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Abstract: Visual Simultaneous Localization and Mapping (SLAM) technologies based on point
features achieve high positioning accuracy and complete map construction. However, despite their
time efficiency and accuracy, such SLAM systems are prone to instability and even failure in poor
texture environments. In this paper, line features are integrated with point features to enhance the
robustness and reliability of stereo SLAM systems in poor texture environments. Firstly, method
Edge Drawing lines (EDlines) is applied to reduce the line feature detection time. Meanwhile, the
proposed method improves the reliability of features by eliminating outliers of line features based on
the entropy scale and geometric constraints. Furthermore, this paper proposes a novel Bags of Word
(BoW) model combining the point and line features to improve the accuracy and robustness of loop
detection used in SLAM. The proposed PL-BoW technique achieves this by taking into account the
co-occurrence information and spatial proximity of visual words. Experiments using the KITTI and
EuRoC datasets demonstrate that the proposed stereo Point and EDlines SLAM (PEL-SLAM) achieves
high accuracy consistently, including in challenging environments difficult to sense accurately. The
processing time of the proposed method is reduced by 9.9% and 4.5% when compared to the Point
and Line SLAM (PL-SLAM) and Point and stereo Point and Line based Visual Odometry (sPLVO)
methods, respectively.

Keywords: stereo SLAM; line detection; entropy scale; visual odometry; loop closure

1. Introduction

Simultaneous Localization and Mapping (SLAM) was initially proposed by Smith in
1987 [1]. Since then, diverse methods systems that can simultaneously estimate the position
of the onboard sensors and construct the surrounding environment map via the captured
scene information have been extensively developed. This has been especially important in
the field of robot navigation using diverse types of camera systems (e.g., monocular, stereo
and panoramic) [2–5].

In recent years, most of the research has focused on improving the accuracy of point-
feature SLAM, and many encouraging breakthroughs have been made [6,7]. Such research
includes the development of the ORB-SLAM2 system based on Parallel Tracking and
Mapping (PTAM) ideas that improve the place recognition and the loop closure modules [8].
The invariant of ORB features to different viewpoints and illuminations has been employed
to improve tracking, mapping, and loop closure. As a result, ORB-SLAM2 has become one
of the most popular systems in rich-textured scenes. Despite the success of the ORB-SLAM2
framework, the expanding applications of mobile robots, among many other applications,
such as augmented reality and autonomous driving, impose new challenges, which still
remain to be resolved, related to low-textured or structured engineered environments [9,10].
Traditional point-based strategies are unstable and even fail in some scenarios where the
point features are uneven or not well distributed. Fortunately, Cadena et al. pointed out
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that a way to solve this problem is to find an alternative feature that is abundant in the
environment [3]. The low sensitivity of line features to light changes and motion blurring
is also a prevalent topic in SLAM research. Lu et al. proposed an RGB-D SLAM system that
combines line features and depth information to solve the problem of indoor illumination
changes [11]. Scaramuzza et al. focused on extracting the vertical lines in the wider field
image information captured by the omnidirectional camera to improve the accuracy and
robustness of the mobile robot visual odometer system [12,13]. Pumarola et al. improved
the initial accuracy of the system by synchronously calculating point and line features in
the monocular SLAM initialization thread [14]. Ma et al. utilized vanishing points (VP) to
constrain line features, which greatly reduced the mismatching of line features [15]. Despite
the improvements, the above line segment detection and matching methods are time-consuming,
making the line-based SLAM methods difficult to be processed in real-time.

To enhance the effectiveness of line detection methods, Gomez-Ojeda et al. combined
a Line Segment Detector (LSD) with a Line Band Descriptor (LBD) algorithm to develop an
enhanced stereo version of Point and Line SLAM (PL-SLAM). Such a method has shown
higher translation accuracy than that of ORB-SLAM2 in rich-feature scenes, which proved
that stereo systems are more accurate and resistant to interference than other monocular
systems in line detection [16]. Berenguer et al. proposed a method to estimate the relative
attitude by using Holistic descriptors of the omnidirectional image. This method solves
the problem that the omnidirectional image can not deal with the height change of mobile
robots, but it requires further research to apply in estimating movements with six degrees
of freedom [17]. Inspired by the Scale Invariant Feature Transform (SIFT) algorithm, Li et al.
proposed the scale-invariant mean-standard deviation LSD (SMLSD) to extract line features
faster without sacrificing detection accuracy [18]. However, Zuo et al. proved that the
performance of LSD line detection is still unsatisfactory for real-time applications [19].
There is an urgent need to develop line detection methods that can accurately extract line
features at a fast rate regardless of the environment geometrical complexity. To realize the
real-time SLAM for point and line features, Zhang et al. proposed the line detector based
on Canny edges to obtain line features iteratively [20]. In contrast to [20], Vakhitov et al.
focused on improving the accuracy and robustness of line feature extraction by training a
deep yet lightweight full-convolutional neural network [21]. Gomez-Ojeda et al. [22] and
Luo et al. [23] introduced the Fast Line Detector (FLD) algorithm to reduce the detecting
time of the LSD method. The fast detection speed and straightforward logic composition
of the FLD approach makes it suitable in the field of point-line SLAM. Although effective,
it requires prior information about the scene to determine the needed parameters, which
limits its usefulness in prior unknown environments, such as those encountered inside
collapsed buildings.

