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Abstract: Understanding forest dynamics at the stand level is crucial for sustainable management.
Landsat time series have been shown to be effective for identification of drastic changes, such as
natural disturbances or clear-cuts, but detecting subtle changes requires further research. Time series
of six Landsat-derived vegetation indexes (VIs) were analyzed with the BFAST (Breaks for Additive
Season and Trend) algorithm aiming to characterize the changes resulting from harvesting practices
of different intensities (clear-cutting, cutting with seed-trees, and thinning) in a Mediterranean forest
area of Spain. To assess the contribution of airborne laser scanner (ALS) data and the potential
implications of it being after or before the detected changes, two scenarios were defined (based on
the year in which ALS data were acquired (2010), and thereby detecting changes from 2005 to 2010
(before ALS data) and from 2011 to 2016 (after ALS data). Pixels identified as change by BFAST
were attributed with change in VI intensity and ALS-derived statistics (99th height percentile and
forest canopy cover) for classification with random forests, and derivation of change maps. Fusion
techniques were applied to leverage the potential of each individual VI change map and to reduce
mapping errors. The Tasseled Cap Brightness (TCB) and Normalized Burn Ratio (NBR) indexes
provided the most accurate results, the latter being more precise for thinning detection. Our results
demonstrate the suitability of Landsat time series and ALS data to characterize forest stand changes
caused by harvesting practices of different intensity, with improved accuracy when ALS data is
acquired after the change occurs. Clear-cuttings were more readily detectable compared to cutting
with seed-trees and thinning, detection of which required fusion approaches. This methodology
could be implemented to produce annual cartography of harvesting practices, enabling more accurate
statistics and spatially explicit identification of forest operations.

Keywords: BFAST; clear-cutting; cutting with seed-trees; thinning; Spain

1. Introduction

Sustainable forest management is needed for simultaneous production of socio-
economic benefits and reduction of the climate change effects, minimizing deforestation
and forest degradation, protecting soils, and preserving biological diversity and water
resources [1]. Achieving sustainable management requires knowledge of forest disturbance
and overall dynamics, as this information aids in understanding the current state of forests
and their response to changes [2]. Since forests are in continuous change, forestry experts
have joined efforts to develop reliable and timely systems for monitoring change across
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different spatial and temporal scales [3]. Remote sensing plays an essential role in provid-
ing insights for sustainable forest management [4,5], with the capacity to tackle a range of
information needs, such as land cover stratification [6], estimation of forest structure [7],
and monitoring change over time [8].

Landsat is the longest globally running Earth Observation program, with more than 40
years of archived data [2]. Landsat provides the scientific community with repeating mea-
surements through time, enabling a more comprehensive understanding of the complexity
of forest disturbance and dynamics [8,9]. The use of Landsat data for change detection
is not recent [6]; however, there was a shift in the focus of change detection triggered by
the opening of the Landsat archive in 2008 [8,10]. Before the opening of the archive, the
inclination to address change detection was to compare two images from different dates
due to the high cost of the data. After 2008, the vast amount of available imagery led to a
new research field aimed at tracking disturbances with time series [11,12]. Reference [13]
pioneered the employment of time series by demonstrating its enhanced contribution to
the knowledge of forest characteristics compared to the use of a single image. In this line,
reference [14] evidenced the benefits of using Landsat time series compared to single-date
Landsat data, yielding better results in predicting current forest structure. Landsat time
series metrics significantly improved predictions of live aboveground biomass compared
to single-date Landsat data, achieving predictive accuracies similar to LiDAR metrics, as
well as increasing the sensitivity of the predictive models for high biomass estimates.

