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Abstract: Simple and accurate determination of merchantable tree height is needed for accurate
estimations of merchantable volume. Conventional field methods of forest inventory can lead to
biased estimates of tree height and diameter, especially in complex forest structures. Terrestrial laser
scanner (TLS) data can be used to determine merchantable height and diameter at different heights
with high accuracy and detail. This study focuses on the use of the random sampling consensus
method (RANSAC) for generating the length and diameter of logs to estimate merchantable volume
at the tree level using Huber’s formula. For this study, we used two plots; plot A contained deciduous
trees and plot B consisted of conifers. Our results demonstrated that the TLS-based outputs for
stem modelling using the RANSAC method performed very well with low bias (0.02 for deciduous
and 0.01 for conifers) and a high degree of accuracy (97.73% for deciduous and 96.14% for conifers).
We also found a high correlation between the proposed method and log length (−0.814 for plot
A and −0.698 for plot B), which is an important finding because this information can be used to
determine the optimum log properties required for analyzing stem curvature changes at different
heights. Furthermore, the results of this study provide insight into the applicability and ergonomics
during data collection from forest inventories solely from terrestrial laser scanning, thus reducing the
need for field reference data.

Keywords: forest biometrics; TLS; point cloud; RANSAC; CloudCompare; merchantable volume;
tree-level assessment

1. Introduction

Overpopulation has placed increased pressure on forest resources worldwide, and the
demands for developing accurate and efficient forecasting and planning has also increased.
Forest inventories are the main tool used to describe forest structure and quantify forest
resources [1]. Precise estimation of volume is an essential factor in a forest management
plan (FMP). Volume estimation provides the volume of wood in the forest and directly
or indirectly can be used to determine forest biomass, the amount of carbon storage and
sequestration (with increasing concern of climate change issues), and the fuel source.
Current information on merchantable timber volume is a key element in sustainable forest
management, for wood products and their potential value at market prices [2]. Until
recently, forests were mainly inventoried manually using conventional approaches, which
often resulted in biased estimations. Merchantable volume is a function of two important
tree variables: (a) diameter and (b) height [3,4]. Diameter is commonly measured using
calipers, logging tapes [5], and relascopes [6] in higher portions of the stem, while tree
height or length is commonly measured using clinometers, laser rangefinders, hypsometers
based on ultrasonic technology, and logging tapes [7,8]. Increasingly there is a need for
regular and reliable updates of forest inventories (e.g., timber assessment of annual growth
rates and stocking percentages) for planning and marketing purposes. Taper functions
are widely used to estimate merchantable volume, as well as total trunk volume [9], and
a variety of equations describing growth patterns for particular tree species have been
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used for the development of taper functions [10–12]. However, the applicability of well-
calibrated taper functions is limited to only a few commercial tree species. Moreover,
conventional methods for the construction of taper functions are usually laborious and
costly. Aside from requiring felled trees to measure trunk diameter at different heights,
sampling requires tree removal that can not only cause dynamic changes in forest structure,
but its functionality may be altered as well [2,13,14].

Modern remote sensing technologies, such as light detection and ranging (LiDAR),
offer the advantage of conducting inventory surveys automatically, with high quality
and reliability. The applications of terrestrial laser scanning (TLS) have largely focused
on modelling forest structural metrics, such as height [15–18], diameter [15–18], stem
volume [8,19,20], above-ground biomass [21,22], and branch architecture [23], among
others. These modern techniques have proven to be superior to conventional field surveys
for a series of reasons. For example, precise identification of the correct upper stem height
and diameters along different portions of the stem from detailed point clouds.