Another hindrance that prevents the line feature from being extensively used is the
complex outlier culling technique that makes their implementation nontrivial. Line features
have a number of characteristics that change with the angle of view and occlusions, so
the method of removing inappropriate features from the detected lines has been a focus
of constant research. Shao et al. utilized a coplanar constraint of line features to filter
mismatched line features, but the method lacks processing real-time data [24]. Ma et al.
trained a general classifier to judge the correctness of any hypothetical matching [25]. This
method converts the mismatch elimination into a two-class classification problem, but
the performance of the algorithm in unknown scenes still requires further experimental
verification. Lim et al. proposed a structural model based on epipolar and vanishing
points to remove degenerate LSD line features intended to improve the reliability of line
features [26].

Although the above-mentioned approaches present many practical solutions to issues
existing in line feature detection and outliers elimination, they are still unable to effectively
address the SLAM problem of point-line loop detection. Pumarola et al. proposed that only
point features were detected in the PL-SLAM loop closure to reduce the computational
complexity [14]. Gomez-Ojeda et al. built a line Bag of Words (BoW) model that had a
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parallel relationship with the point BoW to achieve the independent line loop detection [22].
However, the point-line detection method without considering the geometric proximity be-
tween point and line features does not significantly improve the accuracy of loop detection.
Ma et al. modeled a BoW containing VPs and their connecting lines to improve the accuracy
of the SLAM system in the corridor [15]. For the problem of false loop detection caused by
the existence of a similar point map, researchers have pointed out that the accuracy and
robustness of loop detection can be improved by building a Bag of Words (BoW) model that
considers the spatial proximity and co-occurrence information of visual vocabulary [27,28].
Under this context, an effective Point and EDlines SLAM framework, named PEL-SLAM,
is proposed to solve the above-mentioned issues, including the line feature detection, line
outliers elimination, and loop detection.

Specifically, a point-line stereo SLAM system based on Edge Drawing lines (ED-
lines) [29] and the improved BoW model is proposed to realize localization and mapping
in human-made environments. The proposed approach takes advantage of line features
in low-textured environments and PL-BoW for loop detection. Point and line features
of the input stereo image are detected by ORB and EDlines, followed by calculating the
uncertainty entropy that describes the accuracy of the detected line features. The PL-BoW
is then obtained using a PL pair selection technique following the ORB point and LBD line
descriptors. Finally, a loop detection mechanism based on PL-BoW, similarity score, and
space consistency detection of the keyframe is employed to determine the best matching
keyframe. The three main contributions of this paper are:

(1) A stereo SLAM system based on the integration of point and line features. Such a
method employs an EDlines algorithm to improve the speed of line feature detector
in the front-end of the system. In addition, the comprehensive representation and
transformation of line features are also derived.

(2) A method using entropy scale and geometric constraints is proposed to eliminate the
outliers of line features. The strategy of removing the mismatched features in the
front-end ensures the reliability of the extracted lines without increasing the additional
algorithm complexity. The application of this method improves the accuracy of camera
pose estimation and map construction.

(3) A novel Point and Line Bags of Word (PL-BoW) model combining the point and line
features is proposed to improve the accuracy and robustness of loop detection. Unlike
popular methods of evaluating the BoW of point and line features independently, the
proposed PL-BoW model takes into account the constraints of the extracted point and
line features. Such a model improves the reliability of the loop detection process under
the interference of weak texture and light changes, which typically exist in structured
engineered environments.

The remainder part of this paper is as follows. Section 2 provides the geometric
expression, detection, and matching methods of line features. The graph optimization
for line features and the improved loop detection mechanism are presented in Section 3.
Section 4 compares and analyzes the experimental results of the proposed algorithm with
existing methods. The conclusions of the paper are presented in Section 5.

2. Representation and Detection of Line Features

The schematic diagram of the PEL-SLAM system proposed here is illustrated in
Figure 1. Since the PEL-SLAM system is improved on the basis of ORB-SLAM2, most
modules of the system are the same as the ORB-SLAM2 system except for the green part in
Figure 1.