Much of the disturbance-detection research employing Landsat time series has focused
on detection of abrupt change, since the spectral alteration is more readily detectable [1,8].
Some abrupt changes can be driven by forest management practices such as clear-cutting.
Clear-cutting is clearly visible from satellite images and readily detected with automated
algorithms [15–17]. While clear-cutting has been well-documented, the characterization of
changes related to cutting with seed-trees (residual cuts) or thinning (partial cuts) has been
less studied. Reference [16] distinguished different harvesting practices-clear-cuts, residual
cuts and partial cuts-using NBR Landsat time series. Their results demonstrated that
clear-cutting was a straightforward mapping effort, showing the highest accuracy values,
whereas residual and partial cuts were more challenging. Partial cuts were mostly confused
with non-harvesting practices as they represent gradual changes with less obvious effects
on the landscape. Residual cuts tended to be confused with clear-cutting, showing no
differences in their spectral response. Reference [18] interpreted similar forest changes
using Sentinel-2 images and reached similar conclusions. Efforts to characterize partial cuts
and clear-cuts have also been conducted using airborne laser scanning (ALS) data [3,19].
Harvesting practices cause changes in the canopy cover, which can be captured by ALS.
Canopy cover metrics derived from ALS data have been shown to be effective for the
discrimination of thinning-like practices [20].

Spectral vegetation indexes (VIs) have been proved suitable for change monitoring,
with the NDVI being one of the commonest VI used [21], albeit it has been demonstrated
that other VIs have better performances in terms of abrupt change detection, such as
deforestation [22,23]. VIs enable identifying trends associated with different types of
change. Trend analysis derived from time series datasets has led to the development of a
good number of automatic change detection algorithms, with LandTrendr [24], Vegetation
Change Tracker (VCT) [25] and Breaks for Additive Season and Trend [26] some of the most
widely used [12]. A range of different land changes have been identified by employing the
BFAST algorithm, such as deforestation [27,28], drought-related disturbances [29] or the
response to flooding [30,31], regrowth [32], vegetation browning and greening [33,34] or
clear-cutting [17]. These varied changes driven by different factors showcase the capacity
of BFAST applied to remotely sensed data to assess changes in the natural environment.

The effectiveness of these algorithms to identify abrupt changes by leveraging time
series has been well-demonstrated; however, their ability to assess change information
associated with gradual change is less developed [1]. In addition, little research has been
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done regarding the potential of integrating different VIs to improve the characterization of
abrupt and subtle changes driven by different forest management practices [35].

Many studies aimed at detecting changes driven by forest management practices have
been conducted in boreal forests [16,18,19,36,37] or tropical forests [22,27,38]. In Mediter-
ranean environments, there are also some examples of clear-cutting detection [15,39,40],
but these experiences are isolated examples compared to the large number of studies
conducted in other environments. The research deficit in Mediterranean forests is in part
due to a greater difficulty in detecting silvicultural interventions motivated by the smaller
extent of the changes [1,41]. The smaller the changes the less accuracy in their detection
is achieved [17]. Reference [16] reported that for forest management practices larger than
5 hectares, accuracies of 93% were achieved but for those smaller than 2 hectares the accu-
racy dropped to 66%. As illustrative examples, reference [42] analyzed the characteristics
of the Canadian forest harvesting, reporting that by the late 1990s clear-cuts were generally
larger than 50 ha across most of Canada, whereas [17] claimed that clear-cut areas averaged
about 3 ha in a forest area in France, and [39] reported that most clear-cuts in Italy are in the
range of 1–3 ha. In light of these differences, the changes occurring in Mediterranean forests
can be consistently different from those in boreal forests, resulting in spectral trajectories
with different patterns that could hinder the detection of changes.

The goal of this study was to test the capacity of the Landsat time series and BFAST
algorithm to detect and characterize a range of change types over a Mediterranean forest
in northern Spain. Thus, the following specific objectives were addressed:

(1) To assess the performance of BFAST and a range of VIs to identify areas subject to
changes related to silvicultural practices;

(2) To characterize the detected changes by identifying harvesting practices of varying
intensity, from clear cuts to cutting with seed trees and thinning; and

(3) To test whether the inclusion of ALS metrics evaluated before or after the detected
change provides greater accuracies in the classification of harvesting practices.

