. Multi-Temporal Remote Sensing Data

A set of cloudless panchromatic and multispectral GF-2 data were obtained from
the Natural Resources Satellite Remote Sensing Cloud Service Platform. Since the whole
experimental region requires four satellite imageries to achieve full coverage, we gathered
four remote sensing images in 2017 and 2019, respectively, totaling eight GF-2 images.
The satellite imagery collection dates were 5 September 2017, 29 May and 23 June 2019.
Table 2 shows detailed information of the satellite images including scenery serial num-
ber, image time, solar elevation angle, solar azimuth, and cloud cover. The first image
(5 September 2017) was obtained at the beginning of autumn, when some leaves start to
gradually change colors. The second image (29 May and 23 June 2019) represents the mid-
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summer. All the images contain four multi-spectral channels with a spatial resolution of
4 m and one panchromatic channel with a spatial resolution of 1 m, covering 0.45–0.90 µm
spectral bands, including the blue band (B) (0.45–0.52 µm), green band (G) (0.52–0.59 µm),
red band (R) (0.63–0.69 µm), near infrared band (NIR) (0.77–0.89 µm), and panchromatic
band (0.45–0.90 µm).

Table 2. Parameter information for GF-2 remote sensing images in the study area.

Scenery Serial Number Image Time Solar Elevation Angle (◦) Solar Azimuth (◦) Cloud Cover (%)

4074551 5 September 2017 36.139 163.305 2%
4074552 5 September 2017 35.978 163.166 2%
4082058 5 September 2017 36.039 163.724 0%
4082059 5 September 2017 35.878 163.586 0%
4029092 29 May 2019 21.675 156.181 0%
4029093 29 May 2019 21.526 155.893 0%
4072605 23 June 2019 19.695 156.174 2%
4072607 23 June 2019 19.549 155.842 7%

All the GF-2 satellite images were preprocessed in four steps: Radiometric calibration,
atmospheric correction, ortho-rectification, and satellite image fusion. The first step was
the radiometric calibration. By applying the absolute radiometric calibration coefficients
published by the China resources Satellite Data and Application Center [36], the pixel
brightness values of satellite observations have been converted to apparent radiance.
The atmospheric correction of multi-spectral and panchromatic data was then performed
using the Fast Line-of-Sight Atmospheric Analysis of Hypercube technique [37]. The
parameters of the multi-spectral and panchromatic images, as well as one the digital
elevation model (DEM) of 5 m resolution, were then used to perform ortho-rectification
aided by ground control points automatically extracted by image-to-image registration
using a scale invariant feature transformation algorithm [38] with ZY-3 digital ortho-photo
map (DOM) in 2 m spatial resolution [39] as reference. Finally, the multi-spectral and
panchromatic images were merged to achieve 1 m spatial resolution multi-spectral remote
sensing data in the UTM/WGS84 projection with the Nearest-neighbor Diffusion-based
Pan-sharpening algorithm [40].

2.2.3. Sample Dataset

(1) Training and validation sample block

For building the deep learning model, 149 sample blocks (Figure 2) were produced
by visual interpretation, supported by multi-temporary high resolution remote sensing
imagery, forest sub-compartment map, and field survey data. Each sample was made up
of a pre-processed multi-temporal remote sensing image block and a pixel-level image
interpretation block. The sample size is 310 to 310 pixels. During the model training process,
80% of the sample blocks (119 blocks) were selected at random as training data, while
the remaining 20% of the sample blocks are used as verification data (30 blocks). Given
that sample imbalance affects classification effect, the samples were evenly distributed
in the test area (Figure 3) and the number of samples corresponding to each category
was balanced.

(2) Test sample point

In addition, in order to verify the classification accuracy of the deep learning model,
field surveys in the Wangyedian forest farm were conducted in September 2017 and 2019
to validate the proposed model’s classification accuracy. As indicated in Figure 3, a total
of 358 field survey samples were collected. The square area in Figure 3 is the spatial
distribution of part of the training sample blocks, and the circular area is the distribution of
collected test sample points.
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2.3. Workflow Description

Figure 4 shows visually the workflow of the proposed method based on multi-
temporal HSR data. First, by pre-processing the multi-temporal HSR data and labeling of
the selected responding image, the forest type classification dataset was developed. The
suggested model was subsequently trained on the training samples and supervision was
given to the optimal parameters. The back propagation algorithm [41] was used to update
the parameters of the model until the optimal parameter was obtained. Finally, the entire
test dataset with eight GF-2 images was put into the well-trained model in order to build
the final classification map.
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2.4. Network Structure

The dual-uNet-Resnet model suggested is an end-to-end network for classifying
forest types at the tree species level. The network combines the benefits of uNet with
Resnet to develop a new network design by replacing the original uNet unit with a deep
residual network. The deep residual model, the basic uNet backbone, and the suggested
dual-uNet-Resnet model are all described in the following subsections.