Improvements of the line representation, line feature detection, and line feature
matching in the front-end of the proposed method are presented in this section, while
improvements of Bundle Adjustment (BA) optimization and loop closure in the back-end
of the system are described in the following sections.
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Figure 1. The schematic diagram of the proposed PEL-SLAM.

2.1. Geometric Representation of Lines

A spatial line can be expressed via its two endpoints in the image plane, sk =[
us vs 1

]T and ek =
[

ue ve 1
]T (see Figure 2). This is an essential operation

of the visual odometer needed to transform 3D lines in the world reference to the image
plane. The Plücker parameter has the characteristic of observability and computational
simplicity, and it is used for the transformation and projection of line features. How-
ever, the over parameterization of the Plücker parameter hinders the performance of the
system in back-end optimization. To address this, an orthonormal representation is in-
troduced for optimization. The spatial line L in the Plücker coordinate is expressed by

L =
(

nT, dT
)T
∈ R6, where n ∈ R3 is the normal vector, and d ∈ R3 represents the line

direction vector of the plane πk. The plane πk is composed of the line L and the kth camera
coordinate origin Ck.

Figure 2. Plücker parameters and triangulation of a spatial line.
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As shown in Figure 2, the Plücker line coordinate is usually constructed by triangula-
tion of two different camera frames. The parameters of the π1 =

(
πx πy πz πw

)T

plane can be determined by s1, e1, and the camera origin C1 =
[

x1 y1 z1
]T in the

world reference as follows:

πw =
[

πx πy πz
] x

y
z

 (1)

 πx
πy
πz

 = [s1]×e1, πw = πxx1 + πyy1 + πzz1 (2)

where the []x is the skew-symmetric matrix of a vector in R3. Other planes (e.g., πk) can be
obtained following the same calculation.

Given planes π1 and π2, the coordinate of the line feature in the world reference is
determined via the following dual Plücker matrix L∗:

L∗ =
[

[d]× n
−nT 0

]
= π1πT

2 − π2πT
1 ∈ R4 (3)

With the Plücker coordinates known, the transformation of the line becomes con-
venient in 3D Euclidean space. In what follows, we represent a 3D rigid body motion

T =

[
R t
0 1

]
∈ SE(3) by a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3.

Given the transformation matrix Tcw from the world reference to the camera reference, the
corresponding Plücker transformation matrix is defined by:

Tcw =

[
Rcw [tcw]×Rcw

0 Rcw

]
(4)

Then the Plücker representation of the given line feature can be transformed by:

Lc =

[
nc

dc

]
= TcwLw (5)

After calculating the representation of the line feature in the camera reference, the
spatial line can be projected to the image plane through:

I =

 l1
l2
l3

 = Knc =

 fy 0 0
0 fx 0

− fycx − fxcy fx fy

nc (6)

whereK denotes the projection matrix of a given line, and fx, fy, cx, cy represent the intrinsic
parameters of the calibrated camera. It should be noted that when a line feature is projected
onto a normalized image plane, K is an identity matrix.

Since a spatial line in 3D space only has four degrees of freedom, using the Plücker
representation increases the computational complexity of the optimization process. The
de-coupled orthonormal representation (U, W) ∈ SO(3) × SO(2) employed in the un-
constrained optimization problem is obtained from the QR decomposition of the Plücker
coordinates.

[
n d

]
=
[

n
‖n‖

d
‖d‖

n×d
‖n×d‖

] ‖n‖ 0
0 ‖d‖
0 0

 = U

 w1 0
0 w2
0 0

 (7)
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Furthermore, U and W are expressed by:

U = R(ϕ) =
[

n d n× d
‖n‖ ‖d‖ ‖n× d‖

]
(8)

W = W(φ) =
1√

‖n‖2 + ‖d‖2

(
‖n‖ −‖d‖
‖d‖ ‖n‖

)
(9)

where ϕ =
[

ϕ1 ϕ2 ϕ3
]T denotes the angle of rotation from the camera reference to

the line reference (see Figure 2). Since W implies one-dimensional scale information, the
minimum parameterization of a spatial line can be defined by a four-dimensional vector
O =

[
ϕT φ

]T ∈ R4. Once the orthogonal representation of the optimized feature is
obtained, the corresponding Plücker coordinates are calculated by:

L′ =
[

w1uT
1 w2uT

2
]T

=
1√

‖n‖2 + ‖d‖2
L (10)

in which ui denotes the ith column of U.

2.2. Extraction and Description of Line Features

The line segment detector LSD, which gives an accurate line detection and requires
no parameter tuning (widely applied in state-of-the-art PL-SLAM systems), is designed to
extract line segments on noisy images with sub-pixel detection accuracy [30]. However,
the computational complexity of LSD causes extra time spending on the system in the
front-end feature extraction. Since the limitation of LSD directly affects the tracking and
matching of line features, this aspect leads to the failure of the visual odometer.

