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Abstract: One of the challenges in the fight against poverty is the precise localization and assessment
of vulnerable communities’ sprawl. The characterization of vulnerability is traditionally accom-
plished using nationwide census exercises, a burdensome process that requires field visits by trained
personnel. Unfortunately, most countrywide censuses exercises are conducted only sporadically,
making it difficult to track the short-term effect of policies to reduce poverty. This paper introduces a
definition of vulnerability following UN-Habitat criteria, assesses different CNN machine learning
architectures, and establishes a mapping between satellite images and survey data. Starting with the
information corresponding to the 2,178,508 residential blocks recorded in the 2010 Mexican census
and multispectral Landsat-7 images, multiple CNN architectures are explored. The best performance
is obtained with EfficientNet-B3 achieving an area under the ROC and Precision-Recall curves of
0.9421 and 0.9457, respectively. This article shows that publicly available information, in the form
of census data and satellite images, along with standard CNN architectures, may be employed as a
stepping stone for the countrywide characterization of vulnerability at the residential block level.

Keywords: detecting and assessing vulnerability; satellite images and ground surveys; deep learning

1. Introduction

Historical statistics indicate that the poverty rate is steadily receding worldwide [1].
Take, for instance, extreme global poverty. In 1990, 1895 million people had an income
of less than USD 1.90 at constant 2011 purchasing power parity prices (PPP). In 2015,
this value was reduced to 736 million people [2], i.e., an estimated 122,100 individuals
abandoned extreme poverty around the world each day during that period. Although the
poverty rate is receding, global income inequality may be on the rise in some countries [3].
For instance, in the U.S., the top 1% holds 40% of the total net wealth, as opposed to 25%
in the 1980 [4]. Furthermore, the poverty rate is unevenly distributed worldwide, with
Sub-Saharan Africa affected at a much larger scale than the world in general. For example,
in 2016, 95.5% of the U.S. population received as income USD 10 or more daily, versus
31.3% of Mexican people. This income level translates to 16.36 million individuals in the
U.S. and 88.85 million in Mexico living below the international poverty line of USD 10
daily [5]. Poverty means families are going hungry, children have little or no access to
education, reduced services (e.g., electrical power, drinking water), and poor health [6].
Communities of people living in poverty are vulnerable to physical factors and social
exploitation. Building on the principle of Leave No One Behind, the U.N. adopted the 2030
Agenda for Sustainable Development, which included eliminating extreme poverty as its
primary goal.
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Critical steps in combating poverty include identifying, assessing, and tracking the
sprawl of affected communities. These steps are necessary to plan socio-economic inter-
ventions and evaluate their efficacy. For example, periodic national census exercises are
designed to grab an instant photo of a country’s status. Unfortunately, nationwide censuses
require considerable effort and take place only sporadically, e.g., every ten years in Mexico.
A better and more economical approach is necessary to generate timely information on
affected communities’ location and poverty status. Several technological trends can reduce
the cost of this process and produce reliable, up-to-date data. These technologies rely on
sensory information from space [7] as it is becoming increasingly abundant, precise, and
cheap to obtain. Furthermore, recent advances in machine learning techniques make it
possible to extract relevant sensory data indicators, informing and guiding policymakers.

Thus, there has been a considerable interest on mapping vulnerable regions from
remote sensing, particularly employing the images provided by the satellites LandSat [8,9],
Sentinel-2 [10,11], QuickBird-2 [11,12], TerraSAR-X [12,13], Pleiades [14], and the National
Oceanic and Atmospheric Administration (NOAA) Defense Meteorological Satellite Pro-
gram (DMSP) Operational Linescan System (OLS) [15–20]. Both high-resolution [10,12,14]
and low-resolution [10,11,15–17] images have been considered in rural [9] and urban areas
in multispectral [9,10,17], Synthetic Aperture Radar (SAR) [11,13], and color [19,21] images.
Multiple machine learning methods including traditional [8,12,16,18,22] approaches such
as Random Forest (RF), gradient boosting, Support Vector Machines (SVM), and modern
techniques [11,13,14,19,21,23,24] such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) have been deployed. Some open-source code has
been made available to the research community [25]. The scope of assessing vulnerability
scales up from the city level [18], to the country level [26], and to the many countries
level [15,25]. A critical issue that remains to be explored, which is the object of this paper,
is developing techniques for countrywide assessment of vulnerability at the residential
block level using the UN-habitat criteria [27] and census data. In the process, we evaluate
different CNN architectures to establish an optimal mapping between multispectral images
and vulnerability reference values. Moreover, the time seems ripe for implementing a
solution for assessing and fine-grained tracking of vulnerable areas at a countrywide level
to support policy decision-making.