2.4.1. Deep Residual Model

In 2015, He et al. introduced a unique convolutional neural network model named
deep residual network, which won the ImageNet image classification competition [28].
The fundamental distinction between a residual model and a standard convolutional block
is their network topology. In the case of a standard convolutional block, the architecture
is often built in a cascade fashion by merging fundamental units such as convolutional
layers, nonlinear mapping layers, pooling layers, or batch normalization. A residual model,
on the other hand, contains a shortcut pathway that connects the input and output in a
building block.

Residual learning fits its residual mapping F (x), where F (x): = H (x) − x, rather than
directly estimating an underlying function H (x). The final mapping of a residual learning
block is defined as F (x) + x, where x is the input, and the operation F (x) + x is performed by
a shortcut connection and element-wise addition, which is equal to the output of a typical
convolutional block, that is H (x), particularly when H (x) is an identity or near identity
mapping. Fitting a residual mapping F (x) is easier than fitting the original mapping H (x),
as He et al. [28] demonstrate, especially when H (x) is an identity or near identity mapping.

This property allows the depth of the residual network to be expanded to exceptionally
deep levels without degrading the network’s classification performance and overcomes
the gradient degradation problem in deeper networks. As a result of these advantages,
numerous residual networks with varying depths of representation, such as 18-layer,
34-layer, 50-layer, and 101-layer residual nets, were built and effectively deployed in a
variety of computation vision applications.
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For the classification of forest types at the tree species level, the gradient degradation
problem will cause another extra serious problem. The discrimination of diverse tree species
attributes would be reduced due to the direct layered construction, making tree species
distinctions difficult to discern. The residual mapping should be used more efficiently to
solve the gradient degradation problem while also boosting the network’s learning method.

2.4.2. UNet Backbone

Olaf Ronneberger et al. [25] introduced uNet in 2015, which used a ground-breaking
architecture and had remarkable success in satellite image classification. It featured an
asymmetric construction with two components: Encoder and decoder.

The encoder was used to extract spatial characteristics from imagery and followed
the standard structure of a convolutional network. A convolution block consists of
two 3 × 3 convolution operations followed by a max-pooling operation with a pool-
ing size of 2 × 2 and stride of 2. This block is repeated four times, with the number of
filters in the convolution doubling after each down-sampling. Finally, the encoder and
decoder are linked by a series of two 3 × 3 convolution operations.

The decoder creates the segmentation map from the encoder characteristics. The
decoder employs 2 × 2 transposed convolution operations [25] to up-sample the feature
map while also reducing the feature channels to half. Then, a series of two 3 × 3 convolution
processes is repeated. This sequence of up-sampling and two convolution operations, such
as the encoder, is repeated four times, reducing the number of filters to half at each iteration.
Finally, the final segmentation map is generated using a 1 × 1 convolution operation.
Except for the final layer, all convolutional layers in the uNet employ the rectified linear
unit (ReLU) as an activation function [42].

Furthermore, the uNet architecture employs a skip connection to transfer output
from the encoder to decoder. These feature maps are concatenated with the output of the
up-sampling process, and the resulting feature map is transferred to the subsequent layers.
The skip connections enable the network to recover the spatial information that were lost
during pooling processes.

In fact, at the tree species level, the forest type classification could be considered as
a complex image segmentation problem independent of the human visual system. We
must differentiate between distinct tree species or forest types in satellite imagery that
cannot be identified by human eyes most of the time. The only method to distinguish
between various categories is through variations in image essence qualities, which may be
determined by extracting discriminative features. Although the uNet structure can extract
certain relatively shallow discriminative characteristics across network layers, only the
two sides of the uNet structure interact, which is insufficient for extracting the distinct
type. Furthermore, the gradient degradation problem [41] will develop when the network
design becomes more complex.