Terrestrial laser scanning also offers greater detail in terms of a spatial analysis, which
results in less bias and higher accuracy compared with conventional field survey tools such
as hypsometers, clinometers, rangefinders, and relascopes. Dassot et al. [18] proposed a
semi-automatic method for modelling the merchantable stem volume of standing trees
based on simple geometric fitting from TLS data. Comparisons with the field measure-
ments demonstrated strong agreement between the datasets regardless of the tree species
and size. More specifically, the relative differences of the TLS estimates remained pri-
marily within a range of ±10% for estimating the merchantable stem volume. Similarly,
Fernández-Sarría et al. [24] statistically explored the residual biomass after the extraction
of the merchantable volume. According to their results, the highest accuracy was found
when the voxel method was used for a pruned biomass volume prediction with R2 = 0.73.
A study conducted by Yrttimaa et al. [25] demonstrated the feasibility of TLS in mapping
forest biodiversity indicators; they introduced a method for quantifying downed dead
wood using the random sampling consensus method (RANSAC) cylinder fitting approach
and visual interpretation to aid in trunk detection. Their results showed that downed
dead wood volume was automatically estimated with an RMSE of 15.0 m3/ha (59.3%),
which was reduced to 6.4 m3/ha (25.3%) when visual interpretation was incorporated. In
another study, Amiri et al. [26] used visual interpretation to identify all the reference stems,
and they compared them with stems obtained through laser scanning. The evaluation of
the automatically detected stems showed a classification precision of 0.86 and 0.85 and
recall values of 0.7 and 0.67 for plots 1 and 2, respectively. Finally, Olofsson et al. [27] used
a modified version of RANSAC and the Hough transform on TLS data to develop and
validate a method for detecting and measuring stem attributes with high accuracy. Their
results showed that the most accurate diameter measurements for pines were obtained
with an RMSE of 7% for a defined plot radius of 20 m.

Although the algorithms have been researched to improve the TLS point cloud preci-
sion and accuracy [27–29], some algorithms and methods need further improvements, such
as extracting forest attributes from TLS data and data acquisition protocols. These draw-
backs that cannot be eliminated limit the processing efficiency and accuracy of extracting
forest attributes [30].

To our knowledge, ours is the first attempt to utilize very dense TLS-based point
clouds together with the RANSAC cylinder fitting method to extract the merchantable
volumes of two widespread commercial tree species, European oak (Quercus robur L.) and
Norway spruce (Picea abies (L.) H. Karst.). The objectives of this study were to (i) illustrate
how TLS data can solely provide robust and reliable estimates of forest resources using
the RANSAC method to accurately model merchantable stem volumes using two different
experimental plots, and (ii) define the optimum log properties required for analyzing tree
curvature changes at different heights to fully automate the process of log geometric fitting
for merchantable height estimates.
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2. Materials and Methods
2.1. Characterization of the Study Area

The research area is located in the School Forest Enterprise in Kostelec nad Černými
lesy (Figure 1). We established two experimental plots, each 25 × 25 m in size; plot
A (49◦54′45.15′′ N; 14◦52′11.44′′ E to 49◦54′44.98′′ N; 14◦52′12.75′′ E) is dominated by
European oak, and plot B (49◦54′50.19′′ N; 14◦52′23.61′′ E to 49◦54′50.12′′ N; 14◦52′24.98′′

E) is comprised of Norway spruce. The terrain profile is gently sloping (0–5%), with an
altitude of about 420 m a.s.l., a mean annual temperature of 7.5 ◦C, and mean annual
precipitation of 600 mm. The area is mainly characterized by even-aged managed forests
over the past 50-60 years.
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Figure 1. Map of Czechia, including the geographic locations of the two study areas. We used the
coordinate system WGS 1984 Web Mercator (auxiliary sphere).