According to Weeks et al. [28], few attempts had been made to establish an index to
define vulnerability beyond the dichotomy slums/non-slums. In their work, Weeks et al.
propose an index for a slum based on the characteristics described by UN-Habitat [27],
which they call Slum Severity Index (SSI). Patel et al. [29] are the first researchers to report
the use of the SSI using microdata from the census as ground truth based on satellite
imagery. This paper extends these efforts by introducing a method for the fine-grained
assessment of vulnerable community sprawls using multispectral satellite imagery and
ground truth data obtained from censuses using deep learning techniques (see Figure 1).
The contributions of this paper include the following:

• A nationwide assessment of settlements’ vulnerability for Mexico is conducted at the
residential block level.

• An alternative vulnerability indicator is developed using the UN-Habitat factors
related to settlements [27].

• Using data composed of hundreds of thousands of records, different convolutional
neural network (CNN) architectures are assessed in the task of mapping satellite
images to the vulnerability index.

• The computer code for this project is made available to the research community. This
should permit the evaluation of this work and serve as a stepping stone for further
progress in the field.

The rest of the paper is organized as follows. The next section describes an approach
to measuring vulnerability using the UN-habitat characteristics and presents a strategy to
assess vulnerability using satellite images and a CNN is described. Section 3 describes the
results of testing the approach described in the previous section. In particular, it is shown
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that CNNs are useful for extracting meaningful features, and the performance of these
architectures is assessed. Section 4 presents a discussion on the relevance of the results in
the context of the related work. The paper concludes with a summary of the findings and
provides recommendations for future research.

Figure 1. Detecting vulnerable communities via satellite imagery and population census. Our approach collects multispectral
satellite images corresponding to the census information of residential blocks in Mexico. After training and assessing the
performance of diverse convolutional neural networks, the results demonstrate that it is possible to establish a robust
mapping between satellite images and vulnerability. This outcome should permit an accurate and up-to-date establishment
of the spatial socioeconomic distribution of vulnerable communities in the country.

2. Materials and Methods

In this approach, learning involves the construction of an automatic inference mecha-
nism mapping satellite images to reference values representing a vulnerability index. This
section details how we address these issues.

2.1. Characterizing Vulnerability

Vulnerability is an elusive term, often bringing to mind crowded informal settlements
without access to essential services. UN-Habitat suggests that an operational definition of
a slum should include [27]: (a) inadequate access to safe water, (b) inadequate access to
sanitation and other infrastructure, (c) poor structural quality of housing, (d) overcrowding,
and (e) insecure residential status. Recently, Roy et al. [22] proposed the Slum Severity
Index (SSI) to blend these aspects of vulnerability. Agglomerating per residential block, they
defined the SSI employing the average number of persons per room (xo), the proportion
of houses without sewage (xs) and toilets (xt), the proportion of dwellings with a dirt
floor and temporary structures (x f ), and the proportion of homes lacking piped and public
water (xw). They then obtained the SSI from the projection of the centered reference values
x− µ = (xo, xs, x f , xw)T − µ on the axis of maximum variability, i.e., the SSI corresponds
to the projection of the reference values on the first principal component of the centered
observation matrix.

