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Abstract: The Gravity Recovery and Climate Experiment (GRACE) satellite solutions have been
considerably applied to assess the reliability of hydrological models on a global scale. However,
no single hydrological model can be suitable for all regions. Here, a New Statistical Correction
Hydrological Model Weighting (NSCHMW) method is developed based on the root mean square
error and correlation coefficient between hydrological models and GRACE mass concentration
(mascon) data. The NSCHMW method can highlight the advantages of good models compared
with the previous average method. Additionally, to verify the effect of the NSCHMW method,
taking the Haihe River Basin (HRB) as an example, the spatiotemporal patterns of Terrestrial Water
Storage Anomalies (TWSA) in HRB are analyzed through a comprehensive comparison of decadal
trends (2003–2014) from GRACE and different hydrological models (Noah from GLDAS-2.1, VIC
from GLDAS-2.1, CLSM from GLDAS-2.1, CLSM from GLDAS-2.0, WGHM, PCR-GLOBWB, and
CLM-4.5). Besides, the NSCHMW method is applied to estimate TWSA trends in the HRB. Results
demonstrate that (1) the NSCHMW method can improve the accuracy of TWSA estimation by
hydrological models; (2) the TWSA trends continue to decrease through the study period at a rate of
15.7 mm/year; (3) the WGHM and PCR-GLOBWB have positive reliability with respect to GRACE
with r > 0.9, while all the other models underestimate TWSA trends; (4) the NSCHMW method can
effectively improve RMSE, NES, and r with 3–96%, 35–282%, 1–255%, respectively, by weighting the
WGHM and PCR-GLOBWB. Indeed, groundwater depletion in HRB also proves the necessity of the
South-North Water Diversion Project, which has already contributed to groundwater recovery.

Keywords: NSCHMW method; TWSA; GRACE; hydrological models; spatiotemporal patterns

1. Introduction

The Haihe River Basin (HRB), including mountains and plains, is one of the largest
agricultural production bases of China [1]. The main crops grown on HRB are corn and
wheat, but there is no rice [2]. In the past two decades, the HRB experienced a rapid
land type change. During the process, a large amount of land unsuitable for farming has
been reclaimed for agriculture. Land-use changes have impacts on the soil-vegetation-
atmosphere circulation system. The Terrestrial Water Storage (TWS) anomalies, caused by
unsustainable groundwater over-extraction and climate changes, are particularly severe in
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HRB’s plains [3]. Therefore, exploring spatiotemporal patterns of TWS in HRB is important
to sustainable society development [4,5].

Accurate measurement of TWS is extremely indispensable for agricultural irrigation,
human life, and societal development [6]. Measuring changes in TWS is important for
the sustainable development of water resources. Remote sensing is one of the methods of
estimating TWSA. GRACE satellites, launched in 2002, have been widely used to observe
large-scale water resource changes [7]. Numerous scholars have successfully used GRACE
to estimate TWSA [8,9], groundwater storage [10,11], drought, and flood disaster [12].

Recently, the assessment of TWSA using hydrological models has an unprecedented
increase. TWSA is mainly simulated by land surface models (LSMs) and global hydrological
water resource models (GHWRMs) [13]. The definition of LSMs originally come from the
simulation of land surface processes in the atmospheric cycle, which are used to calculate
the water flux from land to the atmosphere, such as the Global Land Data Assimilation
System (GLDAS) models [14]. GHWRMs are developed in response to global water
shortages, and they are mainly based on water balance equations, such as WGHM [15,16]
and PCR-GLOBWB [17,18]. One of the main differences between LSMs and GHWRMs is
that the former put more emphasis on physical foundations, including water and energy
balance, while the latter underlines empirical methods of water resources budgeting. In
addition, LSMs only consider climate factors, while climate changes and human activities
are added to GHWRMs to measure water storage variations, including industrial and
agricultural water, domestic water, and reservoir scheduling.

Recently, with the extensive applications of hydrological models in water storage
variations, various models have been compared with GRACE data to evaluate the relia-
bility and accuracy of hydrological models, to name only a few, some researches on the
global [19–21] and some other researches on the regional scale [11,22,23]. However, in
northern China, numerous studies focus on water storage changes in the North China Plain
(the plains of HRB) [1,24,25] and neglected the mountains of HRB, while few studies touch
on water resources in the whole HRB region. Although some researchers spotlighted the
groundwater storage (GWS) [26], drought [27], and evapotranspiration [28] variations in
HRB, the spatiotemporal changes of TWS involving individual components and the analy-
sis of their causes are still rare. In addition, most of these studies are based on GRACE data
or a single model [28,29]; nevertheless, they ignored the discrepancies between different
hydrological models or between GRACE and hydrological models. Thus, it is necessary
to comprehensively verify TWSA trends in HRB due to differences such as versions of
GRACE, hydrological models, specific processing methods of TWSA, and research periods.

Different from previous studies, the purpose of this paper is to further improve the
accuracy of hydrological models by analyzing the temporal and spatial patterns of TWSA
in HRB and its sub-regions (including provinces and cities, mountainous and plains). In
this paper, the NSCHMW method is established for the first time by using the root mean
square error (RMSE) and correlation coefficient (r) between GRACE and hydrological
models to weight the trends of TWSA. This method fully considers the information of
consistency and accuracy between multiple hydrological models and GRACE, and the
integration of multi-source hydrological models can effectively improve the accuracy of
TWSA estimation. The rest of this paper is organized as follows. The NSCHMW method is
constructed in Section 2. Then Section 3 verify the feasibility of the NSCHMW method by
displaying the spatiotemporal patterns of TWSA, SMSA, and GWSA in the HRB region.
Further, time-series curves of six grid cells are analyzed with the NSCHMW method,
influences of driving forces on the results are discussed in Section 4. The key findings in
this paper are concluded at last.

2. Materials and Method
2.1. Study Area

The area of HRB is approximate 329,000 km2, of which the area occupied by each
province is shown in Table 1. HRB has a span of eight provinces (autonomous regions
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or municipalities) including Beijing, Tianjin, Hebei, Shanxi, Shandong, Henan, Liaoning,
and Inner Mongolia (Figure 1a). It is worth noting that Liaoning and Inner Mongolia
occupy relatively small areas, and they do not contain a complete grid. Therefore, the other
six sub-regions with larger areas and more grid numbers are selected for analysis. HRB
also can be divided into two major sub-regions (plains and mountains) according to the
terrain features (Figure 1b). HRB is located at 111◦E~121◦E and 34◦N~43◦N, and the data
resolution is 0.5◦ × 0.5◦. Therefore, a total of 18 rows, 20 columns, and 360 grid cells are
generated. The index order used in this work is by column first, then by row. The number
of grids occupied by each sub-region is shown in Table 1.

Table 1. The area of HRB’s sub-regions.