2.4.3. Dual-uNet-Resnet Model

The proposed dual-uNet-Resnet model employed uNet as its backbone, but with some
significant modifications. To begin, we broadened the network structure by combining two
uNet models as our deep neural network architecture to extract multi-temporal information.
The original encoder component of each uNet model was then replaced with a deep residual
model, such as Resnet 50, and the residual unit was introduced into the skip connection.
Finally, the decoder concatenated the two encoders and the updated skip connection
layer, then learned the mapping from the low-resolution feature maps and generated
pixel-wise forest type classifications at the tree species level. Owing to such modifications,
dual-uNet-Resnet gains insights into the multi-temporal image under a global perspective.
Accordingly, it maintains steady performance when classifying different categories, without
requiring numerous training samples or a pre-training process. Similar to the original uNet
architecture, each uNet backbone in the dual-uNet-Resnet model also has two parts: The
encoder and the decoder (Figure 5).
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In the encoder part, the proposed dual-uNet-Resnet model contained two encoders.
Each encoder utilized the standard structure of deep residual networks with 50 layers of
depth to extract spatial characteristics from imagery. It was separated into five encoder
phrases, each with a different number of layers. A bottleneck convolution block was
present in each layer. A bottleneck convolution block consisted of a series of 1 × 1,
3 × 3, and 1 × 1 convolution operations, with the 1 × 1 convolution operation responsible
for decreasing and restoring dimensions and the 3 × 3 convolution operation acting as a
bottleneck with reduced input/output dimensions. There are two kinds of shortcuts we
employed, one was performed in identity mapping and the other was done by inserting a
3 × 3 convolution operation into the shortcut connections for addressing the degradation
problem. The down-sampling was performed by the convolution operation with a stride
of two.

In the decoder section, each decoder of the proposed model first up-samples the
feature map using a 2 × 2 transposed convolution operation, and the feature channels are
decreased by half. Then, a sequence of two 3 × 3 convolution procedures were performed.
Following that, the up-sampling and two convolution procedures were combined and
performed four times in total. The number of filters was halved in each repeated stage.
Finally, a convolution operation of 1 × 1 was used to get the final segmentation map.
Except for the final convolution layers, the rectified linear unit (ReLU) activation function
was used throughout the procedure [42].

Since there were two encoders in the dual-uNet-Resnet model to extract multi-temporal
information, we used the decoder fusion approach to create the results of classification to keep
temporal information from each encoder. We employed two types of fusion techniques. The
first is decision level fusion, which combines information at the final level, and the second is
multi-level fusion, which combines the properties of the four encoding stages.

The initial contribution of uNet architecture was to introduce the skip connection.
It connected the appropriate layers before and after the max-pooling and deconvolution
layers, so that spatial information lost during the pooling process could be maintained and
the model spread from the encoder to the decoder. Since the skip connection crossed the
low-level characteristics of the encoder and of the decoder’s much higher level, a semantic
gap might be created between the encoder and the decoder. To alleviate the discrepancy
between the encoder and decoder features, two bottleneck residual convolution blocks
were additionally included into the skip connection, rather than just combining the encoder
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and decoder features. A succession of 1 × 1, 3 × 3, and 1 × 1 convolution operations were
provided to each bottleneck residual convolution block, and a 1 × 1 convolution operation
was inserted into the shortcut connections for addressing the degradation problem, named
bottleneck block (Figure 6).
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To summarize, the proposed dual-uNet-Resnet model ensures that the image dis-
crimination attribute is more obvious while features are extracted among network layers,
resulting in better and more stable classification performance than traditional feature
extraction-based methods. The dual-uNet-Resnet network architecture was depicted in
Figure 5. It is an end-to-end semantic segmentation network that can immediately classify
without any preparation or post-processing.

The suggested model was built in Python utilizing Keras [43] and a TensorFlow [44]
backend. All the experiments were carried out on an Nvidia Tesla K40C GPU. The training
set was separated into subgroups to maximize the network weights and early stopping
criterion (training, validation). We trained the proposed model using mini batches of
size 16 using the Adam optimizer [45]. For all the experiments, the maximum number of
training epochs was set to 10,000, and the training computation duration was around 36 h.