2. Materials and Methods
2.1. Study Area and Data

Our study focused in the Urbión Model Forest area, the largest continuous forested
area (177,394 ha) in the Iberian Peninsula [43], which is located in Burgos and Soria
provinces (northern Spain) (Figure 1). The Urbión Model Forest is situated in a moun-
tainous area between 900 to 2000 m above sea level. Despite the cold and long winters
associated with the altitude and continental character of the region, the climate is mainly
characterized by warm and dry summers typical of the Mediterranean climate [44]. The
annual average temperature is 9.3 ◦C and annual precipitation ranges from 546 to 631 mm.

The region hosts important timber industries and thereby it is an area with intense
forest management, where changes due to sanitary issues are minimal. Pinus pinaster
Ait. and Pinus sylvestris L. are the dominant species, coexisting with other species such as
Fagus sylvatica L., Quercus ilex L., Quercus faginea Lam. and Pinus nigra J.F. Arnold [43]. In
addition, this region encompasses some protected areas, e.g., Cañón del Río Lobos Natural
Park, where Juniperus thurifera L. (Iberian Juniper) can be found.

2.1.1. ALS Data

Airborne laser scanning (ALS) data covering the entire region of interest were ac-
quired during the leaf-on 2010 campaign by the Spanish National Programme of Aerial
Orthophotography [45]. The acquisitions have a minimum density of 0.5 points per m2

and vertical RMSE < 0.4 m. The ALS dataset was processed with FUSION software [46] to
generate a 2-m digital elevation model, enabling the estimation of height above ground
for each vegetation point. Points below 2 m were not considered in calculating two forest
structural metrics: the 99th height percentile (p99) and the forest canopy cover (fcc).
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Figure 1. (A) Location of the study area in the Mediterranean basin, in the Spanish provinces of
Burgos and Soria (B), and (C) main forest species distribution in the Urbión Model Forest, according
to the Spanish National Forest Map.

2.1.2. Landsat Time Series

Landsat data (path/row 201/031) covering the study area were downloaded from
the United States Geological Survey archive. A total of 472 Landsat Collection 1 Level 2
surface reflectance images acquired during the period 1984 to 2016, with cloud cover less
than 80%, were analyzed. Fully compatible time series data were used to facilitate reliable
change detection. Pixels with clouds and cloud shadows were vetted with Fmask [47],
and an additional buffer was used around the identified cloud and cloud shadows to
remove edge contamination. Six Vegetation Indexes (VIs) (Table 1) were computed for each
of the cloud-cleaned Landsat images: Normalized Difference Vegetation Index (NDVI),
Normalized Difference Moisture Index (NDMI), Normalized Burn Ratio (NBR), Tasselled
Cap Brightness (TCB), Tasselled Cap Greenness (TCG) and Tasselled Cap Wetness (TCW).

Table 1. Vegetation indexes calculated from the Landsat bands, where NIR is the near infrared band
and SWIR1 and SWIR2 the first and second shortwave infrared bands, respectively.

Vegetation Index Formula Reference

NDVI (NIR − RED)/(NIR + RED) [48]
NDMI (NIR − SWIR1)/(NIR + SWIR1) [49]
NBR (NIR − SWIR2)/(NIR + SWIR2) [50]
TCB [51–53]
TCG [51–53]
TCW [51–53]

2.2. Detection of Harvesting Practices

The BFAST algorithm was applied over forest pixels for identification of change and
no-change. Those areas identified as change were later classified as different harvesting
practices thanks to a reference database manually delineated.

2.2.1. Forest Mask

A forest mask was created to ensure that the changes detected were in fact forest
disturbances and no other land cover dynamics. Random forests models [54], implemented
in the R package RandomForest [55], were used to identify pixels that had once been forest
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throughout the study period. Landsat images from 2005 and 2016 (with <80% cloud cover)
were used to create annual composites for those two years. For each pixel, the observation
with highest NDVI was selected as the composite value. Furthermore, some annual NDVI
and NBR statistics were derived from each year’s imagery. The optimal predictors for
classification were identified with VSURF (variable selection using random forests) [56]
aiming to improve the classification performance. The final classification model included
NIR and SWIR of the 2005 and 2016 composites, the minimum and average NDVI and
NBR of both years, and the green spectral band of 2005 as predictors.

