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Abstract: The height of the stable boundary layer (SBL), known as the nocturnal boundary layer
height, is controlled by numerous factors of different natures. The SBL height defines the state of
atmospheric turbulence and describes the diffusion capacity of the atmosphere. Therefore, it is
unsurprising that many alternative (sometimes contradictory) formulations for the SBL height have
been proposed to date, and no consensus has been achieved. In our study, we propose an iterative
algorithm to determine the SBL height h based on the flux–profile relationship using wind profiles
and turbulent fluxes. This iterative algorithm can obtain temporally continuous, accurate estimates of
h and is widely applicable. The predicted h presents relatively good agreement with four observation-
derived SBL heights, hJ , h1, hi, and hθ (hJ : maximum wind speed height, h1: zero wind shear height,
hi: temperature inversion height, and hθ : height at which 0.8 times the inversion strength appears
for the first time), especially with hθ , which shows the best fit. In addition, h exhibits a low absolute
difference and relative difference with hJ , which presents the second-best result. The agreement with
hi and h1 may be satisfactory, but small differences are observed, and the one standard deviation
of the mean relative difference is large. In addition, the predicted h is compared with other SBL
height estimation methods, including diagnostic, λ1, λ2 and λ3 (three typical dimensional scale
height parameters) and prognostic equation-based methods, λ(h) (an equation for the growth of h
developed). The diagnostic formulas are found to be appropriate, especially under extremely stable
conditions. Additionally, the equation of λ3 presents the best result of all the dimensional scale height
parameters. However, the prognostic equation λ(h) in our study is very unsatisfactory.

Keywords: stable boundary layer; flux–profile relationship; wind profiles; turbulent fluxes

1. Introduction

The atmospheric boundary layer (ABL) plays an important role in the whole atmo-
spheric system, as it regulates the exchanges of heat, moisture, and momentum between
the Earth’s surface and the free atmosphere [1–3]. The ABL height must be known for a
number of practical applications, for example, when modeling the dispersion of pollutants,
where the upper boundary of the turbulent layer plays a role as an impenetrable barrier to
pollutants released at the surface [4–7].
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The daytime convective boundary layer involves far more complex physical processes
with intense turbulence and, thus, is more difficulty to measure or compute than its
nighttime counterpart [8]. In contrast, the turbulence in the nocturnal boundary layer
is suppressed due to stable stratification. The stable boundary layer (SBL) is easier to
explore the physical structure; nevertheless, many uncertainties remain. Over the past
few decades, numerous measurement techniques have been proposed to estimate the SBL
height (h) based on turbulent parameters (fluxes, turbulent kinetic energy, Richardson
number) or vertical profiles of atmospheric parameters (temperature, humidity, wind,
aerosol concentration and optical (thermal) turbulence estimated from recorded phase
fluctuations) [7,9,10]. For example, Lenschow et al. [11] and Caughey et al. [12] defined h as
corresponding to the height at which the turbulent kinetic energy (TKE) drops to 5% of its
surface value. Unfortunately, vertical profiles of TKE are difficult to measure due to the lack
of appropriate instruments, many of which are not able to determine h. Banta et al. [13,14]
used profiles calculated from high-resolution Doppler lidar (HRDL) scanning data to obtain
the streamwise mean wind U(z) and variance σ2

u(z), the latter of which has been shown to
be approximately equal to TKE under stable conditions [15,16] insomuch that profiles of
σ2

u are essentially equivalent to TKE profiles in the SBL. Alternatively, the SBL has been
defined as the height where the magnitude of the momentum flux reduces to 1% of its
surface value [17]. However, few people can obtain accurate measurements of the vertical
velocity at h in practical applications.

Some researchers determined h based on vertical profiles of temperature, humidity,
and wind, e.g., in [18–26]. However, these approaches suffered from many shortcom-
ings, such as crossing the SBL along a slanted path within a few minutes, providing a
“snapshot”-like profile, having a limited height resolution of routine ascents, the impossi-
bility of obtaining measurements under high wind speeds, noncontinuous observations,
and a lack of turbulent fluxes [27]. In addition, the height of the low-level jet (LLJ) max-
imum calculated by Doppler lidar can sometimes serve as a good estimate of h during
the nighttime [18,27–29]. However, the LLJ does not typically occur during the entire
observation period, and continuous observations cannot be made. In addition to various
measurement methods, many computational parameterizations of h have been proposed
in the literature [22,30–38]. However, there are controversial debates on which expression
is the most suitable for determining h [31,39–41].

The different methods of previous studies have provided a variety of ways to estimate
h. However, all of these approaches have shortcomings. As an alternative, Zilitinke-
vich et al. [42] proposed a theoretical algorithm to determine h based on the surface-layer
flux–profile relationship. The advantage of this algorithm is its combination of wind pro-
files and surface fluxes. Zilitinkevich et al. [42] verified this height-determination algorithm
by using a database computed with a large-eddy simulation, but the algorithm was not
tested under the conditions of an actual situation. Further work using measured data
is carried out in our study. By using observational data detected by Doppler wind lidar
and an ultrasonic anemometer, we have improved the method of Zilitinkevich et al. [42]
to obtain continuous and accurate estimates of h, and the improved approach is easier
to popularize. We also evaluate our improved method with diagnostic equations and
observation-derived data. The observation sites, measurements, and data processing are
described in Section 2. The calculation method and comparison results are presented in
Section 3. Section 4 gives the conclusions and discussion.