2.5. Accuracy Evaluation Index

The accuracy assessment index included the overall accuracy (OA), Kappa coefficient,
as well as the user’s (UA) and producer’s accuracy (PA) values. The OA is a ratio of
correctly classified samples to all the field survey samples (358 in total) expressed as a
percentage. The Kappa coefficient assesses the consistency between the classification results
and the verification samples. The UA and the PA index mainly refer to evaluating the
classification accuracy of a given class. The UA is determined as the ratio of the total
number of correctly classified samples for a particular class to the total number of samples
belonging to the same class calculated according to the row in the confusion matrix. The UA
is mainly used to evaluate the misclassification of a certain category, which is a complement
of the Commission Error. The PA is calculated by dividing the number of correctly classified
samples in a certain class by the total number of reference samples in that class, and it is a
make-up of the omission error. The confusion matrix assigns the pixels to be categorized
into a certain class.
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3. Results
3.1. Classification Results of the Dual-uNet-Resnet

The dual-uNet-Resnet model’s classification results indicated a high level of agreement
with the forest type of the test site. The OA was 93.30% and the Kappa coefficient was 0.9229
(Table 3). The coniferous tree species including CP, LP, and KP have superior performance
than the broad-leaved tree species including WA and MO. Furthermore, the classification
results of all three kinds of coniferous tree species were well and achieved an accuracy of
around 90%. The precision in categorization of forest types and species with broad leave
was over 85%. The classification accuracy for Mongolian oak species was likewise better
than 90%. The model has also been shown to get good results for classifying non-forest
land types. The PA and UA of cultivated land and construction land are both 100%. It
showed that the proposed model exhibited a superior performance for the type with a
regular texture shape.

Table 3. Confusion matrix of classification result of dual-uNet-Resnet.

CP LP KP WA MO CUL COL SL GL ONFL Total UA (%)

CP 70 4 0 3 0 0 0 0 0 1 78 89.74
LP 3 62 0 0 0 0 0 0 0 1 66 93.94
KP 0 0 15 0 0 0 0 0 0 0 15 100.00
WA 1 0 0 30 1 0 0 0 0 0 32 93.75
MO 0 0 0 1 26 0 0 0 0 0 27 96.30
CUL 0 0 0 0 0 36 0 0 3 2 41 87.80
COL 0 0 0 0 0 0 39 0 0 0 39 100.00
SL 0 1 0 0 0 0 0 22 0 0 23 95.65
GL 0 0 0 0 1 0 0 1 9 0 11 81.82

ONFL 0 0 0 1 0 0 0 0 0 25 26 96.15
Total 74 67 15 35 28 36 39 23 12 29 358

PA (%) 94.59 92.54 100.00 85.71 92.86 100.00 100.00 95.65 75.00 86.21

3.2. Benchmark Comparison for Classification Based on Multi-Temporal Imagery

To validate the classification impact of the proposed dual-uNet-Resnet model, the
subsection evaluated its performance to four existing approaches. The models under
consideration include the uNet model, the uNet model with Resnet 50 as its encoder
(named uNet-Resnet), the dual-FCN8s model, and the standard FCN8s network with
Resnet 50 as its backbone (named FCN8s). To ensure structural equivalence with the
dual-uNet-Resnet model, each branch of the dual-FCN8s retrieved temporal information
and used Resnet 50 as its backbone.

The aforementioned algorithms used multi-temporal spectral characteristics as input.
The OA of the dual-uNet-Resnet model was 93.30%, and the Kappa was 0.9229, which
was better than the other four models (Table 4). The dual-FCN8s model outperformed
the other three models in classification, with an OA of 91.67% and a Kappa of 0.9044. The
uNet-resnet model was next, with an OA of 88.92% and a Kappa of 0.8724. The uNet and
FCN8s models performed similarly, with both achieving an OA of about 86%, however the
uNet model performed better.

According to the comparison above, the results of the dual-branch structure model
were superior to the results of the single branch structure model for the categorization of
forest type and tree species with multi-temporal satellite data. This might be due to the dual-
branch structure model’s ability to not only fully extract multi-temporal characteristics, but
also to make greater use of phenological distinctions across multi-temporal characteristics
to increase the classification result.

All of the above models, especially those that used uNet as its backbone including the
uNet, the uNet-Resnet, and the dual-uNet-Resnet model, could efficiently extract Korean
pine tree species. The dual-uNet-Resnet model outperformed the other models for the
classification of Chinese pine and Larix principis. The PA grew by 13.51 (81.08% to 94.59%)
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and the UA climbed by 6.88 (83.33% to 89.74%) for the Chinese pine, and 14.41 (78.13%
to 92.54%) and 14.67 (79.27% to 93.94%) for the Larix principis. The dual-FCN8s model
outperformed the single-FCN8s model for broad-leaved species, particularly for White
birch and Aspen. It should be noted that the model with dual branch structure performed
much better for the cultivated and construction land types.