2.2.2. BFAST Implementation

The BFAST algorithm was applied to identify changed and non-changed pixels. BFAST
integrates an iterative decomposition of time series into trend, seasonal and remainder
components, with methods for detecting changes within time series [26]. This methodology
defines two periods within a time series: a historic period, considered as a stable time interval
in which no abrupt changes have occurred, and a monitoring period, which will be analyzed
for change detection. The historic period can be manually defined, based on the knowledge
of the area, or automatically detected by the algorithm [29]. The data of the historic period
were used to fit a model, which is extrapolated to the monitoring period to assess if the new
observations conform or not with the stability of the model. To observe whether or not
the extrapolated model remains stable in the monitoring period, the algorithm applies a
measure of discrepancy called moving sums (MOSUMs) of the residuals [29]. A structural
breakpoint is declared when the MOSUMs exceeds the 95% significance boundary. BFAST
is applied at pixel level generating two outputs, the breakpoint timing (when the breakpoint
is detected) and the change magnitude. The change magnitude is estimated deriving the
difference between the median of the fitted model and the new observations during the
monitoring period [29]. Positive values of change magnitude indicate an abrupt increase
in activity, while negative values of change magnitude indicate an abrupt decrease in
activity [17]. While the timing is only provided for the breakpoints, the change magnitude
information is given in a spatially continuous way.

Landsat-based VIs time series were analyzed with BFAST Monitor method [29] us-
ing the bfastSpatial package in R (https://github.com/loicdtx/bfastSpatial, accessed on
30 November 2020) and maps of change were generated. We explored two different sce-
narios to assess the potential implications of having ALS data after or before the detected
changes. These scenarios consisted of the definition of two monitoring periods of the
same length (5 years) but with a different temporal location of the ALS data (acquired
2010) relative to the monitoring period. (Figure 2). In scenario A the monitoring period is
2005–2010; in scenario B the monitoring period is 2011–2016. With this design, in scenario A
the changes detected are those from 2005 to 2010, and in scenario B the changes detected
are those from 2011 to 2016. The historic period was determined automatically using the
ROC approach implemented in BFAST [29]. A “harmonic” seasonal single-order model
was fitted for each historic period (1984–2004 for scenario A, and 1984–2010 for scenario B).
The trend component was omitted as it tends to generate false breakpoints and to inflate
change in magnitude values [27].

2.2.3. Selection of Training Points

All pixels included in the forest mask were classified into no change or change related
to harvesting practices: clear-cutting, cutting with seed-trees and thinning (Figure 3). These
three harvesting practices are characterized by a different proportion of cut down trees:
clear-cutting involves the removal of all the trees in a stand, cutting with seed-trees implies
preserving a small number of dispersed trees needed for natural regeneration, and thinning
is an intermediate harvest in which a variable proportion of trees is removed to reduce the
stand density and to enhance the quality and growth of the remaining trees. The thinning
class included a range of cutting intensities in the area, from light (15%) to heavy (60%)
thinning. We did not consider potential subtle changes associated with sanitary issues

https://github.com/loicdtx/bfastSpatial
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during the studied period as they were not relevant according to our knowledge of the
study area. Reference polygons of variable size (0.3–9.4 ha) were manually digitized based
on contemporaneous high-resolution imagery from Google Earth and PNOA (with imagery
available from 2005, 2007, 2009, 2011, 2014 and 2017). From each polygon sample points
were randomly selected, making up a 400 training samples (100 points per class). The
reason behind the decision to create 100 samples per class was to ensure class balance
avoiding overestimation of the most representative classes ([57]) and to ensure a large
number to accommodate the data dimensions ([58]).
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2.3. Classification Models
2.3.1. Random Forests Models