PCA maintains the sensibility of other optimization approaches where the underlying
assumption is that the differences are normally distributed and therefore affected by
outliers’ presence. Another issue with PCA is that each new axis represents a certain
amount of the information available, assuming a representation where the first component
points in the direction of maximum variability, and then subsequent ones point in directions
orthogonal to the previous ones. Under this interpretation, the singular values provide a
proxy for the information I expressed by the first l components. PCA works best when



Remote Sens. 2021, 13, 3603 4 of 14

there is a linear relationship between the variables. However, our dataset (see Figure 2)
may not hold up that assumption. Furthermore, reference values in this dataset, such as
the occupancy per bedroom, may have a long tail, which in practice makes it hard for PCA
techniques to provide consistent results as it tries to interpret as Gaussians the distribution
of differences between the dataset and its low-rank decomposition.

Avoiding the sensibility of PCA and considering the distribution in this dataset (see
Figure 2a–e), an alternative to express vulnerability is developed as follows. First, in this
dataset, the reference values range between zero and one, except for the occupancy xo,
which has values larger or equal to zero without a pre-defined upper bound. In this case, a
possible solution may be to threshold and normalize the occupancy distribution with a con-
stant τo as x̂o = min(τo, xo)/τo. Let the unitary vector x̂i = (xs, xt, xw, x̂o, x f )/

√
5 describe

the content of the dataset for data sample i and the weights vector wT = (ws, wt, ww, wo, w f )
describing the relative reference values’ importance. Vulnerability is measured using popu-
lation responses related to the UN-Habitat criteria [27] obtained from a census using the
following procedure. First, from an extensive dataset collected from a nationwide census,
the vectors x̂i for i ∈ {1, . . . , n} representing the reference values for the predictors and
corresponding to the n data samples are considered. The proposed vulnerability index (see
Figure 2f) corresponds to the expression

vi =
wT

|| w || x̂i, (1)

where || w || represents the norm of w, the weights associated to each of the reference
values. The reference classes can be obtained using

C(x̂i) =

{
vulnerable if vi ≥ τv,
non-vulnerable otherwise,

(2)

where τv expresses the threshold after which the residential block is considered vulnerable
assuming that the weights are equal, when at least one of the reference values is one,
τv ≥ 0.2.

2.2. Setup

This dataset consists of 2,178,508 records, corresponding to the residential blocks
for Mexico obtained during the 2010 census [30] (see Figure 3). The census contains an
aggregate of the reference values of interest collected at each house in a residential block.
Following a policy to keep citizens’ privacy, the public census only contains residential
blocks with more than five houses. The resulting distribution of values is nonetheless
singular (see Figure 2). About 60.23%, 6.75%, 59.81%, and 60.49% have (their value is
zero) and 0.43%, 12.16%, 0.88%, and 0.13% do not have (their value is one) sewage, toilets,
running water, and concrete floors, respectively. Additionally, for 99.54% of the records, the
average occupancy is smaller than three, i.e., only 9834 residential blocks have an average
occupancy larger than three. The threshold at τv = 0.2 distinguishes between 853,583
and 1,324,925 records corresponding to the vulnerable and non-vulnerable classes, respec-
tively. For the experiments, a balanced classification problem was created by subsampling
853,583 non-vulnerable records at random. Under the assumption of uniform weights, this
threshold may indicate that each dwelling belonging to a particular block lacks an essential
service or its rooms are overcrowded.

To run the algorithms, an Exxact server with one Titan-X Pascal GPU was employed.
The computer programs extract the geo-location for each residential block using publicly
available data [30]. The programs then downloaded the corresponding 600 m × 600 m im-
age patches of the blue (450–515 nm), green (525–605 nm), red (630–690 nm), near-infrared
(775–900 nm), SW1 (short wavelength infrared) (1550–1750 nm), and SW2 (2080–2350 nm)
Landsat-7 bands for the same year from INEGI (Instituto Nacional de Estadística y
Geografía) [31]. Note that the first three and second three bands correspond to the visi-
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ble V and infrared parts of the electromagnetic spectrum. Landsat-7 is a helio-synchronous
satellite with a repeat interval of 16 days that orbits the Earth at a nominal altitude of 705 km.
INEGI generates these images with the geomedian [32] from those captured between
1 January and 31 December 2010. Although Landsat-7 has a resolution of 30 m/pixel,
corresponding to image patches of 20 × 20 pixels, the image were resized as required by the
architecture under consideration using bicubic interpolation.