2. Sites, Synoptic Condition, Instruments, and Data Processing
2.1. Sites, Synoptic Condition

An intensive field campaign was conducted during the summertime (4–6 August
2020) in Xilin Gol League, Inner Mongolia, China, to measure the aerosol-cloud-boundary
layer interaction; the vegetation in the study region is dominated by grasses, and there are
no residential or industrial areas near this field (Figure 1, 42◦11′ N, 114◦56′ E). Synchronous
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measurements were performed at Site A (1280 m ASL) and Site B (1274 m ASL). The
straight-line distance between the two sites is approximately 500 m.
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Figure 1. Topographic map of the experimental site. The straight-line distance between the two
sites is approximately 500 m. The portable Doppler wind lidar (FC-II) was deployed at Site A.
The ultrasonic anemometer thermometer (UAT-2) was deployed at Site B. The location of the field
experiment was at the southern edge of Xilin Gol League (pentagram in the button map).

2.2. Instruments

Synoptic-scale weather patterns during our observation period reveal that the ex-
periment site was mainly controlled by high atmospheric from Mongolia. Figure S1a–d
show that the north-west Mongolia high-pressure system was over our experiment site
at 02:00 BT and 05:00 BT (Beijing time) 5–6 August, indicating that downward air motion
suppressed air mass from the ground to the troposphere (Figure S1).

2.2.1. Portable Doppler Wind Lidar

The FC-II portable Doppler wind lidar (Norinco Group, Beijing, China) deployed
at Site A uses a narrow-linewidth pulsed laser as the emission source with the Doppler
coherence detection principle (Figure 1, top left corner). The FC-II provides horizontal and
vertical winds U(z) with a vertical resolution of 50 m and a temporal resolution of 3 s. The
maximum measured height and uncertainty depend on the environmental and weather
conditions, such as aerosol backscattering, turbulence, humidity, and precipitation [43].
Details of the operational parameters are provided in Supplementary Information Table S1.
More information about the FC-II and the data quality control procedure can be found in
the literature [44].

2.2.2. Ultrasonic Anemometer Thermometer

An ultrasonic anemometer thermometer-II (UAT-2, Chinese Academy of Sciences, in
Beijing, China) was deployed at Site B (Figure 1, top right corner). The UAT-2 uses an array
of transducers arranged on nonorthogonal axes. Three transducer pairs compose three
sonic paths oriented at an elevation angle of 45◦ to the horizontal plane; there is an azimuth
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angle of 120◦ between each path, and the path length between transducers is 15 cm. The
sampling frequency can reach 100 Hz. The additional operating parameters of the UAT-2
can be found in Table S1b. More information regarding the UAT-2 can be found in [45].
The methods used to calculate the velocity (U) and virtual potential temperature (θv) can
be found in S1. The data obtained by the UAT-2 are characterized by a high frequency
and large variation. To ensure the reliability of the data, the outliers and missing records
are replaced by the quintuple variance (5σ2). Based on Grubbs criterion, if the residual
corresponding to a measured value exceed 5σ2, the data should be omitted. A second
iteration is proceeded by the same 5σ2 method until all the outliers are eliminated [46].
Figure S2 shows the three calculated wind components (u, v, w) after quality controlling the
data, and the velocity shows a good fit with the data measured by an automatic weather
station (AWS) (Figure S2d, red solid line). The methods used to calculate the turbulent
fluctuations and fluxes can be found in S2.

2.2.3. Other Observational Data

Meteorological variables (temperature T, pressure P, relative humidity RH, wind
speed WS, and wind direction WD) were synchronously measured by an AWS (Figure 1,
Site B, bottom right corner) with four-cup anemometers (Mode: 034, Met One Instruments,
USA), a standard meteorological probe (Mode: HC2A-S3, Rotronic, NE, USA), and a
barometric pressure sensor (Mode: CS106, Vaisala, Finland) with a temporal resolution of
1 s [47]. In addition, sounding instruments (Mode: RS92, Vaisala, Finland) were mounted on
an unmanned aerial vehicle (UAV) with multiple sensors for air pressure, temperature, and
relative humidity measurements (Site B). The detailed sampling setup and calibration of
the sounding instruments are described in [48]. An additional comparison of the potential
temperature (θ) and water vapor mixing ratio (r) between the sounding data from the
balloon and UAV is provided in Figure S3. The two instruments show similar patterns,
with mean biases for θ and r of 0.28 K and 1.1 g kg−1, respectively. Both sounding sensors
capture the thermodynamic structures of the SBL reasonably well.

2.3. Determination of Stationary and Nonstationary Conditions

As reported in previous studies, the SBL is defined as the stability parameter ξ, which
is positive (ξ = z

LMO
, where LMO is the Monin–Obukhov length). To ensure the reliability

of the data in the study period, we applied a stricter method from Mahrt et al. [49] to
discriminate between stationary and nonstationary periods. Mahrt et al. [49] defined the
following ratio:

β ≡
(
σ2

u + σ2
v
)1/2

U
(1)

where the standard deviations are computed from the six 10 min averages of the wind
components measured by an ultrasonic anemometer for a 1 h period and U is the 1 h
averaged wind speed. Then, the hourly values of β are averaged over the records. The
record is classified as stationary if β is less than 0.1. The local averaging length L must be
chosen to be sufficiently large (L = 1 h is appropriate) so that the perturbation flow includes
most of the turbulence. Figure 2 shows the time series of β during the observed period.
We focused mainly on stationary conditions, which all appeared at nighttime, and four
episodes (Ep. 1: 00:00–07:00 LST on 4 August; Ep. 2: 16:00 LST on 4 August to 08:00 LST on
5 August; Ep. 3: 00:00–08:00 LST on 6 August; Ep. 4: 18:00 LST on 6 August to 00:00 LST
on 7 August) were determined.