To improve the real-time performance of the line feature extraction, the EDlines
algorithm is used instead of the LSD to detect line features from images captured by the
stereo camera. The EDlines algorithm has been proven to run faster than the LSD, while its
output tends to contain irrelevant lines [15]. The experiment in [31] shows that EDlines can
achieve a similar performance when compared with LSD without sacrificing the detection
accuracy by using an appropriate line outlier elimination method.

In this work, the individual performance of the LSD and EDlines mechanisms was
validated on three different scenes. Referring to Figure 3, the median three figures show
the line features detected by LSD, whereas the three figures on the right side of the figure
show the detected results of EDlines. The results show that both detecting algorithms
are able to detect the line features of interest that correspond to real straight lines in the
given environments. However, it is noted that EDlines is more likely to detect curves
that are near straight lines. The detected curves may degrade the performance of the
system. However, these curves usually possess bad spatial positions and thus can be easily
recognized from different camera views. Thus, from the testing performed, it was identified
that it is possible to use EDlines to achieve effective line detection without corrupting the
systems by leveraging some line renting strategies.

To make the line features detected by EDlines more recognizable, the LBD descrip-
tors [32] are computed to represent each line feature. Similar to the ORB descriptor for point
feature, the LBD descriptor contains geometric attributes and appearance descriptions of
the corresponding line features. For two consecutive stereo frames, the similarity of line
features is measured by calculating the consistency of LBD descriptors between line pairs.
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Figure 3. The extracted lines of LSD and EDlines in the EuRoC dataset [33]. (a)The original images.
(b) The green lines in the left column are the line features detected by LSD. (c) The red lines in the
right column are the line features detected by EDlines.

2.3. Extraction and Description of Line Features

After exacting line features, LBD descriptors are generated to describe the correspond-
ing line features in two consecutive captured adjacent frames. The similarity of descriptors
is calculated to find the matching line features. The extracted line feature is considered to
be a good match only if such feature is the best match in both images of a stereo frame.
Before eliminating outliers, the preprocessing of matched pairs is required to improve the
accuracy of the system matching. Given the occlusion and perspective changes that might
exist in real-world environments, in this work, the line pair is not considered a match if
their lengths are more than twice as different. At the same time, the line pair is considered
to be mismatched if the distance between the midpoints of the two lines on the image is
greater than a given threshold.

For a stereo frame, a spatial line is represented as ll and lr in the left and right
images, respectively, where lr can be represented as

(
lr1 lr2 lr3

)T by the homogeneous
coordinates of its endpoints. Given a stereo frame captured by a stereo camera, the
matching points in the two rectified images have the same horizontal position. Therefore,
the endpoints in the right image can be obtained through lr and line lv=v′ , as illustrated in
Figure 4.

Figure 4. The line model in a stereo frame.
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The endpoints of the line lr can be denoted by the endpoints s =
(

us vs
)T and

e =
(

ue ve
)T of the left line.

u′s = −
lr2vs + lr3

lr1
, u′e = −

lr2ve + lr3

lr1
(11)

The depth parameters of s and e are calculated by the disparities as follows:

ds =
b fx

∆u′s
, de =

b fx

∆u′e
(12)

where ∆u′s = us − u′s, ∆u′e = ue − u′e, and b denotes the baseline of the stereo camera. Then
the 3D position of Ps is obtained by the back-projection of the endpoint s as follows:

Ps =

 Xs
Ys
Zs

 =

 (us − cx)ds/ fx
(vs − cx)ds/ fy

ds

 (13)

Since line features are more sensitive to image noise and mismatching than point
features, the uncertainty of line features is modeled to quantify the reliability of line features.
Considering the spatial properties of line features, the covariance propagation method
is used to construct the uncertainty matrix of the endpoint, which can be expressed as
follows:

ΣPs = JPs cov(s)JT
Ps

(14)

in which JPs represents the Jacobian matrix of Ps, and cov(s) is the uncertainty matrix of s.
Based on the properties of ps in the image plane, cov(s) is modeled as a bi-dimensional
Gaussian set with standard deviation σu = σv = 1 pixel. The matrix JPs can be derived
from Equation (13) as follows:

JPs =
∂Ps

∂s
=

 ds/ fx 0
0 ds/ fy
0 0

 (15)

Due to the fact that the scale of uncertainty between image pairs varies, the values are
not directly comparable. The entropy of multivariate normal distribution is thus introduced
to abstract the uncertainty in the covariance matrix into a scalar value, which is defined as:

Hs = 0.5m(ln 2π + 1) + 0.5 ln(|ΣPs |) (16)

where m is the dimension of Ps. The uncertainty entropy of Pe can be calculated in the
same way.