(a) sewage (b) toilet (c) running water

(d) occupancy per bedroom (e) concrete floor (f) vulnerability index v

Figure 2. Reference values and vulnerability index histograms. The reference values correspond to population responses
to the census questions. The responses are averaged for the houses in each of the 2,178,508 residential blocks in Mexico.
Note that 60.23%, 6.75%, 59.81%, 11.18%, and 60.49% have (corresponding to a value of zero in the histogram) and 0.43%,
12.16%, 0.88%, 0.45%, 0.13% do not have (corresponding to a value of one in the histogram) sewage, toilets, running water,
an occupancy of more than three people per bedroom, and concrete floors, respectively. In the case of occupancy, for 99.54%
of the records, the average occupancy is larger than three for 9834 of the records. The vulnerability index v is defined in (1).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3. Sample of Landsat-7 satellite images corresponding to the visible (V) bands centered in residential blocks across
Mexico. Each image (a–o) corresponds to a 600× 600 m geographical region.
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2.3. Selecting a Learning Architecture

Given their capacity to extract high-level features, CNNs are employed to construct
the map between satellite image patches and the vulnerability reference value. Functionally,
a CNN [33] includes convolution operations that transform the input data with the applica-
tion of data-driven operators. Researchers, such as Li et al. [34], have concluded that the
layers extract more abstract features subsequently, starting from edges, corners, and repre-
sentations generalizing the pattern sought. In each layer, a CNN applies a linear operator
to the inputs. To express nonlinearities, one applies activation functions to generate each
layer’s outputs. In most cases, one feeds the features developed by the convolutional layers
to a fully connected layer. Eventually, the aim is to represent for regression or discriminate
for classification, the resulting transformed data with hyperplanes in the last layer. The
selected architectures were chosen based on the following criteria: Performance in the
ImageNet benchmark [35], availability of ImageNet pre-trained weights in the Tensorflow
applications repository [36], and the capability of the target computing resources. Based
on these criteria, the CNN architectures selected included ResNet [37], ResNeXt [21], and
EfficientNet [38]. In addition, a baseline was established with LeNet-5 [39]. Other popular
strategies may be pursued, including the employment of Inception-like architectures [40]
or Generative Adversarial Networks (GAN) [41]. The former type of approaches was left
for further consideration as we are including ResNext, an architecture that includes the
Inception capabilities to analyze features at variable scales. Furthermore, as Perez et al. [42]
noted, GANs are most useful in the classification of vulnerable settlements when the ref-
erences are sparse. In this study, the dense reference values available in the census is
complemented with the employment of a high-performance classifier, which itself could be
part of the GAN architecture definition in the discriminant.

LeNet [39]. LeNet is used to establish a baseline for comparison. Its introduction
with a solid performance on MNIST, consisting of a 28 × 28 pixels dataset of digits,
makes it a natural choice for the small image patches in the dataset. This CNN consists
of a first part with convolutional layers and a second part with fully connected layers.
The convolutional stage has three convolutional layers, where the first two are followed
by sampling summarizing layers. Next, the pooling layer reduces the features in each
dimension by half. Finally, the fully connected layers lead to the classification.

ResNet [37]. This CNN still shows a strong performance in a wide variety of computer
vision and pattern recognition tasks. The ResNet paradigm implements in its architectures
the concept of skip connections. That is, suppose that as an input x passes through a
set of layers, it is transformed into F (x). In skip connections, x joins F (x) to compute
H(x) = F (x) + x. In practice, it means that if the overall underlying mapping between
input and output isH(x), the machine learns in F (x) the residualH(x)− x. This config-
uration addresses the degradation problem, i.e., the observation that a deeper network
should not generate a higher learning error than a shallower architecture, when in fact, it
does. He et al. [37] showed that residual networks can be constructed deeper, are easier to
optimize, and gain accuracy from increasing depths.