Table 4. Classification accuracies of the dual-uNet-Resnet, dual-FCN8s, UNet-Resnet, UNet, and FCN8s for the Wangyedian
forest farm.

Dual-uNet-Resnet Dual-FCN8s UNet-Resnet UNet FCN8s

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

CP 94.59 89.74 97.26 85.54 81.08 90.91 87.84 83.33 82.43 83.56
LP 92.54 93.94 78.13 87.72 95.59 79.27 86.76 84.29 84.06 82.86
KP 100.00 100.00 100.00 93.75 100.00 100.00 100.00 100.00 100.00 71.43
WA 85.71 93.75 100.00 95.12 91.89 100.00 87.10 93.10 76.00 95.00
MO 92.86 96.30 96.43 96.43 96.43 100.00 96.43 90.00 100.00 100.00
CUL 100.00 87.80 94.44 89.47 97.22 74.47 91.67 75.00 86.11 81.58
COL 100.00 100.00 100.00 100.00 95.00 97.44 97.50 97.50 97.50 97.50
SL 95.65 95.65 95.65 91.67 72.73 100.00 82.61 90.48 91.30 75.00
GL 75.00 81.82 75.00 90.00 50.00 75.00 50.00 85.71 50.00 100.00

ONFL 86.21 96.15 76.67 100.00 86.21 92.59 65.52 86.36 83.33 89.29
OA (%) 93.30% 91.67% 88.92% 86.80% 86.08%

Kappa coefficient 0.9229 0.9044 0.8724 0.8477 0.8396

Figure 7 depicted the land cover type obtained from the five models discussed above
at a finer scale. The dual-uNet-Resnet model outperformed the other models in a visual
comparison. Not only did the algorithm provide crisper land cover forms, but it also produced
more accurate results, particularly for mixed-type categorization. Some tiny objects were easily
misclassified in the dual-FCN8s model, and local erroneous bounds were created, causing
departure from the true borders. The uNet-Resnet result revealed that some information on
the land cover boundary were missing. Small land cover regions tended to be circular, and
certain inaccurate classifications were magnified when the common-structure FCN8s and
uNet models were used directly, particularly for the FCN8s model.
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4. Discussion

We developed a novel deep fusion model employing HSR remote sensing imagery
from two dates to improve the performance of forest type categorization at the tree species
level. The experimental results demonstrated that the proposed model could efficiently
extract the main tree species and forest types in the research regions, particularly plantation
species such as Chinese pine, Larix principis, which all had an OA greater than 90.00%.

The time phase of multi-temporal remote sensing data was particularly crucial since
the major objective of this work is to classify forest types at the tree species level using multi-
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temporal HSR optical remote sensing images. The images in May, June, and September
were chosen in this study based on the findings of the literature [46] and the present state
of available GF-2 data in the experimental area for the last 3 years. These periods relate to
the growth and defoliation stages of vegetation in the experimental area, and they include
a variety of phenological data that aids in the classification task. It is worth mentioning
that the two-branch optimized deep learning model outperformed traditional methods
such as the original uNet when it regarded extracting forest types from multi-temporal
satellite data (Table 4). We also strived to incorporate the December image into the training
dataset for classification during the research process in order to improve classification
results. However, the accuracy was dramatically decreased when the December image was
added, and the snow cover area had a considerable impact on the classification result. Thus,
the data of vegetation growth phase and early defoliation period should be selected as
much as feasible when employing HSR remote sensing images for forest type classification.
If obtaining available images during the stages of vegetation’s growth and defoliation was
challenging, the method of multi-resolution optical data fusion, which is also the next
research topic of this study, might be employed for modeling.

Moreover, since this study adopted the supervised deep learning optimization method
to perform forest type classification, the quality and quantity of training samples had
a major impact on the model’s classification result. We employed 149 samples in the
experiment, including 119 training samples and 30 verification samples. However, when
compared to similar studies that performed FCN-based HSR remote sensing classification,
the work obtained comparable classification results with a smaller sample size. Liu et al.
(2018) carried out remote sensing classification of land use types based on the FCN model.
In this study, a total of seven land use types were extracted, and the classification accuracy
was 87.1% [47]. However, this study used 400 orthophotos to extract 2800 sample blocks,
and the sample size was much larger than that of this study. Fu et al. (2017) used the FCN
model and two dates of GF-2 images to extract the land use types of urban areas. The OA
was 81% for 12 land use types [22]. The study divided the two dates of remote sensing
images into 74 image blocks, with each image block having a pixel size of 1024 pixels,
including 70 blocks for training and four blocks for testing. The pixel size of each image
block in our study is only 310 pixels, the sample size was much smaller than that of this
study, but the classification accuracy of our study was better.

