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Abstract: The continuing increase in atmospheric CO2 concentration caused by anthropogenic
CO2 emissions significantly contributes to climate change driven by global warming. Satellite
measurements of long-term CO2 data with global coverage improve our understanding of global
carbon cycles. However, the sensitivity of the space-borne measurements to anthropogenic emissions
on a regional scale is less explored because of data sparsity in space and time caused by impacts
from geophysical factors such as aerosols and clouds. Here, we used global land mapping column
averaged dry-air mole fractions of CO2 (XCO2) data (Mapping-XCO2), generated from a spatio-
temporal geostatistical method using GOSAT and OCO-2 observations from April 2009 to December
2020, to investigate the responses of XCO2 to anthropogenic emissions at both global and regional
scales. Our results show that the long-term trend of global XCO2 growth rate from Mapping-XCO2,
which is consistent with that from ground observations, shows interannual variations caused by
the El Niño Southern Oscillation (ENSO). The spatial distributions of XCO2 anomalies, derived
from removing background from the Mapping-XCO2 data, reveal XCO2 enhancements of about
M due to anthropogenic emissions and seasonal biomass burning in the wintertime. Furthermore,
a clustering analysis applied to seasonal XCO2 clearly reveals the spatial patterns of atmospheric
transport and terrestrial biosphere CO2 fluxes, which help better understand and analyze regional
XCO2 changes that are associated with atmospheric transport. To quantify regional anomalies of CO2

emissions, we selected three representative urban agglomerations as our study areas, including the
Beijing-Tian-Hebei region (BTH), the Yangtze River Delta urban agglomerations (YRD), and the high-
density urban areas in the eastern USA (EUSA). The results show that the XCO2 anomalies in winter
well capture the several-ppm enhancement due to anthropogenic CO2 emissions. For BTH, YRD,
and EUSA, regional positive anomalies of 2.47 ± 0.37 ppm, 2.20 ± 0.36 ppm, and 1.38 ± 0.33 ppm,
respectively, can be detected during winter months from 2009 to 2020. These anomalies are slightly
higher than model simulations from CarbonTracker-CO2. In addition, we compared the variations in
regional XCO2 anomalies and NO2 columns during the lockdown of the COVID-19 pandemic from
January to March 2020. Interestingly, the results demonstrate that the variations of XCO2 anomalies
have a positive correlation with the decline of NO2 columns during this period. These correlations,
moreover, are associated with the features of emitting sources. These results suggest that we can use
simultaneously observed NO2, because of its high detectivity and co-emission with CO2, to assist the
analysis and verification of CO2 emissions in future studies.
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1. Introduction

Global atmospheric CO2 concentration continues to increase by 2–3 ppm per year,
which contributes significantly to global warming [1,2]. Changes in atmospheric CO2
concentrations are primarily driven by emissions from human activities, photosynthesis of
natural terrestrial ecosystems, and biogeochemical processes in the ocean. To achieve the
goal of curbing global warming proposed by the Paris Agreement in 2015, many countries
put forward the strategy of carbon neutrality. They are committed to limit global average
temperature rise to be below 1.5◦ above pre-industrial levels through different effective
ways of reducing greenhouse gas emissions [3,4]. To achieve these goals, it is critical to
investigate the spatio-temporal changes of atmospheric CO2 concentration and detect
the influence mechanism of human activities in various regions on atmospheric CO2
variations, so as to provide a basis for governments to evaluate the effects of CO2 emission
reduction measures.

Satellite measurements from GOSAT and OCO-2 have delivered the column-averaged
dry air mole fractions of CO2 (XCO2) data for more than 12 years, which provide data
for studying long-time variations of global and regional carbon emissions [5–11]. It has
become an effective data source for understanding the contributions of natural ecosystems
and human activities to the increase of atmospheric CO2 concentration. For example, using
satellite XCO2 observations from GOSAT and OCO-2, many studies have found that ex-
treme climate related to the El Niño Southern Oscillation (ENSO) disturbs the interannual
increase of atmospheric CO2 concentration at global and regional scales [12–16]. Abnormal
increase in CO2 concentration mostly occurs in natural vegetation areas. The detection and
attribution analysis of extreme CO2 changes show that CO2 anomalies are related to the
abnormal carbon emissions from terrestrial ecosystems caused by extreme climate [17]. Pre-
vious studies using CO2 data from model and ground observations also showed consistent
results with that from satellite observations [18–22].