ResNeXt [21]. ResNeXt implements topologies that split the input into C low dimen-
sional embeddings, transform each path with a mapping CNN architecture Ti(x), and
concatenate the results as F (x) = ∑C

i=1 Ti(x). The transformation functions implement the
ResNet’s [37] bottleneck topology with stacks of 1× 1 (reducing dimensions), 3× 3, and
1× 1 (restoring dimensions) convolutions. Thus, while splitting the input as Inception
models [43], ResNeXt implements in each branch the same topology in a number of paths
C that is called cardinality. From ResNet, ResNeXt also inherits the skips connections,
resulting in the residual function y = x + ∑C

i=1 Ti(x), where y is the outcome.
EfficientNet [38]. This architectural framework systematically addresses model scaling

in terms of depth, d = αφ, width, w = βφ , and resolution, r = γφ, based on a compound
coefficient, φ, which in turn depends on the computing resources available. Then, start-
ing with a baseline architecture in which building blocks are mobile inverted-bottlenecks
(MBConv) [44] with squeeze-and-excitatory components [45], EfficientNet employs the
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compound coefficient to scale up and generate deeper, wider, and higher resolution archi-
tectures. The MBConv modules consist in deepwise convolutions, where each filter acts on
each input channel and ResNet-like skip connections. Squeeze-and-excitatory components
summarize layers with deepwise convolution and learn their importance to scale their value
via a skip connection.

2.4. Detecting Vulnerability

Thus, the machine learning problem in this study is to map the multispectral
20× 20 pixels satellite image patches to the class C(vi) defined by the vulnerability index
vi by employing a CNN. The learning phase takes place as follows. To train a CNN, first an
image dataset with the same positive and negative samples is selected. Then, the CNN is
fed with the corresponding image patches, which are labeled according to the classification
described in (2). The CNNs are trained by optimizing the parameters using backpropaga-
tion during a certain number of epochs employing a loss function defined in terms of the
cross-entropy and a regularization factor as

L(p, q) = −
c

∑
i=1

pi log qi + λLp(θ), (3)

where Lp is the p-norm, λ is a constant, pT = (p1, . . . , pc), and qT = (q1, . . . , qc) correspond
to the inferred and referenced probability distributions, respectively, and c the number of
classes. During testing, given an image patch, Ij, corresponding to a residential block j,
the CNN generates a probability distribution pj for the sample. To define the sample as
positive or negative, one could use a decision threshold τp to accept a certain inference
probability. The performance of the classifiers is evaluated using the area under the ROC
and Precision-Recall curves.

3. Results

To test the algorithms, census data for 2010 were collected, corresponding Landsat-
7 satellite images were retrieved, different CNN architectures were trained, and their
performance was assessed.

3.1. Learning

The balanced dataset containing 1,707,166 records was split in 50% for training
(853,583 records), 25% for validation (426,791 records), and 25% for testing (426,792 records
due to rounding). The same random partition is used to train and test the different
CNN models. The images intensity values were re-scaled to represent each band in the
range between zero and one. To increase the expressiveness of the dataset, the training
dataset was augmented with transformations including horizontal and vertical flip, with
a 0.5 probability, and grid distortion and elastic deformations [46], with a 0.2 probability.
After every epoch, the training and validation datasets are randomly shuffled. Several Lp
regularization schemes were evaluated, settling with L2 with an λ = 0.1. In the experi-
ments, the CNN was trained either with the visible bands or with the visible and infrared
bands. Furthermore, an agnostic position was assumed and a uniform distribution for the
reference values weights was set.

Now, some implementation details are provided for the CNNs under consideration .
The input layer of the CNN architectures was modified to accommodate for three or six
channels depending on whether training occurs with images corresponding to the bands
in the visible (V) electromagnetic spectrum or a combination of bands in the visible and
infrared (V + IR) portion of the electromagnetic spectrum.