2.2. TLS Data Acquisition and Pre-Processing

We used the Trimble TX8 scanning system (Trimble Inc. Sunnyvale, California USA,
1978); laser scanning was conducted on 26 August 2019. To ensure the optimal degree
of overlap between the scanning positions, we used a multi-scan approach with a total
of seven scans. The first scan was placed at the center of each plot and the rest were
distributed along the periphery of each plot; the duration for each scan was 10 min. In
addition to the scanning parameters, fixed exposure was disabled, and the third level
of the scan density setting was used. The device provides a 360◦ × 317◦ field-of-view
acquisition, enabling optimal scanning performance of high-resolution scans up to 120 m,
and it generates 555 Mpts/per scan in third level mode. TLS has a maximum distance
range of 120 m (for most surfaces), a scanning speed of 1 M pts/sec, and range systematic
error of < 2 mm. To calibrate the laser scanner, the field instant method was used. To ensure
better performance for the scan registration process, the laser scanner reference sphere set
was used [31]. In parallel with the scans, marked wooden sticks were placed on the ground
at each station. That permitted us to measure the scanning positions using the Trimble M3
total station, with an error of 2 mm in the horizontal distance. The registration of the point
clouds was conducted in the RealWorks software (Trimble Inc. Sunnyvale, CA, USA, 1978)
with a point density of 0.01 m for both plots.
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2.3. Filtering of Ground and Off-Ground Points

After the pre-processing phase, the point clouds were extracted and imported in
CloudCompare software V.2.10. (Zephyrus, Paris, France, 2011) [32], where the cloth
simulation filter (CSF) algorithm [33] as a third-party plug-in was applied to separate and
extract the ground from off-ground points. In the general parameter setting tab of the
surface base filter, the relief terrain option was chosen due to the slightly inclined plane
in both plots, whereas for calibration, cloth resolution was set to 1.1; as for maximum
iterations, we used 500.

2.4. Sampling-Estimation and Measurement of Log Attributes

To derive the merchantable volume on each plot, 15 sample trees were randomly
chosen. The merchantable height for both plots was determined by visual interpretation
of the stem profile, from stump height until cut off height (Figure 2). For plot A, the oak
site, the main bifurcation and the high degree of stem curvature were used as the main
parameters for determining the cutting height (e.g., Figure 2a,b). If the tree did not have any
of the above characteristics, the merchantable height for both deciduous and conifer trees
was determined by measuring the smallest upper stem diameter (Figure 2c) (threshold ≥
19 cm) [34] using the point picking tool in CloudCompare.
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Figure 2. (a,b) Examples showing the use of visual interpretation for the determination of cut off
height for forked trees (plot A), and (c) use of upper diameter limit of 19 cm for the determination of
the cut off height (plot B).

After the merchantable height for each tree was determined, the stems were segmented
into several logs using the stem intercept method (point cloud segmentation).

The total number of logs (137 logs in plot A and 49 logs in plot B) was determined by
visual interpretation (e.g., Figure 3). The higher the degree of stem curvature, the higher the
number of logs produced. For the segmentation, the RANSAC algorithm [35] is adopted
as a third-party plug-in in CloudCompare (Figure 4). RANSAC is an iterative process, to
estimate parameters of a mathematical model from a set of observed data that contain
outliers, outliers are to be accorded no influence on the values of the estimates [35]. Each
iteration comprises of three primary steps.
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Figure 3. (a) Example of log segment (open brown color) on deciduous tree (plot A) including fuzzy
selection of branch leaves, and (b) selection of log points (purple color) for direct use of the RANSAC
algorithm (without any additional point cloud processing, e.g., branch removal), demonstrating the
high degree of tolerance and performance of the algorithm on data with large numbers of outliers.
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Figure 4. (a,b) Example of a coniferous log, showing the estimated values (log length and diameter)
using the RANSAC method directly applied to the stem.

The first step creates a minimal subset Pms of points, where Pms ⊂ Point Cloud =
{p1, . . . , pN} and ms < N. This subset contains the minimum number of points needed to
define a candidate shape (e.g., five for a cylinder). For the cylinder, one point is picked
from the point cloud at a time, and a set of tests are performed to determine if the newly
sampled point is on the same or a different shape face as the points already populating Pms.
The newly sampled point is added if it lies on a different face respect to all points in Pms,
otherwise it is discarded. The second step defines a candidate primitive shape from Pms.
For cylinders the orientation of the shape is found using the normals to two of the points
in Pms. Afterward, the size is determined from the whole set of points in Pms. Finally, the
center is calculated from the reconstructed shape. The third step is to score the candidate’s
primitive shape (Equation (1)) [36]:

Score(I) = ∑N
i=1 min{δ(pi, I), ε} (1)

where N is the number of points in the point cloud, δ(pi, I) is the shortest distance between
pi and the surface of the candidate shape I, and ε is the error tolerance.