Region Area/km2 Number of Grids Region Area/km2 Number of Grids

Beijing 17,000 10

Plains 130,000 50
Tianjin 12,000 7
Hebei 18,0000 76
Shanxi 61,000 28

Shandong 30,000 12

Mountains 199,000 95
Henan 15,000 8

Liaoning 1000 1
Inner Mongolia 13,000 5

HRB (total) 329,000 145 HRB (total) 329,000 145

Note: If the grid area contained in the sub-regions is greater than a quarter of the area of a single grid, then this grid will be included in the
number of grids. The grid at the boundary is repeated.

Figure 1. The geographic location of the HRB region in this study. (a) The sub-regions including Beijing, Tianjin, Hebei,
Shanxi, Shandong, Henan, Liaoning, and Inner Mongolia; (b) plains and mountains.

The Basin lies in a temperate East Asian monsoon climate zone and belongs to a
semi-humid zone, with an average annual temperature of 1~15 ◦C, average annual pre-
cipitation of about 400~600 mm, and annual evaporation of 900~1500 mm [26]. HRB is
the most important food production base in northern China [24]. In recent years, the over-
exploitation of water resources results in negative changes in the ecological environment,
such as groundwater depletion, drought, land subsidence, and deterioration of freshwater
quality. Five of China’s eight super-large groundwater overexploitation areas are in the
HRB [30]. The geographic location of the study area in this case is shown in Figure 1.
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2.2. Data
2.2.1. GRACE Mascon

In this work, two newly available GRACE mascon solutions, the monthly Jet Propul-
sion Laboratory RL06 v02 (JPL) [31,32] and the Center for Space Research (CSR) [33],
are used to research the TWSA in HRB. There are currently three institutions processing
GRACE mascon data, CSR, JPL, and CSFC, with resolutions of 0.25◦ × 0.25◦, 0.5◦ × 0.5◦,
and 1◦ × 1◦, respectively. In this paper, data from two of the most widely used institutions
with higher resolution are selected (CSR and JPL). As for the main discrepancy of JPL and
CSR, firstly, the native resolution of JPL is 3◦ × 3◦, while it is 1◦ × 1◦ in CSR. Secondly, the
tide model used in CSR is GOT4.8 (d/o 180) (GOT, Goddard/Grenoble Ocean Tide), while
the tide model used in JPL is FES2014b (d/o 180) (FES, finite element solution).

In GRACE data exists leakage error and the limited intrinsic resolution, which affects
the reliability of GRACE to a certain extent. Fortunately, mascon solutions can better
resolve ocean leakage error and improve the signal-to-noise ratio in terrestrial water signals
over the HRB region. GRACE mascon solutions can be applied from the regional to global
scales, whereas the spherical harmonics (SH) solutions are just for the global scale. A basic
difference between SH and mascon is that SH solutions need to be processed to reduce noise.
This study concerns the reliability of GRACE summing up four aspects: (1) GRACE mascon
solutions provide higher precision for monitoring TWSA on the regional scale. (2) We
assume that only reduction in leakage errors across coastlines is required when GRACE data
are used to analyze the TWSA over HRB. (3) The estimates for all parameters improve in the
mascon approach, including the signal-to-noise ratio. (4) Although different background
models and data processing strategies are used in CSR and JPL, high spatiotemporal
agreement in TWSA is found between them. Thus, GRACE mascon solutions can be used
as valuable data to assist in the improvement of hydrological models over HRB.

We believe that the discrepancies concerning reference are the consequence of a
random fluctuation and not of a systematic error. To improve the signal-to-noise [34] the
two GRACE mascon products are averaged to reduce the uncertainty. The period of all
datasets is from 2003 to 2014, as part of the hydrological models are only updated to 2014
(such as PCR-GLOBWB). A total of 11 months of GRACE data are missing between 2003
and 2014, as shown in Table S18. The cubic-spline interpolation method is used to fill the
missing month of GRACE. All the monthly water storage anomalies are typically computed
relative to a mean-time baseline, known as an average from 2004 to 2009. To ensure the
consistency of the spatial resolution among GRACE and hydrological models, all datasets
are interpolated to 0.5◦ × 0.5◦ in this work.

2.2.2. Hydrological Models

Hydrological models are physical and data structures established by simulating
hydrological phenomena, which are generalizations of actual hydrological conditions, and
they can help relevant departments understand, manage and predict water resources. For
this reason, investigating the performance and reliability of hydrological models is of
great significance. Current hydrological models include LSMs and GHWRMs. First of all,
GLDAS models have been updated with multiple versions so far, including two versions
of datasets (GLDAS-1 and GLDAS-2), which are the most common LSMs. Among them,
GLDAS-1 includes four models (Noah, VIC, CLM, and Mosaic), while GLDAS-2 includes
three models (Noah, VIC, and CLSM [35]). GLDAS-2 provides global land surface data
from 2000 to the present. The spatial resolutions are 0.25◦ × 0.25◦ and 1◦ × 1◦, and the time
resolutions are 1 day and 1 month. GLDAS-2 is improved and solved the discontinuity
from GLDAS-1 data. It is worth noting that the CLM version is constantly being updated
such as CLM-4.0 and CLM-4.5 [36].

Then, WGHM and PCR-GLOBWB are common GHWRMs used in the HRB region,
which are described in detail in the introduction part. The spatial resolutions of WGHM
and PCR-GLOBWB are 0.5◦ × 0.5◦ and 0.08◦ × 0.08◦, respectively. The WGHM not only
simulates the daily groundwater component but also considers human-induced water
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consumption. GHWRMs have a higher resolution than LSMs used in this paper, which
allows the latter to perform better at the grid-scale.

This paper assesses the performance of hydrological models widely used in HRB,
including Noah (from GLDAS-2.1), VIC (from GLDAS-2.1), CLSM2.1 (from GLDAS-2.1),
CLSM2.0 (from GLDAS-2.0), Water-Global Assessment and Prognosis Hydrological Model
(WGHM), PCRaster Global Water Balance (PCR-GLOBWB), and CLM-4.5. In the following
text, Noah, VIC, CLSM2.1, CLSM2.0, WGHM, PCR-GLOBWB, and CLM are used to sim-
plify the description of the above seven hydrological models respectively. Their primary
attributes are listed in Table 2. The reason why these models are used as research data in
this paper is that there are differences among them that cause uncertainty. The uncertainty
among hydrological models is model structure, climate forcing, human water use, and
climate changes. For instance, the number of soil layers and total soil thickness of hydro-
logical models are different (Table 2). For climate forcing, only Noah, VIC, CLSM2.1, and
CLSM2.0 have the same input parameters, whereas the other hydrological models apply
completely different parameters. For model structure, only CLSM2.1 has the same model
structure as CLSM2.0. Furthermore, only WGHM and PCR-GLOBWB consider human wa-
ter use in simulating TWSA, and just WGHM is calibrated. In summary, these differences
are related to the model uncertainty, which can affect the performance of hydrological
models.

Table 2. Primary attributes of hydrological models used in this study.