Figure 3 shows the momentum flux variations as a function of the Reynolds averaging
scale (L) for both stationary and nonstationary episodes. For the stationary episodes, when
L ≥ 60 min, most of the turbulence flux appears to be captured (Figure 3a). Conversely, the
momentum flux tends to increase as L increases for the nonstationary episodes (Figure 3b)
and does not reach a constant value with increasing L. This period appears nonstationary
and is thus excluded from our study. We chose L = 60 min in our following analyses.
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3. Calculation Method and Comparison Results
3.1. Using fluxes and Wind Profiles to Calculate h

Zilitinkevich et al. [42,50] proposed a diagnostic equation in which the squared re-
ciprocals of h were satisfied with some second-order linear interpolation terms using a
large-eddy simulation (LES) database on a stable and neutral atmospheric boundary layer:

1
h2 =

f 2

C2
Rτ∗

+
N| f |

C2
CNτ∗

+
| f βbF∗|
C2

NSτ∗2
(2)

where CR = 0.6, CCN = 1.36, and CNS = 0.51 are empirical dimensionless constants, f is the
Coriolis parameter, and N is the Brunt–Vaisala frequency (typically N~10−2 s−1). The right-
hand terms represent (from left to right) ‘true neutral’ (TN), ‘conventionally neutral’ (CN)
and ‘nocturnal stable’ (NS). These three types of neutral and stable ABLs are distinguished
when Bs = 0, N = 0; Bs = 0, N > 0 and Bs < 0, N = 0, where Bs is the buoyancy flux at
the surface.

From Equation (2), given τ∗ and F∗ calculated by the UAT-2 data, the calculated value
of τ∗ and F∗, and N achieved by some other means, h can be determined. As mentioned
above, Equation (2) is a linear interpolation of terms. At the very beginning, assuming
the CN term was not taken into account (N = 0), h = ha can be estimated by Equation (2)
(Figure 4, Step 1). ha was the height containing TN and NS. In order to obtain integrated
SBL height that contains the CN term, further calculations were made.

τ and Fθ can be calculated at multiple heights by using quasi-universal dependen-
cies [50,51]:

τ

τ∗
= exp

[
−8

3

( z
h

)2
]

(3)

Fθ

F∗
= exp

[
−2
( z

h

)2
]

(4)



Remote Sens. 2021, 13, 3596 6 of 18
Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 4. Flow chart for calculating ℎ including 5 steps. Step 1: assuming 𝑁 = 0, ℎ𝑎 is calculated 

with given 𝜏∗, 𝐹∗ and 𝑓; step 2: 𝜏 and 𝐹𝜃 at each z-level height (z = 50, 100,…, 400 m) are esti-

mated with ℎ𝑎, 𝜏∗, 𝐹∗ and 𝑧; step 3: calculating 𝐿𝑀𝑂 at z- level heights using 𝜏, 𝐹𝜃 and 𝛽𝑏; step 

4: based on 𝑈(𝑧), 𝜏 and 𝐿𝑀𝑂, calculating 𝑁 at z-level heights and taking the minimum value of 

𝑁(𝑧); step 5: substitute 𝑁 into Equation (2) in the first step, and the ℎ can be determined ulti-

mately. 

 

Figure 5. Hourly averaged values of ℎ from 00:00 on 3 August 2020 to 00:00 on 7 August 2020. 

Many physical factors restrict the value of ℎ. We considered three physically essen-

tial ABL height formulations by linear interpolation: TN, CN, and NS (see Equation (2)). 

The contributions of these three basic regimes to ℎ were interpolated by using the data 

of our study. The TN term accounts for 66%~97%, indicating that the ‘true neutral’ bound-

ary layer is the main factor. In addition, the CN term accounts for 0% to 16%, the lowest 

contribution term of the three regimes, whereas the values of 𝑁2 are 1 × 10−4~5 × 10−4 s−1, 

indicate a stable atmospheric state. The contribution of the NS term ranges from 3% to 

28%, indicating a relatively important effect of ℎ that cannot be ignored. Equation (2) is a 

synthesis equation that integrates the TN-CN factors (where 𝐵𝑠 = 0) and TN-NS factors 

(where 𝑁 = 0). Other studies, for example, [53], did not distinguish between the TN and 

CN boundary layers, and neither did [54], who derived the expression 𝑢∗|𝑓𝑁|−1 2⁄  for the 

maximal depth of the oceanic upper mixed layer. Further comparison with other formu-

lations is presented in Section 3.2 to discuss their differences. Nevertheless, Equation (6) 

gives the flux–profile relationship that is suitable for practical applications, as this equa-

tion clarifies the characteristic function 𝛹𝑈 =
𝑘𝑈

𝜏1 2⁄ − ln
𝑧

𝑧0𝑢
 based on similarity theory and 

a dependence on 𝜉 that can be accurately approximated by the power law 𝛹𝑈 = 𝐶𝑈(𝜉)5 6⁄ . 