A cylinder is a good candidate for reaching the studied trees’ general shape to fit the
produced logs (Figure 4). However, in the case of plot B, we did not consider a single
fitted cylinder for modelling the entire merchantable height (from stump to cut off height).
That is due to the differences in diameter at the upper and lower cross-section of each log.
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Therefore, to eliminate this bias each stem was also divided into logs (roughly 3). Although
most of the trees in plot B were characterized by a high degree of stem straightness, stem
curvature was also considered to determine the final number of logs produced.

In the general parameter settings tab of RANSAC shape recognition in CloudCompare,
we used a cylinder as a primitive, (400 and 480 was the minimum support number of points
per cylinder for plots A and B, while the maximum support number of points per cylinder
was 880 and 770 for plots A and B, respectively). For the advanced parameters, based
on the size and curvature of each stem, we used the maximum distance to the cylinder
(parameter “e”) ranging from 0.004 to 0.084 for deciduous (plot A), and 0.005 to 0.077
for conifers (plot B), sampling resolution (parameter “b”), maximum normal deviation
(parameter “a”), and overlook probability (default = 0.01). More details regarding the used
parameters are described in Table S1.

The results of the RANSAC adjustment for each log yielded the length (e.g., Figure 4a)
and diameter in each cylinder (e.g., Figure 4b). Afterward, Huber’s formula (Equation (2))
was applied in each log to determine the estimated merchantable volume.

V =
π × D2 × L

4
(2)

where π = 3.1416, D is the log diameter in the middle and L is the length of the log.
Concomitantly, we measured the length and the diameters of the extracted logs to be

used as reference data. More specifically, the point picking tool was used to measure the
length of each log (e.g., Figure 5). For log diameter, two diameters were measured from
a perpendicular direction in the middle of each log using the same tool (e.g., Figure 5).
Moreover, the point picking tool allowed us to locate the exact positions of the desired
points with high precision. Simultaneously, we were able to rotate the log models in any
direction, by holding any xyz axis without losing the reference plane, as well as the previous
set selected. This allowed us to rotate the model 90 degrees and select two additional
points, perpendicular to the initial points, thus preserving the methodological consistency.
The final diameter was then determined as the average of these two measurements in
each log.
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2.5. Validation

We tested the normality of our data in both plots, and for plot A the measured and
estimated data were normally distributed based on the Shapiro–Wilk and Kolmogorov–
Smirnov tests. However, for plot B the measured and estimated data were not normally
distributed based on Shapiro–Wilk and Kolmogorov–Smirnov tests.

For plot A we used a paired t-test, and for plot B the Wilcoxon signed-rank test was
used. To investigate the relationship between calculated bias, volume residuals, and log
attributes (diameter and length) we used the Spearman’s ρ correlation (Equation (3)). All
statistical tests were considered significant at p-values less than 0.05.

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(3)
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where ρ is the Spearman’s rank correlation coefficient, d2
i is the difference between the two

ranks of each observation, and n is the number of observations.
Linear regression was also used to model the relationship between the measured and

estimated volumes. Accuracy assessment was performed at a tree-level to evaluate the
accuracy of estimated merchantable volume by calculating the R-squared (Equation (4)),
RMSE (Equation (5)), and RMSE% (Equation (6)).

R2 = 1− ∑n
i=1 (Ei −Mi)

2

∑1
i (Ei −Mimean)

2 (4)

where, Ei and Mi represent the estimated and measured values, respectively, Mimean refers
to the average of the measured values, and n is the number of observations.