Description Noah VIC CLSM2.1 CLSM2.0 WGHM PCR-
GLOBWB CLM

Resolution 1◦ × 1◦;
monthly

1◦ × 1◦;
monthly

1◦ × 1◦;
monthly

0.25◦ × 0.25◦;
day

0.5◦ × 0.5◦;
monthly

0.08◦ × 0.08◦;
monthly

0.94◦ × 1.25◦;
monthly

units mm mm mm mm mm m mm
SnWS

√ √ √ √ √ √ √

CWS
√ √ √ √ √ √ √

SMS
√ √ √ √ √ √ √

SWS × × × ×
√ √ √

GWS × ×
√ √ √ √ √

Soil layers 4 3 1 1 1 2 10
Human

water use × × × ×
√ √

×

Note: snow water storage, SnWS; canopy water storage, CWS; surface water storage, SWS; soil moisture storage, SMS; groundwater
storage, GWS.

2.3. Establishment of the NSCHMW Method

Traditional methods for estimating TWSA usually use the outputs of a single model.
However, hydrological models are usually developed on a global scale, which poses
challenges for regional applications. Due to the differences in uncertainties such as model
drive, the data results are also different. For the sake of optimizing the TWSA of HRB, this
paper sets weights according to the consistency and accuracy between the hydrological
models and GRACE and integrates the selected multi-source hydrological models to
improve the accuracy of TWSA trends. The concrete steps of the NSCHMW method
include three points. First, the major components of TWSA in HRB need to be judged,
and the TWSA is estimated by hydrological models according to the major components.
Secondly, the statistical indicators and the weights of hydrological models with correlation
coefficients greater than 0.9 are calculated successively. The selected hydrological models
are weighted to correct the TWSA trends simulated by a single model, and the merged
TWSA is estimated at the grid-scale, which is represented by “Merge” hereafter. The
complete steps are as follows.

1. Estimation of TWSA based on hydrological models;
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Soil moisture storage (SMS), groundwater storage (GWS), snow water storage (SnWS),
canopy water storage (CWS), and surface water storage (SWS) are the five components of
TWS, as the following formula [20,37]:

TWS = SMS + GWS + SnWS + CWS + SWS, (1)

TWSA = TWSi − TWS, (2)

where TWSi denotes TWS in the month i, TWS is the average of TWS from 2004 to 2009,
and TWSA stands for the change value during the study period. In like manner, SMSA,
GWSA, SnWSA, CWSA, and SWSA also subtract the corresponding average value. For
HRB, the SnWSA and SWSA are relatively small, so they can be ignored [26]. Research [38]
implied that changes in water resources caused by plants were about 5 mm, far less than
GRACE uncertainties (2 cm). Hence, CWSA is negligible too [26]. Under these hypotheses,
Equation (1) can be transferred as follows [1].

TWSA = SMSA + GWSA. (3)

After the original TWSA data are calculated by Formula (3), the seasonal and trend
components of GRACE are wiped out by the Seasonal Trend Decomposition using Loess
procedure (STL) mothed [39]. The trend component is concerned to assess the performance
of hydrological models in this work. Then, the Mann Kendall (MK) test is used to evaluate
the significance level of TWSA trends [40]. The variance and statistic (Z) are calculated
in the MK test. When Z is greater than 0, the time-series data shows an increasing trend,
while when Z is less than 0, it shows a decreasing trend. The absolute value of Z given in
this paper is greater than 1.96, indicating a significance level with 95% confidence. The
uncertainty in trends is derived from the least-squares linear regression.

2. Assignment of weights based on statistical indicators.

As the most widely used evaluation metrics of the hydrological changes, root mean
square error (RMSE), the Nash Sutcliffe efficiency (NSE) coefficient, and Pearson’s linear
correlation coefficient (r, at 95% significance level), are used to analyze correlation. If r or
NSE are near 1 and RMSE is relatively small, it implies that the model is reliable. Three
indicators are calculated by the following Equations (Eqs.) [41–43]:

RMSE =

√
1
n

n

∑
i=1

(Mi −Oi)
2, (4)

NSE = 1− ∑n
i=1(Mi −Oi)

2

∑n
i=1
(
Oi −O

)2 , (5)

r =
∑n

i=1
(

Mi −M
)(

Oi −O
)√

∑n
i=1
(

Mi −M
)2
√

∑n
i=1
(
Oi −O

)2
, (6)

where Mi and Oi denote the modelled and reference values, respectively; M and O are the
average of the hydrological models and reference values, respectively, i is the month of the
year, and n is the total number of months. Then the weight (w) is assigned to each grid cell
as follows:

w =

{
r2009

2003 + 1/RMSE2009
2003, be f ore2009

r2014
2010 + 1/RMSE2014

2010, a f ter2010
, (7)

where w is the weight, r2009
2003 denotes the correlation coefficients from 2003 to 2009. r2014

2010
denotes the correlation coefficients from 2010 to 2014. RMSE2009

2003 denotes the root mean
square error from 2003 to 2009. RMSE2014

2010 symbolizes the root mean square error from
2010 to 2014.

3. Weighting TWSA based on weights.
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In this paper, the operation from Equation (1) to Equation (7) is performed for each
grid. Based on the weight of hydrological models, the formula of the NSCHMW method
can be obtained as follows:

Merge =


84
∑

k=1

TWSA0k ·wk
m
∑

k=1
wk

144
∑

k=85

TWSA0k ·wk
m
∑

k=1
wk

, (8)

where Merge represents the TWSA estimated by NSCHMW method; TWSA0 represents the
TWSA calculated by hydrological models. The m represents the number of hydrological
models. Furthermore, k represents the months of different periods. Based on climate
factors, this paper analyzes the correlation between the model and GRACE in different
periods. The first period is from 2003 to 2009, covering a total of 84 months, and the second
period is from 2010 to 2014, covering a total of 60 months.