Figure 4. Flow chart for calculating h including 5 steps. Step 1: assuming N = 0, ha is calculated
with given τ∗, F∗ and f ; step 2: τ and Fθ at each z-level height (z = 50, 100, . . . , 400 m) are estimated
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U(z), τ and LMO, calculating N at z-level heights and taking the minimum value of N(z); step 5:
substitute N into Equation (2) in the first step, and the h can be determined ultimately.

z is equal to the heights of the wind speed profile U(z). Given the surface fluxes
τ∗ and F∗ and the estimated ha, τ and Fθ can be calculated at z-level heights by using
Equations (3) and (4), respectively (Figure 4, Step 2).

Moreover, M-O length scale LMO can be determined based on Monin–Obukhov (M-O)
theory (Figure 4, Step 3). Monin–Obukhov (M-O) theory states that the turbulent regime in
the stratified surface layer is fully characterized by the turbulent fluxes, τ ≈ τ∗ and Fθ ≈ F∗
(τ ≈ u2

∗ and Fθ = g
θ w′θ′, details seen in S2), and the buoyancy parameter, βb = g/T0 (where

g is the acceleration due to gravity and T0 is a reference value of the absolute temperature),
which determine the M-O length scale when given τ and Fθ at z-level heights:

LMO =
τ3/2

−βbFθ
(5)

Zilitinkevich and Esau [50,52] received analytical approximations of the mean wind
based on the flux–profile relationship:

kU
τ1/2 = ln

z
zou

+ CU

(
z

LMO

)5/6
1 +

(CN N)2 +
(

C f f
)2

τ
LMO

2


5/12

(6)

where CNb = 0.1, C f =1 and CU = 3 are empirical dimensionless coefficients, zou is the
aerodynamic roughness length for momentum, and the von Karman constant is k = 0.4.
Given the wind profile U(z) measured by the FC-II, the turbulent fluxes τ, and the M-O
length LMO, at the computational level z (ha < Z < 2ha), the free-flow Brunt–Vaisala
frequency N(z) can be determined (Figure 4, Step 4). Then, a unique N with a minimum
value of N(z) can be identified. Finally, N is substituted into Equation (2), and the SBL
height h is determined (Figure 4, Step 5).

In summary, we propose an improved iteration method to calculate h based on
the work of [6,42,50]; this method requires both turbulent fluxes τ and Fθ at different
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heights and the wind speed profile U(z). By calculating the surface-layer turbulent fluxes
τ∗ = τ|z=0 and F∗ = Fθ |z=0, the profile of the average wind speed U(z) can be substituted
into an iterative algorithm to determine h. Figure 5 shows the hourly averaged values of h
calculated by above method.
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Many physical factors restrict the value of h. We considered three physically essential
ABL height formulations by linear interpolation: TN, CN, and NS (see Equation (2)). The
contributions of these three basic regimes to h were interpolated by using the data of our
study. The TN term accounts for 66%~97%, indicating that the ‘true neutral’ boundary layer
is the main factor. In addition, the CN term accounts for 0% to 16%, the lowest contribution
term of the three regimes, whereas the values of N2 are 1 × 10−4~5 × 10−4 s−1, indicate a
stable atmospheric state. The contribution of the NS term ranges from 3% to 28%, indicating
a relatively important effect of h that cannot be ignored. Equation (2) is a synthesis equation
that integrates the TN-CN factors (where Bs = 0) and TN-NS factors (where N = 0).
Other studies, for example, [53], did not distinguish between the TN and CN boundary
layers, and neither did [54], who derived the expression u∗| f N|−1/2 for the maximal
depth of the oceanic upper mixed layer. Further comparison with other formulations is
presented in Section 3.2 to discuss their differences. Nevertheless, Equation (6) gives the
flux–profile relationship that is suitable for practical applications, as this equation clarifies
the characteristic function ΨU = kU

τ1/2 − ln z
z0u

based on similarity theory and a dependence

on ξ that can be accurately approximated by the power law ΨU = CU(ξ)
5/6. Moreover, the

second term in the square bracket of Equation (6) is usually small compared to the first
term. The numerical solution of U(z) can be simplified by the fact that the major terms on
the right side are a logarithmic term and an exponential term. Hence, a comparison with
the calculated U_cal and the values of the wind profile U_real measured by the FC-II at
computational level z is presented in Figure S4. The data were chosen from 50 to 400 m, for
which the vertical resolution is 50 m, and the strong correlation (R2 = 0.91) indicates a good
fit with the calculated values below 400 m. In particular, below 300 m, the wind speeds
are generally less than 9 m s−1. This result further confirms the feasibility of the proposed
flux–profile relationship of Equation (6). Above 300 m (>9 m s−1, Figure S4), however, the
wind speeds do not seem to fit well, although a relatively uncertain wind speed has little
effect on obtaining N because the second term in the square bracket of Equation (6) is small,
as mentioned above.