RMSE =

√
∑n

i=1 (Estimatedi −Measuredi)
2

n
(5)

where Estimatedi is the estimated value, Measuredi is the measured value, and n is the
number of observations.

RMSE% =
RMSE

x
× 100 (6)

where RMSE is the root mean square error and x is the average value.
Additionally, we used the following validation metrics; mean absolute deviation

(MAD; Equation (7)), mean square error (MSE; Equation (8)), and mean absolute percentage
error (MAPE; Equation (9)).

MAD =
1
n ∑n

i=1|xi − x| (7)

where xi is the performance value for period i, x is the average value, and n is the number
of observations.

MSE =
1
n ∑n

i=1 (Yi − Ŷi)
2 (8)

where Yi is the vector of the measured value, Ŷi is the vector of the estimated values, and n
is the number of observations.

MAPE =
1
n ∑n

i=1
Measuredi − Estimatedi

Measuredi
(9)

where Measuredi is the measured value, Estimatedi is the estimated value, and n is the
number of observations.

Box-and-whisker plots were also used to illustrate the variance for the measured
and estimated volumes. For the distribution of error around the mean, we computed
the average of the absolute errors or mean absolute error (MAE). The MAE is given by
Equation (10):

MAE =
1
n ∑n

i=1| fi − yi| =
1
n ∑n

i=1|ei| (10)

|ei| = | fi − yi|, where fi is the estimated value, and yi is the measured value.
Finally, we also calculated Bias (Equation (11)) and Bias% (Equation (12)), as follows:

Bias =
1
n ∑ xi − xj (11)

Bias% =
Bias
xj
× 100 (12)

From Equations (11) and (12), xi is the measured value, xj is the average of the
estimated values, and n is the number of observations. The entire validation process
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was conducted in Matlab R2017b. An illustration of the methodology is summarized
in Figure 6.
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3. Results and Discussion
3.1. Considering the Full Merchantable Length

This study aimed at expanding our current capabilities to estimate merchantable stem
volume directly from TLS-based point clouds. As shown in a study and by Liang et al. [37],
the utilization of a multi-scan approach from TLS ensures the construction of highly
accurate tree models for the estimation of the most important tree attributes. Full coverage
of the targeted trees by the point cloud data and minimizing occlusions can significantly
reduce the estimated volumetric error (<10%).

According to the regression analysis, the estimated merchantable volume was iden-
tical to the measured merchantable volume. For both plots, the R-squared results and
the measured versus estimated volumetric values were highly correlated with R2 = 0.99
and RMSE = 0.03 for plot A, and R2 = 0.99 and RMSE = 0.02 for plot B (Figures 7 and 8).
Similarly, Mayamanikandan et al. [38] used the RANSAC algorithm on TLS point cloud
data to compare the reliability of volume estimates. They obtained an R2 of 0.96, indicating
good accordance with the field measurements. Based on the paired t-test for plot A (de-
ciduous), there were statistically significant differences between measured and estimated
merchantable volumes. In contrast, there were no statistically significant differences for
plot B (coniferous) based on the Wilcoxon signed-rank test (Figure 8), which is consistent
with a previous study we conducted [8].

As evident in Figure 8 and Table 1, the RANSAC method slightly overestimated
the merchantable volume in both plots. Our findings are in agreement with those from
Olofsson et al. [27], who reported an overestimation of values in both deciduous trees and
conifers. One reason for this overestimation can be branches. However, according to the
Wilcoxon signed-rank test the difference was rather negligible and insignificant in the case
of plot B with asymptotic significance (2-tailed) of 0.191 (Table 2). We assumed that this
overestimation was likely related to the length of the selected logs (more details are given
in Section 3.2). As described earlier, the higher the degree of stem curvature the higher the
number of logs. In the case of plot B, the (i) number of selected logs was smaller and (ii)
the lengths were longer compared with plot A.
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Table 1. Summary table of descriptive statistics of merchantable volume in m3.