XCO2 enhancements could be detected by satellite observations in large cities, power
plants, volcanoes, and fire emissions. By differencing the observations over a megacity with
those in the nearby background, XCO2 enhancements can be derived. The enhancement is
found to be more than 3 ppm in large cities, such as Beijing-Tianjin-Hebei areas and the
Yangtze River Delta in China, the Los Angeles megacity in the USA, the Seoul Metropolitan
area in South Korea, and Mumbai in India [23–29]. XCO2 observations from OCO-2 have
also been used to identify enhanced plume signals and estimate anthropogenic emissions
from individual point sources such as power plants and volcanoes [30–32]. For Australian
mega bushfires, fire-induced XCO2 enhancement detected by three orbits of observa-
tions from OCO-2 during November–December in eastern Australia is approximately
1.5 ppm [33]. Global XCO2 anomalies derived from satellite observations agree well with
the spatial patterns of emission inventories and model simulations [34–36]. Furthermore,
an assessment combining satellite XCO2 observations and other relatively short-lived
pollutants (e.g., CO and NO2) in cities found that urban CO2 enhancements have a good
correlation with air pollutants, which can be used to evaluate emission characteristics,
such as combustion efficiency [36–38]. These results indicate that satellite XCO2 obser-
vations have the detectability of natural and anthropogenic CO2 emissions. Combined
with ground-based measurements, they provide reliable data sources for constraining
anthropogenic emission estimates and verifying bottom-up inventories.

However, previous studies on the detectivity of using satellite XCO2 observations for
anthropogenic emissions still have some limitations. Due to the impact of data sparsity in
space and time caused by impacts from geophysical factors such as aerosols and clouds,
most existing studies focus on individual areas or specific events, but lack sufficient analysis
at global and regional scales. In response to this problem, we generated a dataset of
global land mapping XCO2 data (Mapping-XCO2) using GOSAT and OCO-2 observations.
With these global spatio-temporal continuous XCO2 data, this study is able to fully explore
the changes of XCO2 enhancements caused by anthropogenic emission at both global and
regional scales.
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In this paper, we investigate global XCO2 variations in space and time, and analyze
spatial patterns of seasonal XCO2 changes affected by atmospheric transport and terrestrial
biosphere. We further focus on urban agglomerations with high anthropogenic emissions
and quantify the responses of regional XCO2 to anthropogenic emissions. Our study
aims to provide global spatial and temporal analysis of XCO2 changes and quantify the
responses of regional XCO2 enhancements to anthropogenic emission using long-term
mapping data generated from satellite XCO2 observations.

2. Materials and Methods
2.1. Materials
2.1.1. CO2 Datasets

We use the global land mapping XCO2 dataset (Mapping-XCO2) from April 2009
to December 2020, which has a spatial grid resolution of 1◦ latitude by 1◦ longitude and
temporal resolution of 3 days. The dataset is produced by applying a spatio-temporal
geostatistical method to satellite XCO2 retrievals from GOSAT observations (from April
2009 to August 2014) and OCO-2 observations (from September 2014 to December 2020).
The XCO2 retrievals are the latest ACOS level 2 Lite data product (v9r) and the latest
level 2 lite data product (v10r) for OCO-2 [7,10,11]. These products are both obtained
from the Goddard Earth Science Data Information and Services Center (GES DISC) [39].
The workflow chart of mapping gridded XCO2 data are illustrated in Figure A1, including
the following key steps: (1) We adjusted the differences in XCO2 retrievals induced by the
a priori CO2 profile and different overpass time using CO2 profiles from CarbonTracker
as reference data. Spatial and temporal scales of satellite observations are integrated to
a uniform unit by averaging XCO2 within 10.5 km and 3 days. (2) The global land is
divided into different continental regions and processed separately. In each mapping
region, the spatio-temporal correlation structures of the integrated XCO2 data are assumed
to be homogeneous and locally stationary. The spatio-temporal empirical variogram in each
region was calculated after removing the spatial and temporal trend from the integrated
XCO2. (3) Based on these variogram models, space-time kriging with moving cylinder
kriging neighborhood was implemented to estimate the XCO2 value at the center of 1◦

grids. A detailed description of the gap-filling method is referred to Zeng et al. [40–43] and
He et al. [43]. We calculated estimation uncertainty for each grid according to the method
described in Zeng et al. [42], which shows that the estimation uncertainty of Mapping-
XCO2 is less than 1.5 ppm on average. Compared to TCCON data, the overall bias of
Mapping-XCO2 obtained by ±0.5◦ box centered at the TCCON sites is 0.16 ± 1.19 ppm.