3.2. Compared with Other Predicted SBL Heights

We compared the h values determined in Section 3.1 with the SBL heights predicted
from three different dimensional scale height parameters (Equations (7)–(9)). Clarke [55]
speculate that based on M-O similarity theory, the SBL height h may be determined by a
dimensional scale height parameter:

λ1 ≡ h ∝ ku∗/ f (7)
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Alternatively, Deardorff [56] suggested an empirical formula for determining h:

λ2 ≡ h ∝
(

1
30LMO

+
f

0.35u∗

)−1
(8)

Furthermore, Businger and Arya [17] deduced a formula through a theoretical steady-
state model:

λ3 ≡ h ∝ (ku∗LMO/ f )
1
2 (9)

The relationships given in Equations (7) and (9) are diagnostic in nature. However,
λ1 is actually the first term on the right side of Equation (3). In addition, λ2 reflects the
interpolation between the reciprocals of the two scales and characterizes the stabilizing
effect of local buoyancy forces on turbulence and the effect of the Earth’s rotation; different
from Equation (3), Equation (8) depends on the chosen order of each term in the linear
interpolation. Finally, Equation (9) is deduced based on similarity theory, similar to
Equation (7).

The SBL height data are classified into four categories, namely, extremely, very, moder-
ately, and slightly stable (see Table S3), by computing the dimensionless stability parameter
(see Table S3). The calculated values of h and those of the SBL heights predicted by the
dimensional parameters λ1, λ2 and λ3 under these four stability classifications are plotted
in scatter diagrams in Figure 6. In general, λ1 is less consistent with h than are λ2 and λ3.
Figure 6b shows that λ2 is underated with respect to h in comparison with the observation-
derived SBL height under all four stability classifications. As shown in Figure 6c, the h
values predicted by the diagnostic formula of λ3 present the best fit with the calculated h
(further details will be presented in Section 3.2).
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The correlation coefficients between h and the diagnostic formulas of the dimensional
scale height parameters λ1, λ2, and λ3 under each stability category are shown in Table 1.
As expected, the correlation coefficients calculated for the extremely stable case exhibit the
largest values among all the stable classifications (n = 36), followed by those calculated for
the very stable case. This is consistent with the fact that these diagnostic formulas are based
on M-O similarity theory, which holds well under extremely stable conditions [56]. More-
over, the r values increase as the stability increases (Table 1), indicating that the diagnostic
formulas become increasingly useful with greater stability. This occurs presumably because
under extreme conditions, the nocturnal boundary layer heights are very shallow, generally



Remote Sens. 2021, 13, 3596 9 of 18

lower than 200 m, with the least scatter for the cases considered. As a consequence, the
correlation coefficients are high under extremely stable conditions.

Table 1. Correlation coefficients (r values) between h and the diagnostic height parameters. The
corresponding Z values are in parentheses.

Correlation Coefficients r(h,λ1) r(h,λ2) r(h,λ3)

(I) Slightly stable
27 > µ0 > 5

n = 5

0.36
(1.31)

0.45
(2.14)

0.53
(2.04)

(II) Moderately stable
45 > µ0 > 27

n = 10

0.56
(1.10)

0.66
(1.10)

0.54
(1.10)

(III) Very stable
78 > µ0 > 45

n = 6

0.65
(1.47)

0.74
(1.97)

0.61
(2.35)

(IV) Extremely stable
∞ > µ0 > 78

n = 15

0.78
(2.04)

0.88
(1.98)

0.65
(2.12)

(V) Total cases
∞ > µ0 > 5

n = 36

0.36
(2.17)

0.41
(2.50)

0.46
(2.86)

Table 1 shows the results for all 36 h of data. The r values range between 0.36 and 0.88.
This indicates that linear relationships between h and the dimensional height parameters
may be satisfactory but may exhibit considerable scatter. Moreover, these three diagnostic
formulas yield values comparable to h, although under certain stability conditions, one
formulation may perform slightly better than the others. For example, the diagnostic
formula of λ2 under extremely stable conditions (r = 0.88) performs better than those of λ1
(r = 0.78) and λ3 (r = 0.65), although both of the latter two formulas yield high correlation
coefficients. Hence, a statistical test for the significance of these correlation coefficients may
be useful by using the Z values (see S4) bracketed and listed in Table 1. It is obvious that
for all the cases considered (n = 36), there may be a relatively high correlation between the
calculated h and the values predicted by the three diagnostic formulas. However, a careful
inspection of the calculated Z values for each stability class indicates that these correlations
may not be significant. For example, the value of r(h, λ1) under very stable conditions
shows a relatively high r value of 0.65. However, the Z value of λ1 (Z = 1.47) is less than
1.96, indicating that this correlation coefficient is not reliable. In general, although λ1
shows less consistency with h (Figure 6a), there is reason to believe that all three diagnostic
formulas could provide good fits with h under extremely stable conditions, especially those
of λ2 and λ3.

In general, u∗ and LMO usually remain nearly constant, and the SBL height thus
determined will remain independent of time [57]. However, h varied dramatically over
time during our experiment. Thus, we use the prognostic equation for the growth of h
developed by [21]:

λ(h) =
∂h
∂t

= 250u∗[1− h/(0.35u∗/ f )] (10)

If the initial h is known, the prognostic equation of Equation (10) will reveal the
evolution of the stable boundary layer.