3. Results
3.1. TWSA Derived from GRACE Mascon

Figure 2 spatially illustrates monthly TWSA trends derived from JPL CSR, and the
average value during the studied decade. It is worth noting that JPL, CSR, and Average
have all carried out MK test, and the TWSA trend of all grids is within the 95% confidence
interval, indicating the significant trends. Therefore, there is no grey dot representing
no significant trend in the spatial distribution. The results of JPL (Figure 2a) and CSR
(Figure 2b) are slightly different in that JPL displays two severe depletion regions, one in
Henan (such as Jiaozuo, Xinxiang, Hebi, Puyang, and Handan) and one in the east of Hebei
(such as Hengshui and Cangzhou), while CSR has only one depletion region in the border
area between Hebei and Henan. As shown in Figure 2c, TWSA shows obvious annual
changes, at a rate of −15.7 ± 0.7 mm/year in HRB. In addition, the spatial resolution of
CSR displays higher and clearer gradual changes. Such difference is because GRACE data
appear leakage errors in small regional examine [20]. However, in the long-term time series,
the trends from JPL and CSR are the same. Up to now, GRACE is accepted to detect TWSA
to a large extent. To further reduce errors of GRACE-derived TWSA, the average value of
JPL and CSR is utilized as the reference value of TWSA.
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In this paper, the GRACE data are decomposed by STL in 12 months. Figure 3
delineates the original (Figure 3a), trend (Figure 3b), seasonal (Figure 3c), and residual
(Figure 3d) components of TWSA after STL decomposition. The time series value in
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Figure 3 is an average of all grids over HRB. Monthly precipitation is accumulated over the
entire HRB. Through seasonal and residual components are removed, the trend component
is linear. As seen in trend, TWSA based on the two institutions has similar temporal
variations, with long-term decreasing trends, especially fiercer since 2005. TWSA continues
to decline and gradually intensifies from north to south, with changes in the southern HRB
ranging from −30 mm/year to −35 mm/year. However, TWSA trends derived by JPL
(−17.4 ± 0.7 mm/year) indicates a larger increasing and decreasing amplitude than CSR
(−14 ± 1 mm/year). The TWSA of HRB’s sub-regions is shown in Table S1.
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The GRACE-derived TWSA also reflects the influence of two extreme climate events,
which occurred in 2009 [44,45] and 2011 [46,47], respectively, mainly triggered by the Arctic
Oscillation and the El Niño events. The monthly distribution of precipitation in Figure 3a
indicates that precipitation is basically stable during 2003 and 2009; however, it increases
in the following years [48]. Owing to the alternation of El Nino and La Nina, their effects
on climate are usually opposite, there is more precipitation in the second year of El Nino,
which results in a significant rise in 2010 and 2012, respectively.

3.2. Evaluation of TWSA from Hydrological Models
3.2.1. TWSA Trends

Figure 4 maps the diagram of TWSA trends simulated by hydrological models and
GRACE. Black dots indicate non-significant trend regions. Table 3 shows the different water
storage trends (mm/year) derived from hydrological models and the reference (p < 0.05).
What needs to be explained is that the hydrological model’s outputs do not include the
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TWSA component, and generally, the sum of the other components is used as the TWSA
component (e.g., GWSA and SMSA). As stated in Equation (3), TWSA in this paper only
contains two variables, GWSA and SMSA. Since NOAH and VIC do not contain the GWSA
component, the value of TWSA is equal to that of SMSA. WGHM (−17.1 ± 0.4 mm/year)
and PCR-GLOBWB (−23.0 ± 0.7 mm/year) are the only two models that overestimate
TWSA trends (Figure 4e,f). Since two GHWRMs (WGHM and PCR-GLOBWB) have all
the water storage components, and human water use is considered. The reason why
PCR-GLOBWB has a higher slope than WGHM is that WGHM is calibrated after WGHM
2.2a. The updated WGHM 2.2d in this study enhances the simulation performance of
TWSA in HRB significantly, although the overestimation still exists. Four GLDAS models,
including Noah, VIC, CLSM2.1, and CLSM2.0 (Figure 4a–d), show no obvious TWSA
trends with values of −2.6 ± 0.7 mm/year, −1.2 ± 0.5 mm/year, −1.3 ± 0.7 mm/year,
and −1.1 ± 0.9 mm/year, respectively, and GLDAS models have many non-significant
trends points than GHWRMs. On the contrary, there are no black dots in GRACE results.
Additionally, CLM (Figure 4g) has an opposite trend compared to GRACE in the northern
HRB, although the spatial distribution of them is consistent in the southern HRB. Hence,
spatiotemporal patterns of TWSA simulated by different hydrological models are quite
different. The differences among GRACE and hydrological models in TWSA trends come
from uncertainties of components.
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Table 3. Trends of TWSA, SMSA, and GWSA (mm/year) derived from hydrological models and
the reference over HRB. The non-significant values with the MK test at the 95% confidence level are
shown in bold.

Models TWSA Trends SMSA Trends GWSA Trends

Noah −2.6 ± 0.7 −2.6 ± 0.7 –
VIC −1.2 ± 0.5 −1.2 ± 0.5 –

CLSM2.1 −1.3 ± 0.7 −0.3 ± 0.2 −1.0 ± 0.6
CLSM2.0 −1.1 ± 0.9 −0.3 ± 0.2 −0.8 ± 0.7
WGHM −17.1 ± 0.4 −0.1 ± 0.1 −17.1 ± 0.2

PCR-GLOBWB −23.0 ± 0.7 −1.2 ± 0.4 −21.8 ± 0.2
CLM −2.7 ± 1.0 2.5 ± 0.8 −5.2 ± 0.5

Reference −15.7 ± 0.7 −0.4 ± 0.6 −15.2 ± 0.9

Figure 5 shows the time-series TWSA of HRB and six sub-regions. TWSA errors
are estimated by the standard deviation between CSR and JPL in this work [34], which
is the grey-shaded area. As seen, the TWSA trends have discrepancies from different
hydrological models, with higher trends from GHWRMs, and lower trends from LSMs.
For the whole HRB (Figure 5a), the decreased reaches −15.7 mm/year, and the values vary
from different sub-regions, with trends seen in Beijing (−7.3 ± 0.5 mm/year, Figure 5b,
Table S2), Tianjin (−10.7± 0.9 mm/year, Figure 5c, Table S3), Hebei (−13.8 ± 0.7 mm/year,
Figure 5d, Table S4), Shanxi (−19.9 ± 0.9 mm/year, Figure 5e, Table S5), Shandong
(−21.3 ± 1.5 mm/year, Figure 5f, Table S6), Henan (−34.6 ± 2.1 mm/year, Figure 5g,
Table S7). However, CLSM2.1 and CLSM2.0 indicate slight TWSA trends in Henan with a
value of −7.3 ± 1.2 mm/year, −11.5 ± 1.5 mm/year, respectively, which are lower than
the corresponding reference value of −34.6 ± 2.1 mm/year. Furthermore, the two CLSM
models show no obvious TWSA trends in Beijing and Tianjin. Table 4 presents the agree-
ment metrics between hydrological models and corresponding reference values. WGHM
presents the highest consistency (r = 0.91, RMSE = 26 mm, and NSE = 0.86) in terms
of TWSA by comparison, whereas CLSM2.0 expresses the lowest consistency (r = 0.49,
RMSE = 67 mm, and NSE = −0.11).

For TWSA trends in HRB’s sub-regions, GHWRMs overestimate the TWSA trends in
HRB’s sub-regions apart from the Shanxi. The following three points can be summarized,
(1) LSMs (Noah, VIC, CLSM2.1, CLSM2.0, CLM) underestimate TWSA trends in Beijing
and Hebei compared with GRACE. (2) LSMs and WGHM underestimate that in Tianjin,
Shandong, and Henan regions. (3) Both LSMs and GHWRMs underestimate that in Shanxi.
The model structure may be the main factor that leads to the discrepancies between LSMs
and GHWRMs. The two GHWRMs both show better consistency with GRACE in Beijing
and Hebei (r > 0.84, Tables S8 and S10). Among them, PCR-GLOBWB shows a good
agreement with GRACE in Tianjin, Shanxi, and Shandong, with the correlation coefficient
of 0.79, 0.75, and 0.85, respectively (Tables S9, S11 and S12). By combining RMSE, NSE,
and r for joint analysis, WGHM best matches with GRACE in Henan, with the correlation
coefficient of 0.91 (Table S13).