Plot A Plot B

Measured Estimated Measured Estimated

N 15 15 15 15
Range 1.16 1.14 1.21 1.26

Minimum 0.58 0.61 0.19 0.18
Maximum 1.74 1.74 1.40 1.44

Mean 1.03 1.05 0.52 0.53
Standard Error Mean 0.09 0.09 0.09 0.09
Standard Deviation 0.35 0.35 0.34 0.34

Variance 0.12 0.12 0.11 0.12
Skewness 0.57 0.54 1.59 1.64

Skewness Standard Error 0.58 0.58 0.58 0.58
Kurtosis −0.62 −0.68 2.32 2.71

Kurtosis Standard Error 1.12 1.12 1.12 1.12
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Table 2. Wilcoxon signed-rank test (plot B).

Negative Ranks Positive Ranks Z Asymp. Sig. (2-Tailed)

7.0000 8.0000 −1.306 * 0.191
Negative Rank: Estimated < Measured. Positive Rank: Measured > Estimated. * Based on positive ranks.

Despite the shorter log length in plot A, a paired t-test indicated a significant difference
between the measured and estimated merchantable volumes with a p-value of 0.0080
(Figure 8 and Table 3). It is likely that the higher level of structural complexity of the
deciduous tree stems yielded higher bias estimations. Consequently, we also evaluated if
a correlation existed between the length of the logs and the volume residuals (Figure 9)
(more details are given in Section 3.2).

Table 3. Paired t-test results (plot A).

Mean Standard Deviation Standard Error Mean
95% CID 1

t df Sig. (2-Tailed)
Lower Upper

−0.0177 0.0221 0.0057 −0.0299 −0.0055 −3.1040 14 0.0080
1 Confidence Interval of the Difference.
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Although the validation metrics for merchantable volume showed higher accuracy
for plot A compared with plot B (Tables 3 and 4), the paired t-test revealed a significant
difference between the measured and estimated volumes. As evident in Table 4, valida-
tion metrics showed a higher bias in plot A. In other words, the relationship (R2 = 0.99;
RMSE = 0.03) found between estimated and measured merchantable volumes of plot A
was purely random, which means that repeating this method in a different sample set
(deciduous) would not guarantee the same accuracy and performance (Figure 7). The high
agreement between estimated and measured merchantable volumes is consistent with the
results from [18].

Table 4. Statistical summary of validation metrics.

Metric Plot A Plot B Metric Plot A Plot B

MAD 0.02 0.02 MAPE 2.27 3.86
MSE 0.00 0.00 BIAS 0.02 0.01

RMSE 0.03 0.02 BIAS% 1.68 1.49
RMSE% 2.68 4.09 MAE 0.02 0.02

% of accuracy 97.73 96.14 N 15.00 15.00



Remote Sens. 2021, 13, 3610 11 of 14

3.2. Considering Individual Logs

To evaluate the impact of log length on the estimation performance, we used a regres-
sion analysis and Spearman’s ρ correlation (Table 5). We observed a significant relationship
between log lengths and bias; as calculated for each individual log, there was a correlation
coefficient of−0.814 in plot A and−0.698 for plot B. Our results indicate that the longer the
length of the log, the higher the bias; that is, it caused higher bias in a negative direction,
which is translated to an overestimation of the estimated merchantable volume. As evident
in Figure 9, with longer log lengths there was an overestimation in the amount of estimated
merchantable volume (minus bias).

Table 5. Summary table of Spearman correlation results (two-tailed).

Length Estimated Diameter Measured Diameter

CC 1 Sig. CC 1 Sig. CC 1 Sig.

Plot A
Bias −0.814 0 −0.618 0 −0.617 0

Absolute Residuals 0.610 0 0.122 0.157 0.103 0.23

Plot B
Bias −0.698 0 −0.635 0 −0.658 0

Absolute Residuals 0.367 0.009 0.354 0.012 0.332 0.02
1 Correlation Coefficient.