The correlation coefficients (r) between the predicted SBL heights λ(h) and the changes
in the calculated SBL height ∆h at a 1 h interval are plotted in Figure 7. ∆h performs very
inconsistently with the predicted SBL heights. The correlation coefficients between ∆h and
λ(h) are nearly zero (Table S2, r[∆h, λ(h)] = 0.02), indicating that the above prognostic
equation cannot accurately determine the changes in the SBL height. However, the dimen-
sional scale height parameters ( ∂λ2

∂t and ∂λ3
∂t ) show higher r values (0.59 and 0.64, Table S2).

Based on tests on the statistics concerning the sample correlation coefficients (see S4), the Z
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values of (∆h and ∂λ2
∂t ) and (∆h and ∂λ3

∂t ) shown in Table S2 indicate that the change in the
SBL height is significantly correlated with both ∂λ2

∂t and ∂λ3
∂t . In summary, the prognostic

formulas are more suitable for λ2 and λ3, but their height changes seem nonsignificant.
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Figure 7. Scatter diagram of the predicted λ(h) versus the calculated height changes ∆h in the stable
boundary layer.

3.3. Comparison with the Observation-Derived SBL Heights
3.3.1. SBL Heights Derived from Wind Profiles

In previous studies, wind profiles were used to determine the SBL heights [58], which
are usually defined as the height of the maximum wind speed hJ or the height of the zero
value in the wind shear profile h1. Here, the wind profiles obtained from the FC-II available
at 30 s intervals are averaged over 10 min. The profile shapes can be grouped into three
distinct types: Type I (Figure S5a), the classic LLJ shape with a distinct maximum or “nose”;
Type II (Figure S5b), a uniform or “flat” profile; and Type III (Figure S5c), a profile with
a layered structure. In most cases, the height of the top layer with a layered structure
(Figure S5c) was chosen as hJ . A few profiles with shapes that do not fit among these three
types were not taken into account in our study. In addition, for the shape of Type II that the
wind speed was relatively uniform or “flat” with a deep layer overlying the layer of strong
surface-based shear (Figure S5b). Although this type of profile may not be defined as an
LLJ (Type I) because of the lack of a distinct nose, for Type I and Type II, the hJ values could
be determined by the same way (e.g., the hJ values are consistent with the h1 values shown
in Figure S5a,b). These type profiles are the most common type of profile overall, occurring
in nearly 96% of the total (a total of 180 runs). The wind shear magnitude below the height
of h1 is relatively invariant with a value of ~0.04 s−1 during the nighttime (Figure S5).
These near-neutral lapse rates indicate steady atmospheric stratification. Thus, we believe
that these modest wind shear values could be related to h.

The time series of the h calculated in Section 3.1 are compared with the maximum
wind speed height hJ and the zero-wind shear height h1. Figure 8 shows a time–height
cross section of the 10 min wind profile maximum height hJ , wind shear height h1, and
calculated SBL height h from 4–6 August 2020. Four episodes (Ep. 1, Ep. 2, Ep. 3, and
Ep. 4) were chosen (shaded with a brown background, as in Figure 2) and determined
by β < 0.1. Similar variations in hJ , h1, and h are presented in Figure 8, although there
are a few discrepancies. In particular, Ep. 2 and Ep. 3 show almost the same trend. The
correlation coefficient r

(
hJ , h

)
is 0.68, which is better than r(h1, h) with a value of 0.43,

indicating a better fit between h and hJ . Table 2 shows the first-order linear regression
results for all types of hJ for each episode. All four episodes pass the Z-value test except
for Type III, which does not fit h well. The regression parameters of Ep. 3, including the
correlation coefficient and slope of the regression lines, show the highest values in all four
episodes, indicating that the hJ of Ep. 3 fits the h calculated in this study the best, mainly
because h is often associated with high wind shear U(z), which is more likely to attenuate
the TKE at the height of the wind profile maximum. In contrast, Ep. 2 exhibits relatively
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low correlation coefficients for all types. In addition, the mean bias in Ep. 3 exhibits the
lowest value, indicating the best fit among the four episodes. In summary, the maximum
height of the 10 min profile hJ is well correlated with the calculated value of h, and thus, hJ
can be considered equivalent to the depth of the SBL in all four episodes, especially Ep. 3.
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Table 2. Correlation coefficients (RJ), slopes (BJ), and biases (AJ) for the linear regressions between h
and hJ . The regression data are separated for the four episodes (Ep. 1, Ep. 2, Ep. 3, and Ep. 4). The
Z-test values are in parentheses.

Episode Mean U(z)
(m s−1)

Type I, II
(% & n)

h = AJ + BJhJ

AJ BJ RJ

Ep. 1
n = 44 3.49 95

42 154.73 0.47 0.66
(5.08)

Ep. 2
n = 92 3.29 89

82 160.52 0.39 0.64
(7.15)

Ep. 3
n = 16 7.78 94

15 142.09 0.51 0.76
(3.59)

Ep. 4
n = 28 4.40 96

27 373.55 −0.27 0.72
(4.54)

Total
n = 180 4.74 92

166 140.08 0.50 0.68
(11.03)

The differences between h and hJ (e.g., the relative error
∣∣h− hJ

∣∣/h) are given in
Figure 9 for all four episodes. The mean relative errors of the 10 min hJ for Ep. 1, Ep. 2,
and Ep. 4 are all less than 10%, especially that for Ep. 4 (7.2%). However, the mean relative
error (15.0%) for Ep. 3 (Figure 9c) is twice as large as that for Ep. 4. The discrete vertical
sampling interval of the FC-II in this study (∆z = 50 m) could account for this increased
mean relative error. Assuming that the vertical sampling interval was small enough, the
mean relative error between h and hJ could be improved. The median relative error for
Ep. 2 (Figure 9b) is the minimum value of 0.054 among the four episodes. In general, the
mean relative errors for all four episodes are relatively small, and the hJ for Ep. 2 is the
most consistent with h.