PCR-GLOBWB and WGHM are the best consistent with GRACE in the HRB region
(r > 0.9), thus, they are used as input models for the NSCHMW mothed. Figure 6 shows
the spatial distribution of TWSA from Merge in different periods. In this paper, the GRACE
inversion results are taken as the true values of TWSA (Figure 4h). It can be seen that
the spatial distribution of the Merge result estimated by the NSCHMW method is more
consistent with GRACE. However, PCR-GLOBWB significantly overestimates it in the
middle part of the HRB (Figure 4f), as well as the TWSA signal simulated by WGHM is
insufficient in the eastern part of HRB (Figure 4e). The average trend of the Merge is better
than the results of the individual models.
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Table 4. Indices of TWSA, SMSA, and GWSA between hydrological models and corresponding reference.

TWSA SMSA GWSA

RMSE
mm NSE r RMSE

mm NSE r RMSE
mm NSE r

Noah 59.2 ± 9.1 0.13 ± 0.18 0.68 ± 0.01 12.0 ± 9.1 0.78 ± 0.26 0.94 ± 0.04 – – –
VIC 67.5 ± 9.5 0.12 ± 0.18 0.52 ± 0.02 13.0 ± 5.1 0.75 ± 0.13 0.88 ± 0.02 – – –

CLSM2.1 66.6 ± 9.3 0.09 ± 0.19 0.52 ± 0.01 20.1 ± 5.5 0.39 ± 0.13 0.82 ± 0.00 70.6 ± 27.3 0.56 ± 0.88 0.16 ± 0.06
CLSM2.0 67.1 ± 9.3 0.11 ± 0.18 0.49 ± 0.00 19.0 ± 5.8 0.46 ± 0.14 0.83 ± 0.01 71.7 ± 27.5 0.61 ± 0.86 0.14 ± 0.06
WGHM 26.0 ± 1.4 0.86 ± 0.01 0.91 ± 0.01 23.7 ± 5.3 0.15 ± 0.13 0.57 ± 0.02 20.7 ± 11.6 0.87 ± 0.13 0.94 ± 0.01

PCR-
GLOBWB 34.9 ± 3.6 0.70 ± 0.09 0.91 ± 0.01 20.0 ± 7.7 0.40 ± 0.21 0.65 ± 0.03 30.4 ± 1.4 0.71 ± 0.06 0.94 ± 0.01

CLM 65.6 ± 10.4 0.06 ± 0.21 0.56 ± 0.03 18.3 ± 10.7 0.50 ± 0.71 0.91 ± 0.05 52.6 ± 26.2 0.13 ± 0.68 0.69 ± 0.01
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3.2.2. SMSA Trends

SMSA can be measured by in-situ wells, remote sensing estimates, and hydrological
models. However, in-situ observations are not only time-consuming and laborious, but
also the points are rare and unevenly distributed across the HRB [49]. As for the remote
sensing monitoring methods, the thickness of soil can observe generally in the top layer
~5 cm [50]; however, now the soil depth of hydrological models reaches up to 200 cm.
Consequently, the SMSA simulated by hydrological models is considered to be reliable in
this study. For the sake of enhancing signal-to-noise on the reference value, the average
of three model outputs (Noah, VIC, and CLM) is applied as the reference of SMSA [51],
because the soil layers of these three models are more than others. The SMSA error is equal
to the standard deviation among the three hydrological models.

Figure 7 represents distributions of SMSA trends simulated by hydrological models
and corresponding SMSA reference. For the whole HRB, SMSA trends estimated by Noah,
VIC, and CLM are highly consistent with the reference, of which the correlation coefficient
is over 0.9, NSE is over 0.5, and RMSE is below 18 mm (Table 4). However, WGHM hardly
shows any trend in HRB, and CLM obviously overestimates decreasing trends in northern
HRB compared with the SMSA reference. In addition, four models (CLSM2.0, CLSM2.1,
WGHM, and PCR-GLOBWB) match poorly with reference values of SMSA trends. Such
results can be more accurately analyzed from statistics metrics. The four models show
lower statistics values than the other three models so that the average of Noah, VIC, and
CLM to be the reference value is appropriate.
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Figure 8 shows time-series SMSA in HRB and six sub-regions. The SMSA trends are
stable during 2003–2014 for the whole HRB, ranging from −8 mm/year to 6 mm/year.
For SMSA trends in HRB’s sub-regions, the Noah is the most reliable in most sub-regions
(r > 0.9), largely due to the well simulating in soil moisture. Noah shows a significant de-
creasing trend of SMSA in Shandong (−5.2 ± 1.4 mm/year), Henan (−7.7 ± 1.2 mm/year),
southern Hebei, and southern Shanxi, while no significant trend is observed in Beijing,
Tianjin, northern Hebei, and northern Shanxi. Similar patterns are observed in corre-
sponding reference values. In addition, we can get the following points, (1) CLM and
VIC overestimate the SMSA in Beijing by comparison, while Noah has the best correlation
coefficient of 0.9. (2) Noah, VIC, and PCR-GLOBWB overestimate the SMSA in Hebei,
Shanxi, and Shandong. (3) Only CLM overestimates SMSA in Tianjin, and only Noah
overestimates SMSA in Henan. Conversely, the undervaluation is likely interpreted by the
soil layers of these hydrological models are too small to insufficiently capture SMSA.

3.2.3. GWSA Trends

Similar to the SMSA, the GWSA can also be measured by in situ observations; nonethe-
less, there is a limitation of inadequate and uneven distribution of points in HRB [28]. Ac-
cording to the principle of land water balance (Equation (3)), GWSA reference values could
be calculated by the residual between the GRACE-derived TWSA and the model-simulated
SMSA [51,52]. The GWSA uncertainties are estimated by the mean square error of the
uncertainties from two other references in this study. Among the seven models used in this
paper, only five include the groundwater component. Noah and VIC do not include the
groundwater components, so only five models participate in this section.
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Figure 9 illustrates the spatial distribution of GWSA trends in HRB. The reference
values display strong decreasing trends in the south and weak in the north. However,
CLSM2.0, CLSM2.1, and CLM underestimate the changes of groundwater storage, even
with no trends in annual scale at all. In contrast, the two GHWRMs overestimate the GWSA
by comparison. In addition, WGHM displays the largest amplitude variation ranging from
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−152 mm to 54 mm and good statistics (RMSE = 21 mm, NSE = 0.87, r = 0.94) (Table 4).
Because WGHM accurately considers the abstractions and recharge of groundwater from
soil and surface water, and it considers the domestic water consumption [53].
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regions with non-significant trends. The reference of GWSA is separated as the residuals between the reference of TWSA
trends and the reference of SMSA trends.