LeNet [39]: Current LeNet-5 implementations adopt hyperbolic tangents activation func-
tions in the inner layers and softmax in the last layer. Our best training
results were obtained by employing Stochastic Gradient Descent (SGD) as
the optimizer with a constant learning rate of 10−3 with a momentum equal



Remote Sens. 2021, 13, 3603 8 of 14

to 0.9, a batch size of 128, and training during 100 epochs. For this CNN, we
resize the images to 28× 28 pixels.

ResNet [37]: Models based on ResNet-50 v2 architecture were trained, replacing the top
layer with a flattened layer, and inserting a drop out layer with 20% probabil-
ity, a dense layer of 256 units with ReLU activation function, and a dense layer
with the softmax activation function for two classes. For one model, the V
bands of the images were used, and for the other, the V + IR bands were used.
In both cases, the images were resized to 32× 32 pixels. Transfer learning
with ImageNet [35] weights was applied and then the CNN was trained dur-
ing 100 epochs with a batch size of 128. When using V + IR bands, the input
layer of the model was modified. Then, the ImageNet pre-trained weights
were copied to the other layers before performing training, initializing the
input layer with Xavier [47]. The best results for this CNN were obtained
optimizing with SGD with a learning rate of 10−5 and momentum 0.9.

ResNeXt [21]: The images were resized to 32× 32 pixels and the models were based on
the ResNeXt-50 architecture. As in the ResNet-based models, the top layer
was replaced with a flatten layer, and inserted a drop out layer with 20%
probability, a dense layer of 256 units with ReLU activation function, and
a dense layer with softmax activation function for two classes. The models
were initialized using the weights of the ResNeXt network pre-trained with
ImageNet [35] and then fine-tuned by training throughout 100 epochs using
SGD with momentum 0.9 and a batch size of 128. For the model trained
with the V + IR bands’ images, the input layer was modified to accept those
images and used the ImageNet weights only on the non-modified layers.

EfficientNet [38]: For efficientNet, the images were resized to 224× 224, applying trans-
fer learning with ImageNet [35] weights. When the V bands were used,
the transference was immediate. Otherwise, when the V + IR bands were
used, accommodating the extended number of channels in the CNN input.
Correspondingly, the input layer was initialized using Xavier [47]. Corre-
spondingly, the top layer of the EfficientNet architecture was removed and
replaced with a global average pooling layer. A a drop out layer with a 0.5
probability, along with a dense layer with softmax activation function for
two classes. The best results for this CNN were obtained training during 20
epochs using the Adam optimization method with β1 = 0.9 and β2 = 0.999.
During the first 18 epochs, a learning rate of 0.001 was applied and 0.0001
for the last two. For there experiments, the EfficientNet-B3 architecture was
employed.

3.2. Classification Performance

The performance for the CNNs of interest was assessed employing the test dataset,
which is composed of 426,792 records (see Figure 4 and Supplementary Materials). The
experiments included using the V bands and the V + IR bands available. The Receiving
Operating Characteristics (ROC) curve illustrates the trade-off between the sensitivity
or true positive rate (TPR = TP/(TP+ FN)) and the complement to the specificity or false
positive rate (FPR = FP/(FP+ TN)), where TP, FN, FP, and TN correspond to the number of true
positives, false negatives, false positives, and true negatives, respectively. Correspondingly,
the Precision-Recall shows the trade-off between the precision (P = TP/(TP+ FP) and the
recall (R = TP/(TP+ FN)). Note that TPR and R are the same. Usually, practitioners use them
separately when finding an optimal compromise between TPR and FPR or between P and R,
which occurs at a specific decision threshold value τp. The area under the curve (AUC), for
the ROC and Precision-Recall, is a useful metric to evaluate the performance of a classifier.
High TPR and low FPR values, over a wide range of thresholds, result in a large ROC AUC,
while high values of both P and R generate a large Precision-Recall AUC.
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(a) Residential blocks in Mexico (b) Vulnerability assessment for Mexico