Random Forest (RF) classification models were calibrated with the training sample
of 400 points described in Section 2.2.3. An individual RF classification model was fitted
for each VI analyzed and each scenario (i.e., six RF models per scenario). ALS metrics
(fcc and p99) calculated in Section 2.1.1 as well as the change magnitude derived from
BFAST (Section 2.2.2) were used as predictor variables for the calibration of the RF models
(Figure 4). In addition to the twelve change maps generated from this classification process
(six change maps per scenario), an overall classification model (hereafter called ALL) per
scenario was calibrated by employing the ALS metrics and the six VI pools of change
magnitudes. Therefore, finally there were a total of 14 change maps. Because RF classifiers
consist of a combination of decision trees, where each tree contributes with a prediction
and the final class is the most voted by all the decision trees [54], a reliability measure was
defined using the percentage of votes (see Section 2.4).
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The BFAST output breakpoint timing was not included as a predictor variable for
two reasons: (1) it does just marginally improve the accuracy of the classified maps [59]
and (2) its inclusion could incur large omission errors due to the existence of changes not
declared as structural breakpoints. There could be subtle changes (as thinning operations)
that cause a slight decrease not sufficient to surpass the algorithm threshold that defines a
structural breakpoint [60].

2.3.2. Validation

The validation process was designed to identify the overall accuracy of the change
detection process, and the confusion among change classes in each scenario, via confusion
matrices built at the pixel level. Each change map accuracy was individually assessed with
independent validation datasets independent from the data used to develop the classifica-
tion, avoiding any spatial overlapping between the training and validation datasets. The
validation dataset consisted of 496 samples for scenario A and 515 for scenario B, allocated
following a probabilistic stratified design. The four classes of change (no-change, clear-
cutting, cutting with seed-trees and thinning) served as strata, resulting in 348 random
points for no-change areas and 148 within change areas for scenario A, and 370 points
for no-change and 145 within change areas for the scenario B. High-resolution imagery
from Google Earth and PNOA were used to visualize the validation datasets, which were
labeled with the type of change (without change year attribution).

2.4. Fusion Maps

To leverage the potential of each individual VI change map for identification of har-
vesting practices and to reduce mapping errors [21,28], we created new maps of change by
applying three different fusion approaches (Figure 5). Specific rules establishing rankings
of frequency and the reliability measure (i.e., percentage of votes in the RF, see Section 2.3.1)
of the class assigned in each VI change map were implemented in R code to select fusion
classes. When there was a tie in the ranking, the VI change class predicted with the greatest
accuracy was preferred. The three fusion techniques implemented are described as follows,
where F MAX and F SUM use also the percentage of votes as an aggregation criteria, as
in [61]:

(i) FUSION. A fusion map was created by selecting the most frequent class amongst the
six VIs change maps. For example, in Figure 5 clear-cutting is selected, as it happens
in 3 out of 6 VI maps;

(ii) F MAX. A fusion map was created by selecting the class with the greatest reliability
measure in any of the VI change maps. For example, in Figure 5 thinning is chosen,
since the reliability measure of TCG (50%) is the greatest; and
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(iii) F SUM. A fusion map was created by selecting the overall most voted class, i.e.,
summing reliability measures of the all VI change maps. For example, in Figure 5
clear-cutting is selected, as the total reliability measure of its three selecting VI (60%)
exceeds the reliability measure of the thinning class (50%).
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Figure 5. Example of different fusion options conducted for a specific pixel classified with six
RF models, each calibrated with different outputs from the BFAST analysis. The change classes
are: (1) clear-cutting (CC), (2) cutting with seed-trees (CS), (3) thinning operations (TH) and (4) no
change (NC).