Figure 10 shows the time-series GWSA in HRB and six sub-regions. The GWSA
decreases at a rate of −15.2 ± 0.9 mm/year in the whole HRB, except for a slight increase
from 2003 to 2004 and 2010 to 2012. For GWSA trends in HRB’s sub-regions, acutely, the
spatial patterns of GWSA are almost the same as that of TWSA, just the time-series values
of GWSA are weaker than that of TWSA. That is, GHWRMs fit best with the reference
value because the differences between GWSA and TWSA are very small under the stable
SMSA according to the water balance formula. This also reflects that the decrease of
TWSA is mainly caused by the decrease of GWSA. Among the sub-regions, Shandong
(−20.1 ± 1.0 mm/year) and Henan (−30.7 ± 1.3 mm/year) saw the fastest decline in
GWSA (Tables S6 and S7). A relatively slighter trend can be detected by both two GHWRMs
in Shanxi (Table S5). The grey shaded areas of reference values imply highly uneven
changes of water storage within sub-regions. By comparison, in the shaded areas in three
water storage changes, the error of SMSA is relatively stable and seasonal, while errors
of GWSA are about two times larger than those of TWSA, and GWSA in Tianjin has the
highest error.
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3.3. Analyzing Water Storage Changes in Plains and Mountains

According to the topography features of the HRB, it can be divided into two parts:
mountains and plains (Figure 1). The trends of three hydrological variables (TWSA, SMSA,
and GWSA) have discrepancies in different topography. Figure 11 displays the time-series
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changes of three hydrological variables in mountains and plains, respectively. In general,
the amplitudes of hydrological variables in plains are larger than that in mountainous. For
example, the mean TWSA trend in plains is−17.2± 1.1 mm/year, and that in mountainous
is −14.2 ± 0.7 mm/year, which indicates the overexploitation of the deep groundwater
storage in plains (Tables S14 and S15). As seen in Figure 11, there is clear variations in
the seasonal change in TWSA and SMSA, while it is disorganized in GWSA. Moreover,
the model reliabilities of three hydrological varies are also analyzed. In the first place,
GHWRMs overestimate the TWSA trends, while LSMs underestimate it (Figure 11a,b). In
the second place, Noah has the best correlation coefficient (r of plains: 0.89, r of mountains:
0.96) and WGHM has the worst (r of plains: 0.6, r of mountains: 0.5) in SMSA simulation
results (Tables S16 and S17, Figure 11c,d). Finally, the results of WGHM are higher than
the inversion results of reference value in the plains area, while the other six hydrological
models underestimate GWSA trends (Figure 11e,f).
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3.4. Model Uncertainty

The differences in TWSA trends among GRACE and hydrological models are mainly
caused by model uncertainty. Uncertainties include climate forcing, model structure,
human activities, and climate changes [16]. Figure 12 shows the difference between hy-
drological models and corresponding references. As seen, LSMs underestimate the TWSA
compared with GRACE in HRB, whereas GHWRMs overestimate it. A positive number
means underestimating the TWSA trend, and a negative number means overestimating it.
The trend differences of WGHM and PCR-GLOBWB are −1 mm/year and −7 mm/year,
respectively. The trend differences of Noah, VIC, CLSM2.1, CLSM2.0, and CLM are
13 mm/year, 14 mm/year, 14 mm/year, 15 mm/year, and 13 mm/year, respectively.
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As stated in the introduction, different hydrological models have completely different
model structures. The two GHWRMs overestimate the TWSA trends due to the overvalu-
ation of groundwater changes, and groundwater over-extraction resulted in a decline in
GWSA. Diversely, the reasons for the undervaluation of LSMs could be made into two cases.
On one hand, Noah and VIC ignore the groundwater storage component; on the other
hand, CLSM2.1, CLSM2.0, and CLM have insufficient capture capabilities of groundwater
storage. Consequently, the model structure has a significant impact on the differences of
TWSA trends among GRACE and hydrological models.

Afterward, CLSM2.0 and CLSM2.1 are taken as examples to verify the influence of
climate forcing on uncertainty in this paper. Although the amplitude of CLSM2.0 is a
little larger than CLSM2.1 in time-series changes, the two models have similar spatial
patterns, with high correlation coefficients both from 2003 to 2009 (r = 0.97) and 2010 to
2014 (r = 0.92). Thus, climate forcing is not the key influence of uncertainties.

Then, we should touch on human water use and climate changes. Table 1 presents that
WGHM and PCR-GLOBWB are the only two models that simulate the human activities.
In terms of TWSA, the two GHWRMs show better agreements with GRACE than the
other hydrological models (Table 4), and the correlation coefficients of them during this
period are larger than 0.98. It implies that human water use is one main factor leading to
uncertainty.
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At last, TWSA can also be driven by climate variability. As seen from Figure 5, the
TWSA trends of these models declined rapidly in the dry years (such as 2005–2009) and re-
bounded in the wet years (such as 2010–2012). As shown in Figure 3a, we speculate that the
increase of precipitation after 2010 is related to two La Nina events. Correspondingly, the
TWSA trends simulated by LSMs are inconsistent with GRACE after 2010. It is suggested
that climate changes (such as precipitation) are one other reason for uncertainty.

4. Discussion
4.1. Correlation Coefficient of TWSA in Different Periods

As a whole consideration, to investigate the TWSA trend calculated by the new method
under different terrains, any six grid cells are selected in the southern and northern HRB,
respectively, to demonstrate the applicability of the NSCHMW method. In the six grids, the
first and the second grids belong to the mountain region, while the remaining four grids
belong to the plain region. Figure 13 shows the time series of WGHM, PCR-GLOBWB,
Merge, and reference values in selected grids. It can be seen that all the single models show
downward trends just like the GRACE trends. However, the decline amplitudes of them
exist differences. As for the plain region, WGHM overestimates the TWSA trend in the
third and fourth grids (Figure 13c,d), while it underestimates the TWSA trend in the fifth
and sixth grids (Figure 13e,f). On the contrary, PCR-GLOBWB overestimates it in the third
and fourth grids, as well underestimates it in the fifth and sixth grids. As for the mountain
region (Figure 13a,b), the trends have similar results with that in the plain region. After
correction using the NSCHMW method, the time series of Merge become more agree with
GRACE than single models.

Table 5 shows the TWSA trends estimated by WGHM, PCR-GLOBWB, Merge, and
reference in different periods. It is evident that Merge is more similar to GRACE than
WGHM and PCR-GLOBWB. As seen from the reference, the TWSA trend from 2003 to 2009
is larger than that from 2010 to 2014 at grids of 2, 4, and 6. The TWSA trends from 2003 to
2009 are smaller than those from 2010 to 2014 at grids of 1, 3, and 5.

Tables 6 and 7 summarize the indices of TWSA in six grids, including RMSE, NSE, and
r during 2003–2009 and 2010–2014, respectively. As seen, Merge represents lower RMSE,
higher NSE, and higher r in all grids than single models (WGHM and PCR-GLOBWB).
By weighting WGHM and PCR-GLOBWB, the NSCHMW method can improve RMSE,
NES, and r with 3–96%, 35–282%, and 1–255% respectively. It implies that the statistical
correction method is effective in optimizing TWSA for hydrological model simulation.