We also observed a significant correlation between log diameters and bias, with a
bias of −0.618 for estimated and −0.617 for measured volumes in plot A, and −0.635 for
estimated and −0.658 for measured volumes in plot B. This finding indicated that the
larger the diameter, the greater the bias in a negative direction (Table 5). In other words,
overestimation was evident in logs with larger diameters and underestimation in logs with
smaller diameters (Table 5).

Finally, evaluating the correlation between absolute residuals and log attributes
showed a similar tendency, meaning that the longer the length of the log, the higher
the value of the absolute residuals (Figure 10), with a correlation coefficient of 0.61 for plot
A and 0.367 for plot B (positive relationships). Figure 10 shows the amount of underestima-
tion and overestimation using different log lengths and volume residuals.
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However, in plot A there was no significant relationship between the absolute residuals
and measured (p-value = 0.23) or estimated diameters (p-value = 0.157). In contrast,
in plot B there was a moderate significant relationship between the absolute residuals
and measured (correlation coefficient: 0.332, p-value = 0.02) and estimated diameters
(correlation coefficient: 0.354, p-value = 0.012), which indicated that the larger the diameter,
the higher the value of the absolute residuals (Table 5). In line with these results, a similar
study conducted in Spain by Pérez-Martín et al. [39], using mobile laser scanning (MLS),
showed higher residuals in stems with larger diameters. More specifically, they found a
lower error in logs with a diameter <25 cm and a higher error with a diameter >50 cm.

Study limitations can exist due to technical constraints; for example, for estimating
smaller logs with high precision, very high-resolution scans, instruments with small beam
divergence, and a small (~10 m) scan position grid are required [40]. The occlusion effects
in the higher stem portions of individual trees from TLS-based point clouds in complex
forest conditions can lead to bias estimations [2,15].

4. Conclusions

We presented a method that provides reliable estimates for merchantable timber vol-
ume, as tested on commercial tree species. One of the main advantages of this methodology
is that tree cutting is not required, nor is there a necessity for stem diameter measure-
ments and additional silvicultural treatments in the field [41]. Merchantable height and
diameter at any height along the stem can be estimated with high accuracy directly from
tree-level remote sensing data. We estimated log lengths and diameters on standing trees
simultaneously using the RANSAC method. This method provided higher elasticity in
measurements compared with more traditional methods (e.g., relascope).

Our findings suggested that RANSAC performed very well for both plots in detecting
and geometrically fitting the logs, not only in the event of the absence of pruned branches
(lower tree portions) but also in cases where significant numbers of branches were present
around the stems (Figures 4 and 5), thus providing a robust and reliable approach for
the extraction and estimation of key forest inventory attributes needed for the estimation
of merchantable stem volumes. The proposed methodology resulted in a high degree of
accuracy in both deciduous (97.73%) and conifer (96.14%) trees, respectively.

In conclusion, we may say that the larger the log, the higher the estimated bias. As our
results indicated, the proposed method (RANSAC) had a higher impact on the accuracy of
log lengths compared with the diameter of the logs. Therefore, it is highly recommended
to divide the logs as much as possible into shorter lengths. This insight is critical because it
can be used for the determination of log length selection in different stem portions. More
specifically, in the case of oaks, we propose using 1 m log lengths for the lower portions
of the stem, where the diameter is larger (e.g., larger than 25 cm) and 2 m for the upper
portions of the stem where the diameter is smaller. For conifers, we suggest the use of 2 m
log lengths for the lower portions (e.g., larger than 20 cm) and 4 m for the upper portions
of the stem. Using these suggested log lengths, we can decrease the residual values and
degree of bias (close to zero). In future work, we intend to maximize the commercial value
of the suggested methodology by creating a code that can analyze the stem curvature
changes at different heights, evaluate log quality and estimate log properties (e.g., length,
diameter), to fully automate the process of merchantable volume estimation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13183610/s1, Table S1: RANSAC used parameters in CloudCompare.
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