3. Results
3.1. VIs Overall Accuracy Performance

Classifications into the categories no change, clear-cutting, cutting with seed-trees,
and thinning, yielded overall accuracies ranging from 70% to 85% (Figure 6). Accuracies
were greater for scenario A among the individual VIs tested. TCB and NBR stood out from
the rest of the VIs, with overall accuracies over 85%. TCB achieved its best performance
(85.69% versus 74.32%) in scenario A (with ALS metrics at the end of the BFAST monitoring
period), while NBR improved from 80.24% in scenario A to 85.02% in scenario B (with
ALS metrics at the beginning of the BFAST monitoring period). Among the VIs tested, the
NDMI and NDVI performed well in both scenarios, showing greater accuracy values for
scenario A. The least accurate VI was the TCG with overall accuracy values around 70%
and the TCW performed particularly poorly in scenario A (70.56%).
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at the end of the monitoring period; (right): scenario B, when ALS data were acquired at the beginning
of the monitoring period.
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3.2. Performance in Classification of Forestry Practices

Omission and commission errors differed substantially across harvesting practices
with a general increase in errors in scenario B (Figure 7). TCB performed better than the
other VIs in identifying the clear-cutting in scenario A, with 15% commission error and
8.11% omission error. However, in scenario B, NBR outperformed TCB, achieving 31.25%
and 5.38% of commission and omission errors, respectively. TCB and NBR had similar
performance in detecting thinning areas. TCB yielded better results in scenario A, with
commission and omission errors of 35.65% and 22.35%, respectively, whereas NBR was the
most accurate in scenario B, with commission and omission errors of 40.24% and 26.87%,
respectively. As for the cutting with seed-trees class, the NBR was the most accurate VI in
both scenarios, with commission and omission errors of 44.68% and 0% in scenario A and
55.56% and 13.04% in scenario B.
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beginning of the monitoring period.

The accuracy assessment revealed that the no-change class had larger omission errors
(mostly caused by confusion between non-change and thinning) than commission errors,
whereas the other classes were more affected by commission error (Figure 7). The no-
change class showed commission and omission errors of 4.75% and 13.51%, respectively, in
scenario A, and of 5.37% and 9.46% in scenario B. Clear-cutting was the most accurately
classified of the three harvesting practices; in this case, commission errors originated from
its confusion with no-change but specially with cutting with seed-trees. Clear-cutting and
cutting with seed-trees are expected to produce a similar decrease in the VI magnitude
which leads to its misclassification. However, when the cutting-seed tree occurred prior to
the ALS acquisition, ALS data detect the trees left for natural regeneration, and contribute
to improve their distinction (Figure 8).
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Figure 8. NBR BFAST results and ALS P99 metric differences for two pixels in which a breakpoint is
detected in 2009. (a) Represents a pixel within a clear-cutting area while (b) is a cutting with-seed
trees pixel.

3.3. Fusion Maps

The overall accuracy of the FUSION and FSUM maps were greater than the overall
accuracy of FMAX and all individual VI maps. FUSION had an overall accuracy of
88.51% in scenario A and 87.16% in scenario B. Among the three harvesting practices,
thinning and cutting with seed-trees benefited more from the fusion approach than clear-
cutting (Figure 9). Commission errors of both thinning and cutting with seed-trees were
smaller with fusion maps than with any of the VIs individually assessed. For instance,
FUSION decreased the commission error of thinning from 35.65% to 28.83% (Table 2)
in scenario A (where TCB was the best performing individual VI) and from 40.24% to
29.17% in scenario B (where NBR was the best performing individual VI). The decrease of
commission errors in the cutting with seed-trees class is only observed in scenario A (from
44.68% to 25.71%). None of the fusion approaches improved the detection of clear-cutting
by individual VIs.
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Figure 9. Commission and omission errors of the fusion change classification approaches. (A): Sce-
nario A, when ALS data were acquired at the end of the monitoring period; (B): scenario B, when ALS
data were acquired at the beginning of the monitoring period.

Table 2. Validation of the best change classifications performed in the study area for each scenario of
monitoring period and for the fusion results of all the VIs used in this study. Errors units are %.