Table 1 gives a summary of Mapping-XCO2 and the comparisons with model simula-
tions by CarbonTracker and ground-based observations from the World Data Centre for
Greenhouse Gases (WDCGG). CarbonTracker simulates global atmospheric CO2 mole frac-
tions from a combination of CO2 surface exchange models and an atmospheric transport
model driven by meteorological fields [44]. We collected CO2 data at the local time of 13:30
from CT2019B for comparison analysis with spatio-temporal variations of Mapping-XCO2.
The dataset has a resolution of 3◦ × 2◦ grid in space and 1 day in time. In order to analyze
long-term trends derived from Mapping-XCO2, we collected global analysis data of atmo-
spheric CO2 concentrations and rates of change from WDCGG. The data are produced
based on ground observations from the WMO Global Atmosphere Watch (GAW) in situ
observational network. Globally averaged CO2 mole fractions and CO2 trends cover the
period of 1984–2019, with the growth rates range from 1985 to 2018. These data are also
reported by the annual WMO Greenhouse Gas Bulletin [2].
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Table 1. The products of CO2 data from satellite observation, model, and ground observation.

Dataset Description Reference/Data Source

Mapping-XCO2

Global land mapping XCO2 dataset produced by applying spatio-temporal
geostatistics on GOSAT and OCO-2 observations from April 2009 to September
2020. The dataset is regularly distributed with a temporal interval of 3 days

and spatial interval of 1◦ grid.

GES DISC [39]
Zeng et al. [40–43]

CT-XCO2
The model XCO2 data at the local time 13:30 (LST) from CT 2019B from 2009 to

March 2019 in 3◦ × 2◦ grids with a temporal interval of 1 day. NOAA [45]

WDCGG-CO2

Global CO2 analysis based on ground-based observations, covering from 1984
to 2019 for global monthly mean concentrations and trends and from 1985 to

2018 for growth rates.
WDCGG [46]

2.1.2. Auxiliary Datasets

To analyze the mechanism of XCO2 changes and its response to anthropogenic emis-
sions, we collected various auxiliary datasets to compare with XCO2 variations at global
and regional scales.

The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is used to evaluate
high emission areas, which can potentially be detected by satellite observed XCO2 data.
ODIAC is a global gridded emission product based on spatial and temporal disaggregation
of country scale emissions [47,48]. The latest version of ODIAC emission data product
(ODIAC 2020B) provides monthly CO2 emissions from 2000 to 2019, including two different
spatial resolutions of 1◦ × 1◦ and 1 km × 1 km. CO2 emission estimates of the product are
based on the latest country fossil fuel CO2 emission estimates made by the new Carbon
Dioxide Information Analysis Center (CDIAC) team from 2000 to 2017 and its projection
using fuel consumption data reported by the BP Statistical Review of World Energy in 2018
and 2019 [49]. We downloaded ODIAC data from 2009 to 2019 from the Center for Global
Environmental Research, National Institute for Environmental Studies (CGER-NIES) [49].

We used two ENSO indices, including the Southern Oscillation Index (SOI) and the
Oceanic Niño Index (ONI), to analyze the fluctuating response of the global CO2 growth
rate to ENSO events. The indices are both provided by the Physical Sciences Laboratory at
the National Oceanic and Atmospheric Administration (NOAA). The SOI is defined as the
normalized pressure difference between Tahiti and Darwin based on the method developed
by Ropelewski and Jones [50]. The data are obtained from the Climate Research Unit [51].
The ONI is a three-month running mean of sea surface temperature (SST) anomalies in the
El Niño region (5◦N–5◦S, 120◦W–170◦W). The data are obtained from the NOAA Climate
Prediction Center [52].