3.3.2. SBL Heights Derived from Radiosonde Data

Another observation-based method for estimating the SBL height is based on ra-
diosonde profiles of the virtual potential temperature profile (θv). The virtual potential
temperature at the SBL top height is defined by the following two discriminants:

θh = θ0 + Aδ (11)

δ =
∣∣θr − θ0

∣∣ (12)
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where h is the SBL height and A is an empirical constant (0.8). δ is the inversion strength
defined as the difference between the potential air temperature at the surface (θ0) and
the mean potential temperature in the residual layer (θr). The value of θr is the potential
temperature averaged from 400 to 500 m; in our study, the potential temperature in this
layer is almost uniform, and the vertical decline rate is taken as <1 K/100 m (for further
details, see [59]). In our study, hθ is defined as the height where θh appears for the first time.
In addition, hi is defined as the radiosonde-derived height of the temperature inversion.
We chose seven vertical profiles from the radiosonde data during three episodes, Ep. 2,
Ep. 3, and Ep. 4 (as shown in Figure 10 and Figure S6). All seven profiles were measured
during the transition phase (05:00–08:00 LST and 19:00–22:00 LST) of each episode.
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An obvious change in the nocturnal boundary layer height is shown in Figure 10a. The
T inversion layer occurred at 20:15 LST, when the observed SBL height was approximately
40 m, and then increased at 05:15 LST the following day. Figure 10a shows that hi at 05:15
LST on 5 August is characterized by a strong and deep surface inversion (2.4 ◦C (100 m)−1)
and then decreased to nearly half (1.3 ◦C (100 m)−1) by 08:00 LST. hi exhibited a decreasing
trend, which accounted for the decreasing intensity of inversion. The changes in hi were
the same as the h variations (see Figure 8) during Ep. 2. Moreover, during the transition
phase from approximately 05:00 to 08:00 LST (Figure 10b), the vertical temperature profile
decreased from 11 K to 4 K (Figure 10b), which is attributed to surface heating. The
variation in hθ during the transition phase increased from 175 m to 235 m, which fit well
with h, and the averaged hθ was ~205 m, which was obviously consistent with h (~240 m)
(Figure 10b) during Ep. 2. Furthermore, the ground-level water vapor mixing ratio (r)
increased obviously, indicating an enhancement of surface flux transport caused by the
elevation of the SBL. Regarding the performance of hθ , from all seven runs of data, the
relative differences (reDiff) with respect to h (Figure 11b) range between 1% and 22%,
and the absolute differences (absDiff) with respect to h (Figure 11a) range between 3 and
50 m. These results indicate that hθ is suitable for determining the SBL height in this study.
Figure 11b also shows the relative difference with respect to hi, where the mean reDiff
value is approximately 36%. This indicates that the correlation between hi and h may be
satisfactory, but there is a considerable difference. In particular, two high values of reDiff,
73% and 53%, appear at approximately 20:15 LST on 4 August and 20:40 LST on 6 August,
respectively. The absDiff (<50 m) and reDiff (<22%) of hθ are small at these times, as shown



Remote Sens. 2021, 13, 3596 13 of 18

in Figure 11, especially at 08:00 and 20:40 LST on 6 August, when the values are almost the
same as h.
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Figure 10. Variations in the vertical profiles of the (a) temperature (T, red solid line) and relative
humidity (RH, black solid line) and the (b) virtual potential temperature (θv, orange solid line) and
water vapor mixing ratio (r, blue solid line) from 00:00 LST on 4 August 2020 to 00:00 LST on 6
August 2020 during Ep. 2. Four times (20:15 LST; 22:00 LST; 05:15 LST; 08:00 LST) were chosen
(brown background). The horizontal dotted lines in (a) indicate the heights of the inversion layer hi,
and those in (b) indicate the heights hθ where the θv value first exceeds the minimum θv value by
1.5 K.
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Figure 11. (a) Absolute differences (absDiff) and (b) relative differences (reDiff) obtained at each time
point shown in Figure 9 and Figure S5. The blue histograms indicate the relative differences between
hi and h, and the red histograms indicate the relative differences between hθ and h.

Therefore, the observation-derived SBL heights determined from the virtual potential
temperature profile hθ in our study seem to be suitable for defining the SBL height. Fur-
thermore, although hi performs slightly worse than hθ during our study, we can still argue
that hi is somewhat related to h.