In the methods of [20,24], the processing of outliers is to remove matching pairs that
do not meet a set constant threshold. However, we found that a constant threshold is
not applicable because the uncertainty depends on the changes of motion and scene. A
threshold determination method based on the uncertainty entropy of all line features of
the current frame is thus applied to the outliers eliminating process. After calculating the
average entropy H̄s for all line features of the current frame, the threshold Tdc is set to
0.85 H̄s according to experiments. If the uncertainty entropy Hs and He of a spatial line
reconstructed from the stereo frame are greater than Tdc, the line can be regarded as an
accurate line feature, and vice versa.

3. Bundle Adjustment and Loop Closure with Points and Lines

The BA module in the back-end optimization consists of two main aspects: local BA
of local mapping thread and global BA of loop closure thread. The original BA module
of ORB-SLAM2 includes variables of camera poses and point landmarks. However, the
addition of line features complicates the optimization process as a minimization process
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of the cost function in the co-visibility graph needs to be performed. Therefore, a graph
BA optimization strategy considering line and point features is adopted in this paper. In
addition, the accuracy of the loop closure depends on the calculation of the global BA and
the loop detection. A novel point and line BoW is thus proposed to improve the stability
and accuracy of the loop detection.

3.1. Graph Optimization with Point and Line Features

Due to the fact that the length and angle of the same line in the two images are
different, projection errors cannot be obtained directly from the corresponding two frames.
In this work, the projection errors are computed by re-projecting the matched lines from the
world reference back to the current image reference. Given the spatial line L in the world
reference and its orthogonal expression O, the corresponding line feature is transformed to
the camera frame of reference by Tcw. Then the projected line Ici is obtained by projecting
the line features onto the normalized plane of the current frame. The reprojection error
is then defined as the distance between the projected line Ici and the endpoints of the
detected line lci , which is computed via Equation (17).

rl =

[
d
(
lci

s , Ici
)

d
(
lci

e , Ici
) ], d(s, I) =

sT I√
l2
1 + l2

2

(17)

where lci
s and lci

e are the endpoints of the detected line lci . With the reprojection error rl
defined, a global loss function C containing point and line features is formulated as:

C = Fep + Fel = ∑
i,k

ρl

(
rT

l (i, k)Σ−1
l rl(i, k)

)
+ ∑

i,j
ρp

(
rT

p(i, j)Σ−1
p rp(i, j)

)
(18)

where ρ denotes the robust Huber cost functions, and Σ−1
l , Σ−1

p denote the inverse infor-
mation matrices of the reprojection error of points and lines, respectively. Compared to the
original loss function of the ORB-SLAM2 system, the reprojection error function Fel about
the line feature is added to Equation (18). The camera pose and landmark are calculated by
minimizing the loss function C. The Jacobians of rp are already derived in ORB-SLAM2,
and the Jacobians Jl concerning camera pose and line landmark can be expressed by the
following matrix chain multiplication:

Jl =
∂rl
∂Ici

∂Ici

∂Lci

[
∂Lci

∂δxi
∂Lci

∂Lw
∂Lw

∂δO

]
(19)

The Jacobian matrix of the line reprojection error relative to Ici is expressed as:

∂rl
∂Ic1

=

[
∂r1
∂l1

∂r1
∂l2

∂r1
∂l3

∂r2
∂l1

∂r2
∂l2

∂r2
∂l3

]
=


−l1sT

l I

(l2
1+l2

2)
3
2
+ us

(l2
1+l2

2)
1
2

−l2sT
l I

(l2
1+l2

2)
3
2
+ vs

(l2
1+l2

2)
1
2

1

(l2
1+l2

2)
1
2

−l1eT
l I

(l2
1+l2

2)
3
2
+ ue

(l2
1+l2

2)
1
2

−l2eT
l I

(l2
1+l2

2)
3
2
+ ve

(l2
1+l2

2)
1
2

1

(l2
1+l2

2)
1
2


2×3

(20)

According to the 3D line projection, Equation (21) is obtained.

∂Ici

∂Lci
=
[

∂I
∂n

∂I
∂d

]
=
[
K 0

]
3×6 (21)

The term ∂Lci

∂δxi represents the Jacobian matrix of line features concerning translation
and rotation errors in camera reference in which δxi =

[
δp δθ

]
. The line features only
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optimize the translation p and the rotation θ in the state variable, and the Jacobian matrix
is calculated as follows:

∂Lci

∂δθbb′
= T −1

bc

 ∂
(

I − [δθbb′ ]×
)

RT
wb
(
nw + [dw]×pwb

)
∂δθbb′

∂
(

I−[δθbb′ ]×
)

RT
wbdw

∂δθbb′


= T −1

bc

[ [
RT

wb
(
nw + [dw]×pwb

)]
×[

RT
wbdw]

×

]
6×3

(22)

∂Lci

∂δpbb′
= T −1

bc

 ∂RT
wb(nw+[dw ]x(pwb+δpbb′))

∂δpbb′
∂RT

wbdw

∂δpbb′

 = T −1
bc

[
RT

wb[d
w]x

0

]
6×3

(23)

The Jacobian matrix of the line in the camera reference concerning the line in the world
reference is the inverse of the transformation matrix represented as Equation (24).