In order to evaluate the latitudinal zonal pattern of seasonal XCO2 changes revealed by
the satellite XCO2 data, we compared it with the spatial patterns of potential temperature,
which acts as a dynamical tracer of transport of the air masses [53]. Potential temperature
is most frequently used in atmospheric sciences because it is not affected by the physical
lifting or sinking associated with flow over obstacles or large-scale atmospheric turbu-
lence [26,27,54]. Lines of constant potential temperature are natural flow pathways that
are largely horizontal near the surface, and it is tightly correlated with CO2 in simulations
with zonally uniform surface fluxes [53]. In this paper, we used the potential temperature
at 1000 hPa and calculated the averaged contours during the period from 2009 to 2020.
The potential temperature data are monthly means produced by the NCEP/NCAR reanal-
ysis. The online website is http://www.esrl.noaa.gov/psd/cgi-bin/data/composites/
printpage.pl (accessed on 15 June 2021).

To analyze the influence of the terrestrial ecosystem on the global carbon cycle, we col-
lected the Normalized Difference Vegetation Index (NDVI) data and the land cover type
derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) observation.
These datasets are downloaded from the website https://ladsweb.modaps.eosdis.nasa.
gov/ (accessed on 8 March 2021). NDVI data from the MOD13C2 product have temporal

http://www.esrl.noaa.gov/psd/cgi-bin/data/composites/printpage.pl
http://www.esrl.noaa.gov/psd/cgi-bin/data/composites/printpage.pl
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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and spatial resolutions of 0.05◦ and 2 days, respectively [55]. We calculated global monthly
mean data with 1◦ resolution from 2009 to 2020, which are used for correlation analysis with
seasonal XCO2 changes from Mapping-XCO2. The land cover type is from the MCD12C1
product. We used the land cover type of the International Geosphere Biosphere Programme
(IGBP) scheme, which includes 11 natural vegetation classes, 3 developed and mosaicked
land classes, and 3 non-vegetated land classes. For regional studies, the land cover type is
classified into urban, croplands, vegetation, and other.

NO2 is a short-lived gas mostly co-emitted from fossil fuel combustion by indus-
tries and vehicles. It has been shown to be a good tracer for anthropogenic CO2 emis-
sions [36–38]. NO2 data used in our studies is the level 3 offline NO2 data product derived
from TROPOMI/Sentinel-5 Precursor observations [56,57]. The data product provides
the total vertical column of NO2 concentrations with temporal and spatial resolutions
of 2 days and 0.01◦ grid, respectively. The dataset is delivered by the European Space
Agency (ESA) and publicly available on Google Earth Engine [57,58]. We obtained regional
NO2 columns in the study areas from July 2018 to December 2020 to assist the analysis of
regional emission characteristics.

2.2. Methods
2.2.1. Calculation of Global Temporal XCO2 Variations Using Mapping-XCO2

The time series of atmospheric XCO2 is basically a combination of three signals:
a long-term trend, a seasonal cycle, and short-term variations [59]. To extract the temporal
characteristics of XCO2 variations, the most common method is to assume that the long-
term trend and seasonal cycles can be represented by a polynomial function and a sum
of seasonal harmonics, respectively [17,42,60–62]. As shown in Equation (1), we applied
curve fitting to global gridded XCO2 from Mapping-XCO2 using a linear least squares
regression method:

f (t) = a0 + a1t + a2t2 + ∑4
i=1(βi sin(iωt) + γi cos(iωt)) (1)

XCO2 = f (t) + δ, (2)

where f (t) is the fitting result, t is the time in a unit of 3 days (122 cycles per year),ω is a
parameter of the temporal period in yearly harmonics calculated by 2π/122. The param-
eters of a0, a1, a2, βi, γi are obtained by least squares fitting. Note that the residuals (δ)
between global mapping XCO2 data and f (t) in Equation (2) include a part of information
on interannual and short-term variations that are not represented by the function. We use
a low-pass filter to filter the residuals and obtain the signals of interannual and short-term
variations [59,60]. Global monthly XCO2 and its long-term trend are calculated by combin-
ing the fitting part of the function and the filtered part. The growth rate of global XCO2 is
computed by taking the derivative of the long-term trend of XCO2.