Compared with the previous research results of the forest classification at tree species
level using multi-temporal HSR data, the proposed model got better performance. Agata
(2019) classified tree species based on multi-temporal Sentinel-2 and DEM following the
stratified approach with a classification accuracy of 89.5% for broadleaf and 82% for
coniferous species [46]. Ren (2019) based on multi-temporal SPOT-5 and China’s GF-1 data
performed the fine classification of forest types with an accuracy of up to 92% [48]. Persson
(2018) classified common tree species over a mature forest in central Sweden based on a
multi-temporal Sentinel-2 dataset with a classification accuracy of 88.2% [13].

When compared to earlier research results of the forest type classification utilizing HSR
data in the same test region, the approach proposed in the study gotbetter performance.
Xie (2019) based on multi-temporal ZY-3 data, carried out the classification of tree species,
forest type, and land cover type in the Wangyedian forest farm and got the overall accuracy
of 84.9% [15], which was lower than the results of this study. For the results of the tree
species classification, the performance of the Larix principis category improved obviously
using the proposed model which increased from 87.3% to 93.24%. The proposed model
in this study also got better performance than the results in [34], which improved from
85.89% to 93.30%. Categories with an obvious improvement included the Larix principis,
White birch and aspen, Construction land type, in which accuracy increased from 91.3% to
92.54%, from 80.65% to 85.71%, and from 43.75% to 100.00%, respectively. Compared with
the results of [32], the proposed model also performed better, especially for the results of
the Larix principis category, in which the accuracy increased from 89.86% to 92.54%.
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In order to obtain the optimal structure of the proposed model, we also evaluated the
network design of the proposed model. First, four residual networks with varying depths
at the encoder were compared. The various fusion techniques at the decoder were then
examined. Finally, the classification effects of including a residual convolution module,
a standard convolution module, and not including convolution in the skip connection
were assessed.

4.1. Impact of the Depth of Residual Network on Classification Results

Resnet 18, Resnet 34, Resnet 50, and Resnet 101 were included in the comparative
residual networks. Table 5 showed that the Resnet 50, better than the other three models,
had pretty excellent results in classification. The weight of the Resnet 50 was updated
by 19 s per epoch. Although the processing speed was not the fastest, however, it got
the best performance by the comprehensive comparison. For the remaining three models,
the classification effect of the proposed model based on Resnet 34 and Resnet 101 were
similar, but the running speed of the Resnet 34 was much faster than the Resnet 101, which
increased from 31 to 19 s for one epoch update. The processing speed of the Resnet 18
was the fastest, but its classification effect was relatively poor, possibly due to the shallow
depth of the residual network.

Table 5. Impact of the depth of residual network on classification accuracy.

Resnet 101 Resnet 50 Resnet 34 Resnet 18

PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) PA(%) UA(%)
CP 89.19 97.06 94.59 89.74 95.95 88.75 93.24 86.25
LP 95.65 86.84 92.54 93.94 88.41 95.31 89.86 91.18
KP 100.00 93.75 100.00 100.00 100.00 93.75 100.00 100.00
WA 92.31 90.00 85.71 93.75 90.91 93.75 87.80 94.74
MO 89.29 92.59 92.86 96.30 92.59 92.59 89.29 96.15
CUL 100.00 78.26 100.00 87.80 94.44 80.95 97.22 76.09
COL 97.50 100.00 100.00 100.00 100.00 100.00 90.00 100.00
SL 86.96 100.00 95.65 95.65 86.96 86.96 86.36 95.00
GL 75.00 90.00 75.00 81.82 66.67 100.00 66.67 80.00

ONFL 79.31 100.00 86.21 96.15 86.67 96.30 90.00 96.43
OA(%) 91.78% 93.30% 91.92% 90.46%

Kappa coefficient 0.9055 0.9229 0.907 0.8903
Time for One Epoch 31 s 19 s 19 s 8 s

Figure 8 depicted the classification results of the four residual networks in further
detail. All the residual networks above performed well, except the Larix principis cate-
gory was misclassified as Chinese pine by Resnet 18, and the Korean pine category was
misclassified as Construction land by Resnet 101.