4.2. Analysis of Driving Factors of TWSA in HRB
4.2.1. Correlative Coefficient of TWSA in Different Periods

Figure 14 indicates the correlation coefficients of different stages. It can be clearly
found that the time is divided into two sections by taking 2009 as the boundary in the time-
series TWSA (Figure 5). As seen in Figure 14, it displays a good fitting between hydrological
models and GRACE during 2003–2009, while that is poor during 2010–2014 except for
WGHM and PCR-GLOBWB. Taking CLM as an example, the correlation coefficient between
CLM and GRACE from 2003 to 2009 is 0.90, the largest one among all models; however,
that is only 0.34 from 2010 to 2014, the smallest one among all models. Because LSMs are
more sensitive to changes in soil moisture caused by precipitation. The indices of HRB’s
sub-regions are shown in Tables S8–S13.
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Table 5. TWSA trends estimated by WGHM, PCR-GLOBWB, Merge, and the reference values (mm/year) in different periods.

2003–2009 2010–2014

Grid WGHM PCR-
GLOBWB Merge Reference WGHM PCR-

GLOBWB Merge Reference

1 −23.5 ± 1.0 −1.7 ± 1.0 −12.0 ± 0.2 −8.7 ± 0.2 −23.8 ± 1.3 −2.4 ± 1.1 −12.1 ± 1.0 −12.7 ± 0.1
2 −1.2 ± 0.1 −8.3 ± 1.2 −5.0 ± 0.4 −7.1 ± 0.1 −1.5 ± 1.2 −9.7 ± 2.5 −6.0 ± 1.0 −6.1 ± 0.1
3 −1.1 ± 0.4 −38.7 ± 2.1 −17.1 ± 1.4 −12.5 ± 1.3 −2.4 ± 1.2 −66.2 ± 3.8 −30.2 ± 1.0 −40.2 ± 2.0
4 1.3 ± 0.5 −65.5 ± 2.5 −28.0 ± 2.3 −35.0 ± 2.1 1.0 ± 0.1 −75.1 ± 3.0 −33.7 ± 1.1 −26.6 ± 2.2
5 −13.0 ± 0.4 −4.4 ± 1.3 −8.2 ± 1.7 −17.1 ± 1.4 −29.1 ± 3.7 −9.7 ± 1.0 −17.8 ± 2.2 −17.1 ± 1.0
6 −38.1 ± 1.9 2.0 ± 0.1 −18.2 ± 2.5 −18.1 ± 1.5 −15.0 ± 1.2 −1.5 ± 0.2 −7.6 ± 1.1 −11.1 ± 1.4

Table 6. Indices of the NSCHMW method between GRACE-derived TWSA and hydrological models from 2003 to 2009
(WGHM, PCR-GLOBWB, and Merge).

RMSE (mm) NSE r

Merge WGHM PCR-GLOBWB Merge WGHM PCR-GLOBWB Merge WGHM PCR-GLOBWB

1 17.4 ± 7.7 36.1 ± 15.4 22.1 ± 5.1 0.43 ± 0.19 1.67 ± 0.33 0.01 ± 0.01 0.82 ± 0.00 0.82 ± 0.01 0.29 ± 0.02
2 15.5 ± 7.3 21.3 ± 6.5 17.0 ± 5.5 0.46 ± 0.20 0.14 ± 0.09 0.29 ± 0.05 0.71 ± 0.01 0.22 ± 0.00 0.71 ± 0.01
3 67.7 ± 8.3 73.7 ± 8.9 85.0 ± 29.0 0.32 ± 0.21 0.20 ± 0.06 −0.08 ± 0.06 0.60 ± 0.01 0.47 ± 0.01 0.57 ± 0.01
4 71.3 ± 9.4 108.5 ± 8.9 9.2 ± 41.5 0.58 ± 0.01 0.34 ± 0.08 0.30 ± 0.13 0.81 ± 0.02 0.21 ± 0.01 0.81 ± 0.02
5 26.3 ± 15.5 30.6 ± 9.7 44.0 ± 20.7 0.76 ± 0.09 0.70 ± 0.52 0.33 ± 0.04 0.84 ± 0.02 0.84 ± 0.02 0.65 ± 0.01
6 32.2 ± 5.1 57.6 ± 21.8 55.8 ± 26.7 0.67 ± 0.21 0.07 ± 0.09 0.00 ± 0.01 0.83 ± 0.02 0.82 ± 0.01 0.31 ± 0.00

Table 7. Indices of the NSCHMW method between GRACE-derived TWSA and hydrological models from 2010 to 2014
(WGHM, PCR-GLOBWB, and Merge).

RMSE (mm) NSE r

Merge WGHM PCR-GLOBWB Merge WGHM PCR-GLOBWB Merge WGHM PCR-GLOBWB

1 35.6 ± 11.3 96.4 ± 63.5 36.4 ± 21.1 0.19 ± 0.78 4.04 ± 0.07 −3.34 ± 1.51 0.61 ± 0.00 0.33 ± 0.01 0.60 ± 0.01
2 16.4 ± 15.2 45.2 ± 23.7 21.5 ± 9.2 0.29 ± 0.11 −4.21 ± 1.31 −0.19 ± 0.02 0.61 ± 0.01 0.44 ± 0.01 0.59 ± 0.02
3 67.5 ± 12.3 73.3 ± 26.7 85.4 ± 34.2 0.32 ± 0.14 0.20 ± 0.01 −0.08 ± 0.04 0.60 ± 0.01 0.47 ± 0.01 0.57 ± 0.00
4 76.2 ± 16.3 17.6 ± 77.6 215.7 ± 91.7 0.37 ± 0.08 −2.36 ± 0.94 −4.02 ± 0.89 0.61 ± 0.02 0.57 ± 0.02 0.58 ± 0.01
5 45.1 ± 18.4 103.5 ± 41.2 61.8 ± 22.5 0.24 ± 0.07 −3.00 ± 1.44 −0.43 ± 0.08 0.57 ± 0.01 0.56 ± 0.01 0.52 ± 0.01
6 34.2 ± 9.8 120.1 ± 52.9 119.3 ± 78.6 0.58 ± 0.07 −4.27 ± 2.13 −4.23 ± 1.85 0.82 ± 0.01 0.82 ± 0.02 0.58 ± 0.01
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4.2.2. Reasons for Over/Underestimated the TWSA from GRACE and Models

Different from the results of Scanlon’s study, most of the hydrological models under-
estimate the change of water storage compared with GRACE [20]. We found that some
models overestimated the changes of water storage in HRB in this paper. Therefore, it
needs to be a targeted analysis on a specific regional basin. On the whole HRB, GRACE ob-
servations show a highly negative trend in TWSA and no trendless points, which gradually
intensified from north to south, with an average slope of −15.7 ± 0.7 mm/year. Corre-
spondingly, GHWRMs overestimate it, while the LSMs underestimated it. Indeed, LSMs
are more effective when simulating SMSA trends, while GHWRMs can simulate GWSA
better. In HRB exists large groundwater depletion, which is the reason why GHWRMs
with stronger groundwater capture ability are more consistent with GRACE in TWSA. In
addition, the spatial distribution from seven hydrological models displays non-significant
points more or less in the sub-region, which is related to the model uncertainties.