∂Lci

∂Lw = T −1
wc (24)

According to the orthogonal representation of a spatial line, the last term of Equation (19)
can be defined as:

∂Lw

∂δO =
[

∂Lw

∂ϕ1
∂Lw

∂ϕ2
∂Lv

∂ϕ3
∂Lw

∂φ

]
=
[

∂Lv

∂U
∂U
∂ϕ1

∂Lv

∂U
∂U
∂ϕ2

∂Lw

∂U
∂U
∂ϕ3

∂Lv

∂W
∂W
∂φ

]
=

[
0 −w1u3 w1u2 −w2u1

w2u3 0 −w2u1 w1u2

]
6×4

(25)

With the analysis of the Jacobians completed, iterative algorithms, such as Gaussian–
Newton, can be employed to solve the local graph optimization of local mapping and
global graph optimization of loop closure.

3.2. Loop Closure with Points and Lines

In human-made environments, the existence of weak textures (i.e., white wall) and
frequent light changes leads to the false detection of the traditional BoW-based loop closure.
The insufficient recognition of point features leads to the mismatch results between frames.
To address this aspect, PL-BoW, a BoW that combines point and line features, is proposed,
which utilizes the co-occurrence information and spatial proximity of visual words.

The visual words of point features are generated from the ORB descriptor, including
the position ppoint and direction θp of point features. At the same time, the direction θl
and position information of the corresponding line feature is obtained from its endpoints.
As shown in Figure 5, the combination of a point and a line is defined as a PL pair only when
the direction and distance of the line and the point are close enough. To improve the search
speed of PL pairs, a K-D tree is constructed by using the position of each point feature. Then
the line features satisfying the PL pair are selected to build the point and line K-D tree.

Given a current keyframe fu and a candidate keyframe fc, the corresponding BoW
vectors are defined as

[
vp1, . . . , vps, vl1, . . . , vlt

]
and

[
wp1, . . . , wps′ , wl1, . . . , wlt′

]
, respec-

tively. In loop closure detection, the similarity of two keyframes is calculated through the
BoW vectors as follows:

S = −
Np

2
(

Np + Nl
) ∑

i,j

(∣∣vpi −wpj
∣∣− ∣∣vpi

∣∣− ∣∣wpj
∣∣)

− Nl

2
(

Np + Nl
) ∑

i,j

(∣∣∣vli −wl j

∣∣∣− |vli| −
∣∣∣wl j

∣∣∣) (26)
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where Np and Nl represent the total number of point and line features in the image,
respectively. The mismatched keyframes that have the lower score are removed from the
set of candidate keyframes. The procedure of the improved PL-BoW based loop detection
is given in Algorithm 1.

Figure 5. Word pairs of points and lines. (a) Relative spatial co-occurrence of words in a pair.
(b) Word pairs of point and line in a given image.

Algorithm 1: PL-BoW Based Loop Detection.
Input : The keyframes set F = { f1 . . . fi}, the KD-tree associated with fi and the current keyframe fu;
Output: A revisit matching keyframe fbm;

1 Select candidate keyframes through retrieving the words of points and lines in the
image using Term Frequency-Inverse
Document Frequency (TF-IDF);

2 nWi = NumberOfCommonView Words ( fi);
3 nPLi = NumberOfCommonViewPLpairs ( fi);
4 for each fi ∈ Fc do
5 if nWi < Max fi∈Fc{nWi}&&nPLi < Max fi∈Fc{nPLi} then
6 fi ∪ Fcm → Fcm;
7 Calculate the similarity Si;
8 Smax = Max{Si};
9 end
10 end
11 for each fi ∈ Fc do
12 Remove fi with Si < 0.8Smax;
13 end
14 Perform space consistency detection on Fcm to obtain fbm.

4. Experimental Verification

To test and analyze the proposed PEL-SLAM, a set of experimental tests were per-
formed with an Intel CPU i5-10060 KF@4.1GHz, 32GB RAM, without a dedicated GPU.
OpenCV and g2o were mainly used as the environment running on an Ubuntu16.04 desk-
top. The proposed PL visual stereo SLAM algorithm was compared with popular methods,
including ORB-SLAM2 [8], PL-SLAM [16], and stereo Point and Line based Visual Odom-
etry (sPLVO) [23]. The above algorithms were tested on the KITTI stereo dataset [34]
and EuRoC micro aerial vehicle (MAV) dataset [33], which provide several challenging
sequences of images in indoor and outdoor environments. The absolute Root Mean Square
Errors (RMSEs) between the estimated translation and rotation of the SLAM system and
the groundtruth given in the dataset were computed by the EVO [35] evaluation tool.