(c) Ground Truth (d) LeNet (e) ResNet (f) ResNeXt (g) EfficientNet

(h) Ground Truth (i) LeNet (j) ResNet (k) ResNeXt (l) EfficientNet

Figure 4. Mapping vulnerability in Mexico using satellite images. (a) shows the location of the 2,178,508 residential blocks
delimited by INEGI [30]. (b) illustrates the vulnerability assessment for Mexico. (c–g) and (h–l) show the assessment
of vulnerability for Mexico City and the city of Acapulco in the Mexican state of Guerrero. Besides showing the results
at different spatial scales, this illustration provides a comparison between Ground Truth (non-vulnerable in yellow and
vulnerable in red) and the different CNN architectures (with a color palette from yellow to red).

Figure 5 shows the curves of TPR vs. FPR (ROC curve), precision vs. recall, for all
the CNN architectures and the employment of the V bands and the V + IR bands. Table 1
shows the numerical values corresponding to the AUC for each case. Note that the use
of the V + IR consistently outperforms the employment of the V bands for all the CNN
architectures under consideration. Similarly, the EfficientNet architecture, with ROC
AUC = 0.9421 and Precision-Recall AUC = 0.9457, outperforms the rest of the CNNs by a
considerable margin.
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(a) ROC curves (b) Precision-Recall curves

Figure 5. Performance of the different CNN architectures with different arrangement of bands.

Table 1. Performance for the CNNs under consideration is expressed as area under the curve (AUC)
for ROC and Precision-Recall. The first two columns correspond to the analysis of V bands images,
while the second two columns correspond to V + IR band images. We obtain the best performance
with EfficientNet with V + IR bands. For these results (best in bold), the test dataset is employed.

V Bands V + IR Bands

CNN ROC Precision-Recall ROC Precision-Recall

LeNet-5 0.8164 0.8032 0.8422 0.8351
ResNet 0.8138 0.8022 0.8475 0.8417

ResNeXt 0.8284 0.8189 0.8376 0.8293
EfficientNet 0.9256 0.9286 0.9421 0.9457

4. Discussion

Vulnerability is a fluid concept that may include social, physical, health, educational,
environmental, economic, and physicological aspects [48]. Nonetheless, its concrete def-
inition is of paramount importance because its establishment will entail the subsequent
approach to risk assessment and reduction efforts. Our approach to the definition of
vulnerability aims to find a tradeoff between the terms proposed by UN-Habitat [27],
the data publicly available for its countrywide detection [30], and an agnostic approach
about the relative importance of the factors employed. Other sources of information, e.g.,
whether houses receive electricity, or prior knowledge of the importance of the different
reference values may provide to be useful in a more refined labeling associated with the
images and further performance of the automatic inference mechanisms, as shown by
Sharma et al. [24] and Ibrahim et al. [23]. Establishing a baseline of comparison with other
classical [8,12,16,22] or modern approaches [13,14,21,23,24] is most challenging. For one,
the data sources, dense [8] or sparse [13], may have local and unique components; the scope
may be a citywide [18], countrywide [26], or regionwide [15,25] interest. At any rate, this
research demonstrates a strong performance with publicly available satellite information
and census data at the fine-grained resolution of residential block and countrywide scale.
There are some applications where the use of a CNN requires a control and experimen-
tal group [49–51]. That is the case for applications where the CNN is employed as an
alternative procedure. In these circumstances, the control group is the golden standard
to assess the effectiveness of a new technique. In the present research, there is no com-
parison with a previous method to determine vulnerability from satellite images because
this study introduces both a source of information and a vulnerability index definition.
However, in parallel to presenting a robust baseline by comparing different CNN archi-
tectures, this paper provides the means and forms to benchmark new approaches on the
same framework.
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This study is based on the reformulation of the census reference values as a classifica-
tion problem where the distinction between vulnerable and non-vulnerable is the result of
the lack of at least one UN-habitat reference value. These results extend Dorji et al. [16],
who also framed their regression problem as a classification one employing nighttime-light
satellite images and classical machine learning techniques, such as gradient boosting. These
results show that this reformulation strategy can be applied also in the case of daytime-
light satellite multispectral images and deep learning based models. In fact, this research
distinguish from others using high resolution imagery [11,12,14], potentially making it
more affordable.