Scenario A
Monitoring Period: 2005–2010

ALS after Change

Scenario B
Monitoring Period: 2011–2016

ALS before Change

The most successful VIs: TCB The most successful VIs: NBR

Class Commission error Omission error Commission error Omission error
Cutting with

seed-trees 44.68 0.00 55.56 13.04

Clear-cutting 15.00 8.11 31.25 5.38
Thinning 35.65 22.35 40.24 26.87

No change 4.75 13.51 5.37 9.46

Fusion approach Fusion approach

Class Commission error Omission error Commission error Omission error
Cutting with

seed-trees 25.71 0.00 55.26 26.09

Clear-cutting 20.93 8.11 23.91 10.26
Thinning 28.83 7.06 29.17 37.80

No change 2.28 13.79 3.63 6.76

4. Discussion

In this study, we applied methods for identification of forest changes in Mediterranean
forests, and classification into three harvesting practices. The TCB and NBR were the most
successful VIs among the six essayed [15,16,21,62]. Nevertheless, other VIs like the Nor-
malized Difference Fraction Index (NDFI) and the TCA [63] have shown promising results
for detection of changes of low intensity [27,28,64] in other areas and their performance
might be tested in our Mediterranean study site.

Clear-cutting was, as expected, the type of change best characterized, with omission
and commission errors similar to those achieved by other authors (8.11% and 15% for
scenario A and 5.38% and 31.25% for scenario B). Reference [16] reported an omission
error of 16.2% for clear-cutting detection in a boreal area in Canada, and clear-cutting
was classified in Finland with commission errors ranging between 7–11.6% [18]. Clear-
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cutting in France was detected with 19% and 54% of omission and commission error,
respectively [17], while in Italy, reference [40] achieved omission errors ranging between
16–55% and commission errors smaller than 15%. The similar spectral response caused
by clear-cutting and cutting with-seed trees explained in part the commission errors
obtained. However, cleared shrublands were also misclassified as clear-cutting, probably
due to inaccuracies in the forest mask. It is important to work with an accurate forest
mask, to get the best performance from the algorithm [59,60] especially in Mediterranean
conditions [40]. Furthermore, the size of Landsat pixels (30 m) makes the derivation of
forest masks challenging, particularly in heterogeneous or open forests [28]. The spatial
resolution also has an impact on change detection accuracy, particularly for small clear-
cut patches [17]. Although a general increase in the harvest patch median size has been
observed across Europe [41], Spain shows a median patch size similar to France or Italy,
smaller than those observed in northern countries [41].

The low spectral change response that causes thinning operations is more likely to be
classified as non-change [16,62], justifying some of the omission errors of this class. Our
validation dataset was based on visual interpretation, which may have also impacted the
accuracy results of the thinning class. Clear-cutting and intense thinning practices imply
a lasting change easily interpreted, while thinning of low intensity might cause canopy
openings that rapidly close [65]. Because high-resolution images were only available every
two or three years, this temporal resolution might not be sufficient to discern this forestry
practice; some of the commission errors could in fact be thinning operations correctly
classified by Landsat and BFAST, but misinterpreted in the reference high-resolution
images. Reference [66] stated the difficulty to detect non-stand replacing disturbances such
as thinning when only annual images were at their disposal. Reference [19] reported that
the low thinning intensity that characterized its reference data had a greater effect on the
accuracy results as they are more difficult to identify. Besides, our classification scheme
did not include subtle disturbances such as insect defoliation or stress and some of these
instances could fall into the thinning class [33]. In any case, this approach performance and
its accuracy assessment will be better if field points are available as reference [27].

As in [37,62], omission did not exceed commission in the no-change class, being
consistent among the VIs analyzed, and proving that it is possible to accurately characterize
the forest areas in which no harvesting practices were conducted. The interest of this
identification is in connection with ALS-based forest estimates. Even though ALS data
benefits have been well-documented [7,67], there is an important handicap related to
their temporal resolution. ALS practical usefulness might be reduced in areas where
changes happened after data acquisition [68]. Therefore, it is important to identify the
unchanged areas in which ALS data continue to be operational, and to assess the use of
other metrics to predict current forest attributes in the areas where harvesting practices
were conducted [69,70].

The accuracy results obtained for cutting with seed-trees and thinning with individual
VI were lower than the results reported in [16] and suggested the convenience to apply
fusion techniques to increase accuracy. Among the fusion techniques applied, the three
approaches achieved similar accuracy results, albeit slightly greater for the FUSION ap-
proach in which percentage of votes is not considered. Further research is recommended to
assess the importance of this criterion when fusing methods are applied. Reference [71]
applied the fusion techniques based on the percentage of votes to create a forest land cover
map, and achieved higher accuracies, but they did not test our FUSION approach.