4.1. Stereo SLAM on KITTI Dataset

The test results in terms of the RMES of ORB-SLAM2, PL-SLAM, and the proposed
algorithm on the KITTI dataset are shown in Table 1. Since the strategy applied in the
sPLVO is not appropriate for outdoor environments, sPLVO was not tested for comparison
on KITTI dataset.
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Table 1. Absolute RMSE errors of three methods on KITTI.

Seg.
ORB-SLAM2 PL-SLAM PEL-SLAM

Trans. (m) Rot. (deg) Trans. (m) Rot. (deg) Trans. (m) Rot. (deg)

0 1.303313 0.018447 3.323087 0.068646 1.187783 0.017726
1 9.231962 0.025892 10.009194 0.033958 9.509255 0.024612
2 5.177579 0.027988 7.724952 0.065647 4.427225 0.026923
3 0.760564 0.014225 0.895579 0.011213 0.083256 0.013563
4 0.203649 0.457889 0.260442 0.431715 0.153068 0.322527
5 0.748097 0.008962 1.983561 0.022194 0.876509 0.009753
6 0.736519 0.011604 0.891829 0.031371 0.725683 0.010336
7 0.540521 0.010325 0.871499 0.038998 0.503406 0.010071
8 3.23028 0.028896 4.97701 0.030086 3.094443 0.025968
9 2.962183 0.029326 3.588782 0.031642 2.499952 0.027685

The lowest absolute translation and rotation errors for each test are marked in bold.
Overall, the proposed method performs better than the other two methods. The translation
and rotation errors of the proposed method are about 24.8% and 29.6% lower than that of
ORB-SLAM2, respectively. However, it can be seen that the application of line features in
the environment with insufficient line features hinders the accuracy of the SLAM process.
As shown in Figure 6, the condition of the KITTI 05 dataset is mostly foresting with fewer
line features, and the translation and rotation accuracy of the proposed method are reduced
by 17.1% and 8.8%, respectively. Table 1 also shows that the proposed method outperforms
PL-SLAM, which also employs both point and line features. One reason for this is that the
use of PL-BoW suppresses the long-term positioning drift of the system in large outdoor
scenes. Another reason for this result is that the proposed line feature outliers elimination
method reduces the front-end mismatching and further improves the accuracy of the
constraints constructed in the back-end optimization of the system.

Figure 6. An example of the PEL-SLAM on KITTI 05. (a) Feature extraction and mapping of PEL-
SLAM. (b) Trajectory comparison between ORB-SLAM2 and PEL-SLAM.
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4.2. Stereo SLAM on EuRoC Dataset

The accuracy of the four algorithms (PEL-SLAM, PL-SLAM, sPLVO, and ORB-SLAM2)
was also compared on the EuRoC dataset, which includes indoor environments images
of machine halls and rooms. Table 2 shows the absolute translation and rotation errors of
these four algorithms.

Table 2. Absolute RMSE errors of four methods on EuRoC.

Seg.
PL-SLAM ORB-SLAM2 sPLVO PEL-SLAM

Trans. (m) Rot. (deg) Trans. (m) Rot. (deg) Trans. (m) Rot. (deg) Trans. (m) Rot. (deg)

MH-01 0.156799 6.039926 0.038788 0.784221 0.039265 0.735803 0.037170 0.713027
MH-02 0.142146 2.541990 0.051815 0.786260 0.042640 0.636756 0.047628 0.613111
MH-03 0.146580 3.376991 0.039685 0.782628 0.037920 0.665110 0.043620 0.671286
MH-04 0.123971 6.755803 0.131072 0.777158 0.063646 0.711528 0.059120 0.673853
MH-05 0.554628 9.947981 0.091573 0.781631 0.054628 0.792583 0.047690 0.693294
V1-01 0.168556 4.452180 0.087874 0.712945 0.087200 0.947981 0.082576 0.712721
V1-02 0.168729 5.623589 0.064295 0.776845 0.067039 0.798271 0.064460 0.756860
V1-03 0.419889 9.123150 0.069812 0.767960 0.070297 0.771652 0.085186 0.861888
V2-01 0.194298 2.280268 0.085005 0.781473 0.072192 0.780698 0.063510 0.770080
V2-02 0.251842 4.635829 0.056297 0.791928 0.065607 0.701221 0.054290 0.653020
V2-03 0.567585 6.001996 0.272255 0.787116 0.372658 0.800124 0.405792 0.774410