In addition, we discovered that the vertical profiles we obtained in our study from
all seven runs are inadequate. We further compared the wind profile data (hJ , h1) of each
run in Figure 12a, and the mean absDiff and mean reDiff between the h values calculated
using the four derived methods, namely, hi, hθ hJ , and h1, are shown in Figure 12b,c. The
error bars represent the standard deviations of the mean observation-derived SBL heights
calculated by each method. According to Figure 12a, all four methods, especially hθ , are in
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good agreement with h at most times. The results obtained using the wind profile data are
very similar to h with mean absDiff and reDiff values below 50 m and 25%, respectively.
Specifically, a mean reDiff value lower than 23% is obtained for hJ . During Ep. 2, Ep. 3, and
Ep. 4, h1 is also consistent with h, although the one standard deviation (shown by the error
bars in Figure 12c) with respect to hJ is higher than 23%. In addition, for all four methods,
using the virtual potential temperature method provides the best fit for h. Moreover, the
standard deviation values of hθ (shown by the error bars in Figure 12b,c) are the smallest. In
addition, among all four methods, relatively good results are given by hJ with mean absDiff
and reDiff values of 48 m and 23%, respectively. In general, these findings suggest that the
results of all four methods determined by meteorological variables, such as temperature
and wind speed changes, are in good agreement with h, although the vertical profiles
available are limited.
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Figure 12. (a) Comparison among the four observation-derived SBL heights hi, hθ , hJ , and h1 (dashed
lines) with the calculated SBL height h (solid line) during three episodes: Ep. 2, Ep. 3, and Ep. 4.
(b) Mean absolute difference (Mean absDiff) and (c) mean relative difference (Mean reDiff) values
and corresponding one standard deviation (shown by error bars) obtained by using each method
shown in Figures 8, 10 and S6 during the three episodes of Ep. 2, Ep. 3, and Ep. 4. In addition, it
should be noted that Figure 12a is not simply a succession of time–height cross section; we simply
superposed the episodes for convenience.

4. Conclusions

In this paper, we propose a composite iteration method to estimate the stable boundary
layer height using wind profiles from Doppler lidar and turbulent fluxes from ultrasonic
anemometer. By calculating a simple discriminant, continuous records can be classified
as stationary or nonstationary according to the value of β. Before substituting values into
the algorithm (Equations (2)–(6)), the averaging length (L = 1 h) used to compute the
fluxes must be chosen. Finally, these data are substituted into Equations (2)–(6), enabling
h to be determined. In addition, other methods for estimating the SBL height, namely,
a prognostic equation (λ(h)) and three diagnostic equations (λ1, λ2 and λ3), as well as
observation-derived SBL heights (hJ : maximum wind speed height, h1: zero wind shear
height, hi: temperature inversion height, and hθ : height at which 0.8 times the inversion
strength appears for the first time) are presented, and the results are compared with the
predicted SBL heights. The main results are as follows:

1. h is in good agreement with hi and hθ obtained by radiosonde data, especially for
hθ . A comparison of h with the radiosonde-derived estimates demonstrates that hi
presents a relatively poor result with mean absDiff and reDiff values of 72 m and 36%,
respectively. hi and h may be satisfactory but have minor differences. In addition, hθ
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shows the smallest mean absDiff and reDiff values (below 48 m and 22%, respectively).
Moreover, with regard to the one standard deviation, hθ shows the smallest values.

2. The heights derived from wind profiles (hJ and h1) also show good agreement with h.
The SBL height derived from hJ shows low absDiff and reDiff values below 50 m and
23%, respectively. However, for h1, the mean relative error (46.0%) is twice as large as
that for hJ .

3. The diagnostic formula of λ3 fits the best with h among the three diagnostic formulas,
whereas the prediction equation is not applicable. Nevertheless, the diagnostic
formulas of λ2 and λ3 are found to be appropriate, especially under extremely and
moderately stable conditions. Furthermore, the performance of λ3 presents the best
results among all the dimensional scale height parameters. λ1 shows less consistency
with h, but under extremely stable conditions, all three diagnostic formulas provide
good fits with h, especially those of λ2 and λ3. However, the prognostic equation of
λ(h) in our study is very unsatisfactory.

Due to the limited amount of data (3 days), we used various methods for comparison.
Comparing these different methods yields reasons to believe that the method proposed in
this study can determine the thermodynamic SBL height once the wind profile (dynamic
structure) and turbulent fluxes (thermal structure) are known. Moreover, our method
includes the flux–profile relationship, which few studies have considered. The advantage
of this method is that it can obtain continuous and accurate estimates of h and is easier to
popularize. Aerosols interact strongly with meteorological variables with the strongest
interactions taking place in the ABL. Moreover, aerosols can increase atmospheric stability
by inducing a temperature inversion as a result of both scattering and absorption of
solar radiation, which suppresses dispersion of pollutants and leads to further increases
in aerosol concentration in the lower ABL. Knowledge of the ABL is thus crucial for
understanding the interactions between air pollution and meteorology. Our method of
estimating SBL height is critical to improve the understanding of the air pollution and
boundary layer interaction. However, there are still drawbacks; for example, in episodes
of alternating daytime and nighttime hours, it is more complicated to determine h, so the
height calculated is the residual height or the SBL height. In addition, we tried to use the
flux–profile relationship to calculate the height of the convective boundary layer (CBL) over
complex terrain but failed because the physical processes in the CBL are more complex than
those in the SBL. Our future research will focus on other ways to determine the CBL height
more accurately by using the flux–profile relationship. Moreover, because of the limited
data and the vertical resolution of Doppler lidar (50 m), future experiments will involve
long-term observations and HRDL, e.g., using HRDL with a vertical resolution of 1.5 m, to
further validate the retrieval of the SBL heights from observation-derived measurements.
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