4.2. Impact of the Different Fusion Strategies of the Decoder

Table 6 displayed the results of two types of decoder fusion strategies: Final decision
layer fusion (dual-uNet-Resnet-DeMerge) and multi-level fusion involving all of the layer
fusion (dual-uNet-Resnet). It was clear that the multi-level fusion technique outperformed
the decision layer fusion technique, particularly for the Larix principis, Cultivated land, and
Grassland categories. This might due to the fact that spatial information could be extracted
more efficiently from the multi-level fusion technique, particularly for types with regular
shape and texture. Figure 9 depicted the results of the two decoder fusion procedures in
further detail. It was clear that the multi-level fusion method produced superior outcomes.
The multi-level fusion technique significantly improved the categorization result of the
Larix principis category.
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Table 6. Impact of the different fusion strategy of the decoder on classification accuracy.

Dual-uNet-Resnet Dual-uNet-Resnet-DeMerge

PA(%) UA(%) PA(%) UA(%)
CP 94.59 89.74 98.65 76.84
LP 92.54 93.94 76.47 98.11
KP 100.00 100.00 100.00 88.24
WA 85.71 93.75 86.84 97.06
MO 92.86 96.30 92.86 100.00
CUL 100.00 87.80 91.67 82.50
COL 100.00 100.00 100.00 100.00
SL 95.65 95.65 100.00 92.00
GL 75.00 81.82 66.67 100.00

ONFL 86.21 96.15 86.67 100.00
OA(%) 93.30% 90.38%

Kappa coefficient 0.9229 0.8893
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4.3. Impact of Inserting the Convolution Module into the Skip Connection

One of the major components of the uNet model is the skip connection. The re-
search investigated the classification impact of adding the residual convolution module
(dual-uNet-Resnet), ordinary convolution module (dual-uNet-Resnet-ConvConnect), and
without any convolution module (dual-uNet-Resnet-WithoutConnect) in the skip connec-
tion to validate the effect of adding the convolution module of different architectures in the
skip connection. According to Table 7, the classification accuracy significantly improved as
the complexity of the convolution module increased. First, the overall classification accu-
racy was raised from 91.01% to 93.30%. This trend has also been shown by the optimization
effects of Larix principis, Cultivated land, Construction land, Shrub land, and Grassland.
As shown in Figure 10, the classification accuracy increased following the addition of the
residual convolution module, particularly in areas with several categories.

Table 7. Impact of inserting the convolution module into the skip connection.

Dual-uNet-Resnet Dual-uNet-Resnet-ConvConnect Dual-uNet-Resnet-WithoutConnect

PA(%) UA(%) PA(%) UA(%) PA(%) UA(%)
CP 91.78 90.54 97.22 87.50 94.59 89.74
LP 88.06 88.06 86.57 96.67 92.54 93.94
KP 100.00 100.00 100.00 93.75 100.00 100.00
WA 94.29 100.00 92.31 94.74 85.71 93.75
MO 100.00 93.10 92.59 92.59 92.86 96.30
CUL 97.22 77.78 100.00 85.71 100.00 87.80
COL 92.11 100.00 97.50 100.00 100.00 100.00
SL 86.96 95.24 90.91 95.24 95.65 95.65
GL 58.33 63.64 58.33 87.50 75.00 81.82

ONFL 86.67 100.00 96.67 100.00 86.21 96.15
OA(%) 91.01% 93.06% 93.30%

Kappa coefficient 0.8968 0.9203 0.9229
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5. Conclusions

We proposed a novel deep fusion uNet model based on the multi-temporal HSR
satellite data in this study to maximize forest mapping performance at the tree species
level. To increase pixel-wise mapping accuracy, the suggested approach combined the
benefit of phenological difference from multi-temporal data with the powerful features
of the deep Res-uNet model. With an OA of 93.30% and a Kappa of 0.9229 for the test
regions, it demonstrated the model’s excellent potential for forest mapping at the tree
species level. The results also show that it was possible to obtain a remarkable result for
mapping plantation species such as Chinese pine and Larix principis tree species.

In view of the importance of forest resource mapping, the proposed deep fusion
uNet model provided a feasible optimization idea for the forest type mapping at the tree
species level based on the multi-temporal HSR images, which will make an important
contribution to improving the management level and sustainable development of China’s
forest resources.
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