2.2.2. Clustering Spatial Pattern of the Seasonal XCO2 Cycle

The changes of XCO2 show a seasonal cycle especially in the Northern Hemisphere,
which is affected by CO2 flux from atmospheric transport and the terrestrial biosphere.
The seasonal XCO2 cycle for each grid is obtained by fitting XCO2 timeseries of the grid
using Equation (1), which also characterizes the long-term trend and a seasonal cycle for
each grid. We utilized an unsupervised K-means method to cluster the XCO2 based on the
similarities in its seasonal cycles in order to obtain the spatial pattern of seasonal XCO2
changes. K-means is an iterative algorithm used to classify the given dataset based on the
similarity of temporally changing features where those grids with similar seasonal XCO2
changes are classified into the same cluster [63]. The temporal variation of XCO2, after
removing long-term trends for each grid, reflects the biospheric fluxes from vegetation
seasonal activities coupled with the atmospheric transport. This clustering method groups
those grids with similar temporal variations to the same class. The clustering results are
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able to reveal the spatial patterns of atmospheric transport and terrestrial ecosystems’
CO2 uptake.

2.2.3. Detecting CO2 Anomalies at Global and Regional Scales

The global atmospheric CO2 concentration represents a balance of all natural and
anthropogenic CO2 fluxes into and out of the atmosphere. Atmospheric CO2 is well mixed
by turbulent mixing and atmospheric transport [2]. We use global monthly averaged
XCO2 as the global background. Gridded XCO2 anomalies are calculated as the differences
between gridded XCO2 data and the background, which is hereafter referred to as dXCO2.
The dXCO2 is associated with net CO2 fluxes in the grid. A negative dXCO2 implies a
net sink of CO2, while positive dXCO2 implies a net source relative to global background.
The spatial distribution of global gridded dXCO2 from Mapping-XCO2 is described in
Section 3.1 and is further compared with dXCO2 from CT-XCO2 data.

Lastly, we focus on urban agglomerations in China and the USA to demonstrate
regional detectivity of CO2 anomalies induced by anthropogenic emission. The urban
agglomerations with high emissions are selected as study areas, which are basically located
in the same latitude zone of 25◦–45◦. In order to remove large-scale CO2 variations, median
XCO2 in the latitude zone is utilized as a background value. We computed regional XCO2
anomalies(∆XCO2) by subtracting the “background” from regional averaged XCO2 in the
study areas.

3. Results
3.1. Spatio-Temporal Characteristic of Global XCO2 Variations and Anthropogenic Emissions

We calculated global gridded anomalies (dXCO2) from Mapping-XCO2 and CT-XCO2
to analyze global XCO2 variations in space and time. Figure 1 shows spatial distributions
of multi-year averaged dXCO2 of Mapping-XCO2 during 2010–2018, which have a similar
spatial pattern with that calculated from CT-dXCO2 in Figure A2. Higher positive dXCO2 is
observed in the region of East Asia, Southeast Asia, Middle East, North America, and North
Africa. The dXCO2 shows a negative value in the Southern Hemisphere. The result
from Mapping-XCO2 is about 0.4 ppm lower than CT-XCO2 in eastern Asia. However,
it shows obvious higher dXCO2 over the regions of Xinjiang in China and lower dXCO2
in India. The overall difference of global monthly mean XCO2 between Mapping-XCO2
and CT-XCO2 is −0.24 ± 0.39 ppm, which is less than the difference of dXCO2. Therefore,
the differences of global XCO2 anomalies between Mapping-XCO2 and CT-XCO2 are mostly
induced by their gridded XCO2 data. As can be seen in Figure A3, the large difference
is mainly distributed in southern Eurasia. This large difference is very likely caused by
sparse satellite observations that lead to higher mapping uncertainty, especially between
2010 and 2014.
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Seasonal dXCO2 in winter and summer are computed by averaging dXCO2 values dur-
ing December-January-February (DJF) and June-July-August (JJA), respectively. Figure 2
maps spatial patterns of seasonal dXCO2 from Mapping-XCO2 from 2009 to 2020. During
wintertime, ecosystem CO2 uptake tends to be minimal over the Northern Hemisphere so
that the dXCO2 is mostly caused by CO2 emissions from fossil fuel combustions. Positive
dXCO2 of 1–2 ppm could be clearly observed in eastern China, eastern USA, and Europe
in the Northern Hemisphere. The regions from the equator to 15◦ N have positive dXCO2
values greater than 1 ppm in winter and lower dXCO2 about 0.31 ppm in summer, which
may be attributed to seasonal biomass burning [23,35,64]. In summer, the regions over the
northern high latitudes show the largest negative dXCO2 because terrestrial ecosystems in
the Northern Hemisphere take up CO2 emitted by human activities. CO2 anomalies in the
Southern Hemisphere are negative in winter and positive in summer, excluding the regions
in tropical Africa. These spatial characteristics are generally similar to dXCO2 calculated
by CT-XCO2 in Figure A4. Positive dXCO2 in summer from CT-XCO2 is slightly higher
than the result of satellite XCO2 data. The main difference is that there are no consistent
changes of dXCO2 in tropical Africa between Mapping-XCO2 and CT-XCO2, which may
be due to the underestimation of fire emissions in CT simulation.
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2009 to 2020.