4.2.3. Drivers of Groundwater Depletion

The groundwater over-extraction and the reduced precipitation account for the de-
creasing GWSA trends, and agricultural irrigation leads to the groundwater over-extraction
in HRB’s plains. In HRB’s plains exist a large amount of food planting area. Irrigation
water capacity accounts for two-thirds of the total water use in HRB, of which one third
comes from groundwater withdrawal. Intense human water use leads to groundwater
depletion in the HRB’s plains [22]. In mountain regions, the annual precipitation in this
area is light, and the evaporation increases year by year. It suggests that climate changes
are also responsible for the water storage shortage in the HRB [54]. These factors over the
HRB have rendered the water storage issue more complex.

Two aspects can contribute to the recoverability of groundwater in HRB. On one
hand, the early recovery in groundwater is attributed to elevated precipitation (rainfall and
snowfall) that increased from 2010 to 2012. On the other hand, it may be partly due to the
construction of the south-north water diversion project which dates back to 2003, and the
project went into operation in December 2014. The published statistics of water resources
in HRB reported consistent decreases in groundwater consumptions after 2014, which
reflects the impact of the south-to-north water diversion project on groundwater recovery.
Some previous works [25,55] also indicate that the construction of the south-to-north water
diversion project has positive influences on groundwater storage recovery. However, it
is a long-term process to raise groundwater levels. Although the water transferred into
HRB through the south-to-north water diversion project has increased during the last ten
years [56], groundwater is still the paramount water resource because of its universality,
flexibility, and lower costs. Therefore, the water crisis is still severe in HRB, which deserves
high attention.

5. Conclusions

Assessing the performance of hydrological models is necessary for the sustainable
development of water resources. To this end, this paper applied JPL mascon and CSR
mascon data to evaluate spatiotemporal patterns of seven hydrological models (Noah, VIC,
CLSM2.1, CLSM2.0, WGHM, PCR-GLOBWB, and CLM) in HRB and HRB’s sub-regions
from 2003 to 2014. The results are as follows.

1. This paper develops the NSCHMW method to solve the uncertainty between the
hydrological models and GRACE, which gives weight to the hydrological models
by combining multi-source models (WGHM and PCR-GLOBWB) simulation results.
Compared with a single model, the NSCHMW method fully considers the accuracy
and consistency of hydrological models and GRACE data, and it can effectively
improve the accuracy of TWSA trends calculated by hydrological models.

2. The NSCHMW method is verified in HRB. In terms of spatial distribution, the Merge
result calculated by the NSCHMW method is more consistent with GRACE-derived
TWSA. As for both WGHM and PCR-GLOBWB, there are insufficient and excessive
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signal simulations in some regions. The results manifest that two GRACE mascon
data enjoy the favorable agreement in TWSA by analyzing spatiotemporal variations;
consequently, the average of JPL and CSR can utilize to assist the improvement of
hydrological models. According to the estimation of GRACE, the TWSA indicates
a pronounced decreasing trend at a rate of −15.7 ± 0.7 mm/year in the whole HRB.
The performances of hydrological models in mountains (−14.2 ± 0.7 mm/year)
and plains (−17.2 ± 1.1 mm/year) are also analyzed in more detail through the
comparison of time-series curves, as well as the results show a faster decline in
plains and a slower decline in mountains. The decreasing TWSA trends in mountains
are attributed to the climate variability, conversely, that in plains are mostly due to
overdrawing of groundwater caused by irrigation. Additionally, contributions of
GWSA trends (−15.2 ± 0.9 mm/year) to TWSA trends are far greater than SMSA
trends (−0.4 ± 0.6 mm/year), respectively.

3. In terms of the reliability of models, first and foremost, it is classified as dry years
from 2003 to 2009 and wet years from 2010 to 2014 according to the Water Resources
Bulletin. The correlation coefficient between hydrological models and GRACE are
high from 2003 to 2009 (r = 0.68~0.89), while low from 2010 to 2014 (r = 0.38~0.74). It
implies that precipitation is one of the essential factors affecting the changes in water
storage. There is one more point that the TWSA trends from two GHWRMs are most
consistent with GRACE, which hints that WGHM and PCR-GLOBWB take human
effects into account and calibrate it, while the LSMs (Noah, VIC, CLSM2.1, CLSM2.0,
and CLM) underestimate the TWSA trends, although they are accurate with SMSA
simulations. Furthermore, the model structure plays an important role in uncertainties
from different hydrological models, with the overestimation of GHWRMs and the
underestimation of LSMs in TWSA trends. GHWRMs pay attention to irrigation,
while LSMs focus on soil moisture. This result is remarkable considering that the
CLM displays TWSA trends opposite to GRACE in northern HRB due to large errors
caused by model uncertainty, so it infers that CLM is not applicable in HRB.

4. Afterward, SMSA trends are basically in a long-term stable, while GWSA trends
continued to decline due to the human activities, of which spatial-temporal patterns
are similar to TWSA. It also proves the necessity of the South-North Water Diversion
project, which can alleviate the rate of groundwater consumption. The groundwater
recovery is projected to balance by the South-North Water Diversion project in the
coming decade due to subjoin diverted water and the stricter policies on reducing
agricultural water use, replacement of groundwater withdrawal with diverted water
for domestic and industrial use. More reliable hydrological models will be realized in
HRB by better considering GWSA in the future.

5. Eventually, compared with the traditional method, the NSCHMW method can ef-
fectively improve the RMSE, NES, and r of hydrological models, of which RMSE
decreases by 3–96%, NSE increases by 35–282%, and r increases by 1–255%, respec-
tively. On the time series curve, the Merge is more consistent with the TWSA trend
of GRACE inversion than single models. This paper emphasizes the importance of
evaluating the applicability of hydrological models in HRB owing to the deficiencies
of the simulation process. Currently, the NSCHMW method largely relies on the
consistency between hydrological models and GRACE, while it still has achieved
good results on the grid-scale.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13183583/s1, Table S1: TWSA velocities (mm/year) from JPL and CSR in HRB’s sub-regions
(Beijing, Tianjin, Hebei, Shanxi, Shandong, and Henan), Tables S2–S7: Water storage velocities
(mm/year) from hydrological models in Beijing, Tianjin, Hebei, Shanxi, Shandong, and Henan,
respectively, Tables S8–S13: Indices of water storage changes between reference and hydrological
models in Beijing, Tianjin, Hebei, Shanxi, Shandong, and Henan, respectively, Tables S14 and S15:
Water storage velocities (mm/year) from hydrological models in HRB’s plains and HRB’s mountains,
respectively, Tables S16 and S17: Indices of water storage changes between reference and hydrological
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models in HRB’s plains and HRB’s mountains, respectively. Table S18: The missing months of GRACE
from 2003 to 2014.
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