ALS-derived metrics complement the magnitude metric derived from BFAST by
improving the identification of harvesting practices especially when ALS data are acquired
after the detected change. The integration of ALS data and Landsat time series enables
one to better differentiate those harvesting practices more likely to cause a similar spectral
response. Thanks to the increased availability of multi-temporal, wall-to-wall ALS data,
in some countries like Spain, an integration of data from different sensors may provide a
suitable alternative for detecting harvesting practices more accurately. In the absence of ALS
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data acquired after the change, RADAR data may be a valuable source of information to
discern these forest harvesting practices thanks to its capacity to estimate forest height [72].

Change intensity and ALS metrics were the only predictor variables considered to de-
termine the agent of change. Further work is recommended to fit classification models with
change persistence and post-disturbance regrowth [16,73,74] as predictor variables, aiming
to better discriminate the forest harvesting practices. In this sense, the potential of using
bitemporal ALS data for forest harvesting classification has also been demonstrated [3].
The Spanish second complete ALS coverage is expected to be ready by the end of 2021;
these data could also be incorporated for classification purposes. Finally, given the benefits
derived from the fusion approaches, different VI synergies should be explored to assess
the best VI combination to create more accurate change maps [28].

Our results demonstrate that intense changes such as clear-cuts can be mapped alto-
gether with the same accuracy regardless of the ALS data acquisition date (Figure 7). Hence,
Landsat time series can be used solely for drastic change detection when distinguishing
between clear-cutting and cutting with seed-trees is not required. In this regard, since the
spectral response caused by these changes lasts several years [66], the use of inter-annual
time series could be an alternative [75]. Nevertheless, caution should be exercised when
considering inter-annual time series since the spectral signal recovery may vary depending
on the forest conditions. Clear cuts in Mediterranean forests have shown faster recov-
ery times than clear cuts in boreal forests [15]. Unlike drastic change detection, subtle
changes caused by thinning are better characterized with intra-annual time series [18]; thus,
time-series algorithms with one image per year frequency are not adequate for thinning
detection [31]. Dense time series integrating images from different sensors [76] pose an
opportunity to increase the accuracy of the detected changes [23]. Additionally, the BFAST
monitoring algorithm has been recently implemented in the Google Earth Engine, sup-
porting the replication of the methodology over large areas and alleviating the users from
downloading and processing bulky files [77].

The results obtained in this study confirmed the suitability of integrating one ALS
coverage, Landsat time series and BFAST to detect a range of harvesting practices in a
Mediterranean study region. Since information about harvesting is important for carbon
cycling reports [78], the methodology developed in this work could be implemented to
produce annual cartography of harvesting practices enabling more accurate statistics and
spatially explicit identification of these operations. Complete and updated national scale
cartography of harvesting practices is currently missing, as it is not produced for the study
area nor at a national scale [15,79]. Besides, the results obtained can be used in the future
to develop and adapt forestry management policies to ensure sustainable management of
exploited forest areas [80,81].

5. Conclusions

In this study, six Landsat-based VIs time series were analyzed with the BFAST algo-
rithm, as a means for characterizing changes resulting from harvesting practices of different
intensities in a Mediterranean forest area. Fusion approaches were assessed and ALS met-
rics were included as predictor variables to improve the change characterization. The
results demonstrated the suitability of Landsat time series and ALS data to detect changes
caused by harvesting practices of different intensity, but with greater accuracy when ALS
data were acquired after the change occurred. TCB and NBR were the VIs with better
performance, while TCG performed the worst and NBR performed particularly well for
thinning classification. Clear-cuttings are more readily detectable compared to cutting with
seed-trees and thinning, which requires fusion approaches to increase mapping accuracy.
The results are relevant for countries that aim at monitoring their forest interventions and
reporting harvest area statistics.
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