The image resolution employed in this study is relatively coarse, although not un-
common in this field of study [8,17,19]. This choice may permit a widespread adoption of
the method by allowing its application with to open datasets, contrary to the employment
of private high-resolution satellite images such as QuickBird and DigitalGlobe images.
Furthermore, there has been a sizable historical interest in the computer vision research
community to understand the tolerance of detection algorithms to degradation in image
resolution [52]. Despite that, the level of performance achieved in establishing the map
between multispectral satellite images and census data is remarkable. Further research may
explore how the deep learning algorithm may provide explanations for its decisions [53].
This line of study will open rich avenues for investigation, but most importantly, it will
produce less bias and more ethical application of research results [54].

The availability of large-scale, long-term, satellite image datasets makes it possible
to employ eager data methods, such as CNNs, which increase their performance logarith-
mically based on the volume of training data size [55]. Yet, models still play a role. For
example, the comparison of diverse CNN architectures, varying in deep and complexity,
highlights that while convolutions are important for feature extraction, one may find sub-
stantial differences in performance relative to their overall architecture, which may include
the factors of width, depth, resolution, and cardinality employed by EfficientNet [38].
This result is still the subject of widespread interest in the deep learning community, as
it remains debatable in which circumstances deeper networks are better than shallower
ones [56].

An intriguing outcome in the results is the increase in performance achieved with the
employment of the infrared bands. Recent studies on trees’ urban ecosystem services [57]
point out the relationship between socioeconomic indicators and trees canopy. Further
studies may shed light on whether the infrared bands capture some of the associated
temperature differences commonly found across vulnerable communities [58].

5. Conclusions

This paper introduces an approach to detect vulnerability at the residential block
level. It consists of training CNNs to find a relationship between salient features extracted
from satellite images and vulnerability indicators obtained from population census data.
Our extensive experimental results, including hundreds of thousands of records, with
state-of-the-art CNN architectures, show that it is possible to create a high-performance
characterization of this relationship, offering ample opportunity for generalization. In
particular, our experiments show that EfficientNet CNN architectures provide the best
performance relative to other topologies.

In the efforts to reduce vulnerability is important to provide decision-makers with
affordable, reliable, and up-to-date information about its sprawl. Our method introduces a
tool to rapidly assess the spatial distribution of poverty in Mexico in detail and with ample
coverage. This methodology should be a helpful asset to decide expenditure and to evaluate
the progress of remedy programs. Thus, focused attention to vulnerable communities
should result in a more significant return on public and humanitarian funds.

In the future, the employment of satellite radar images will be explored. Although
multispectral images from Landsat, in the visible and infrared bands, are readily available
every 16 days, clouds or time of the day may alter their suitability. On the contrary, Sentinel-
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1 provides Synthetic Aperture Radar (SAR) images, which have a higher resolution, are
unaffected by clouds and can be taken at any time of day, since they are from active sensors.
Furthermore, although these results offer good average performance at a national level, it
may be interesting to explore the opportunities left at a coarser level of analysis at regional,
state, and municipalwide levels. Furthermore, these results make it possible to periodically
evaluate vulnerable communities, even during years when censuses are not carried out by
employing a blend of satellite imagery and deep learning techniques.

Supplementary Materials: The following are available online at https://git.inegi.org.mx/laboratorio-
de-ciencia-de-datos/vulnerability/-/tree/master/maps. Figures S1 and S2 illustrate, respectively,
the assessment of vulnerability for Oaxaca and Acapulco, cities located in the Mexican states of
Oaxaca and Guerrero. The figures show the outcome of the vulnerability assessment using Efficient-
Net, the best performing CNN. Vulnerability is displayed from less vulnerable (yellow) to more
vulnerable (red). The web application at https://tinyurl.com/vulnerable-app shows the results for
the whole country of Mexico. There, the interested reader can select the desired level of detail in the
visualization of the results.
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