It is clear from Table 2 that the strategy used by sPLVO for indoor line features makes
it competitive in indoor environments. Nevertheless, the performance of the proposed
method on the EuRoC dataset was generally superior to PL-SLAM, ORB-SLAM2, and
sPLVO. Compared with the ORB-SLAM2, the translation and rotation accuracy of the
proposed method are improved by nearly 5.7% and 7.3%, respectively. These improvements
demonstrate that the incorporation of line features increases the accuracy of pose estimation
and map construction. Although both sPLVO and the proposed method introduce line
feature outliers elimination, the proposed method shows better accuracy in most testing
cases. Compared with the state-of-the-art sPLVO, the maximum translation and rotation
accuracy of the proposed method improves the results by 17.2% and 24.8%, respectively.
These results indicate that using the entropy scale to measure the uncertainty of line
features and applying PL-BoW to loop detection are beneficial to the accuracy of the SLAM
process.

The tests also demonstrate that the proposed method environments with drastic
changes and rapid motion of carriers. Figure 7 illustrates the estimated trajectory com-
parisons of MH-02 and V1-01, which contains the results with typical rapid motion and
changing light. The accuracy of the two methods based on point and line features (i.e.,
sPLVO and PEL-SLAM) is higher than the methods that use only-point-features, ORB-
SLAM2. Meanwhile, the average rotation accuracy of the proposed method is nearly 14.3%
higher than that of sPLVO.

4.3. Comparison of Processing Time

Due to the fact that the real-time performance is one of the important indicators of the
SLAM process, a comparison between the average processing time per frame of different
methods was performed (Table 3). Table 3 shows that the operating time of the SLAM
process is directly affected by the image resolution, which means that the process needs
more time to process the KITTI images. At the same time, the application of line features
increases the running time of the system, especially the detection of line features. The
PEL-SLAM reduces the time consumption during the line features detection. Compared
with PL-SLAM, the proposed method saves approximately 7.7% and 12.2% of the average
running time in KITTI and EuRoC datasets, respectively. The running time of the proposed
method is 4.5% faster than that of sPLVO without sacrificing the accuracy of the pose
estimation and map construction.
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Figure 7. Trajectory comparison between PL-SLAM, ORB-SLAM2, sPLVO, and the proposed PEL-SLAM. (a) The 3D view
of the estimated trajectories on EuRoC MH-02. (b) The 3D view of the estimated trajectories on EuRoC V1-01.

Table 3. Average processing time per frame on KITTI and EuRoC.

KITTI ORB-SLAM PL-SLAM PEL-SLAM EuRoC ORB-SLAM PL-SLAM sPLVO PEL-SLAM
Seg. Time (s) Time (s) Time (s) Seg. Time (s) Time (s) Time (s) Time (s)

0 0.05932 0.09126 0.07917 MH-01 0.04481 0.08069 0.08553 0.07410
1 0.08233 0.09912 0.09119 MH-02 0.04333 0.08232 0.08238 0.07798
2 0.06338 0.08637 0.07817 MH-03 0.04346 0.08327 0.07756 0.07635
3 0.06470 0.08653 0.07846 MH-04 0.03610 0.07563 0.07299 0.06956
4 0.06627 0.09610 0.08687 MH-05 0.03747 0.07267 0.06968 0.06660
5 0.06738 0.10634 0.08765 V1-01 0.03360 0.07085 0.06423 0.06133
6 0.07303 0.09923 0.09506 V1-02 0.03548 0.08065 0.05815 0.06585
7 0.06103 0.08712 0.08899 V1-03 0.03299 0.07695 0.06187 0.05910
8 0.06534 0.09138 0.08847 V2-01 0.03232 0.06924 0.06611 0.06172
9 0.06156 0.09175 0.08749 V2-02 0.03731 0.07138 0.06765 0.05856

5. Conclusions

In this paper, a method that can extract point and line features with the purpose of
using them to improve the positioning, mapping, and loop detection is proposed. The
PEL-SLAM system solves the problem of point-based failure in poorly textured scenes. The
proposed method uses the faster EDlines instead of the widely used LSD and leverages
the entropy scale to measure the uncertainty of line features. Meanwhile, the proposed
PL-BoW is constructed and applied to the loop detection, which improves the accuracy
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of loop keyframe matching. Such mechanisms system enables SLAM to be performed
in real-time without loss of accuracy while producing a complete point-linemap. Finally,
the detailed experiments on KITTI and EuRoC datasets show that the proposed method
outperforms many well-known methods with respect to translation and rotation accuracy
in challenging environments, with the additional benefit of using less time consumption
compared with the state-of-the-art PL SLAM systems. In the proposed algorithm, the
accuracy of the system depends on the performance of the detected visual features. The
way of combining other sensors information to improve the robustness of the point-line
SLAM will be the focus of future research.
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