Comparing the spatial distribution of anthropogenic emissions from the ODIAC emis-
sion inventory in Figure 3, we can see that these regions with positive dXCO2 of 1–2 ppm
are very consistent with high anthropogenic emissions. As shown in Figures 2a and A4a,
the pattern of dXCO2 in the United States during wintertime shows larger dXCO2 in the
east than that in the west, which is similar to the pattern of CO2 emissions from ODIAC.
Additionally, the high CO2 absorption by natural terrestrial biosphere in the western re-
gion during summertime, because of the high emissions as indicated by ODIAC, is not
found in the multi-year mean dXCO2. These results indicate that global CO2 anomalies in
winter can effectively represent the increase in atmospheric CO2 concentration caused by
anthropogenic emissions and biomass burning.
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Figure 4a shows the global CO2 growth rates derived from Mapping-XCO2, CT-XCO2,
and the ground-based CO2 measurements from WDCGG. Compared with CT-XCO2,
the global CO2 growth rates calculated by Mapping-XCO2 are more consistent with ob-
servational data. Annual mean CO2 growth rates of 1.82 to 2.98 ppm are reflected on the
continuous increases in atmospheric CO2 concentration, which is mainly caused by anthro-
pogenic CO2 emissions. High growth rates appeared in 2010, 2012/2013, and 2015/2016.
Among them, the growth rate in 2015/2016 was the highest. Many studies have pointed out
that significant inter-annual fluctuations are induced by abnormal natural CO2 emissions
associated with ENSO events [2,16]. For that, we also compared the annual CO2 growth
rate from Mapping-XCO2 with two ENSO indices, which are shown in Figure 4b. The result
shows the satellite-derived growth rates agree well with ENSO indices. The correlation of
the annual CO2 growth rate with SOI and ONI are −0.52 and 0.68, respectively. The growth
rate response as quantified by the correlation coefficient (R) is largest after 4 months for
SOI (R2 = 40.24%) and after 3 months for ONI (R2 = 58.46%). These results are consistent
with previous reported findings [16,18,20,22].
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Figure 4. Time series of global CO2 growth rate from 2009 to 2020 and comparison with ENSO indices. (a) Global
growth rates of the long-term CO2 trend from Mapping-XCO2, CT-XCO2, and ground-based observations of CO2 data;
(b) comparison of satellite-derived growth rate (red line) and ENSO indices. The 1σ uncertainty range of the growth rates are
shown as vertical lines. The original ENSO indices are shown as solid lines and time-shifted data are shown as dotted lines.

3.2. Spatial Pattern of the Seasonal XCO2 Cycle

Global seasonal XCO2 changes from 2009 to 2020 are grouped into 40 clusters based
on the K-means method as described in Section 2.2.2. Figure 5 presents spatial distribution
of the clustering results. We noted that seasonal XCO2 changes show latitudinal zonal
distribution but significantly offset to the southwest in the Northern Hemisphere. These
interesting results are highly consistent with the pattern of clusters derived from CT-XCO2
using the same approach in Figure A5. Compared to the distribution of potential tempera-
ture in Figure 6, the spatial pattern of seasonal XCO2 changes is in good agreement with
potential temperature contours, especially in the Northern Hemisphere. The result indi-
cates that clustered XCO2 variation is relatively homogeneous, which allows us to detect
any perturbations due to the external CO2 fluxes within each cluster region. Moreover,
seasonal amplitudes of XCO2 gradually reduce from north to south as shown in Figure 5b.
The maximum is up to 10 ppm in cluster 1, and the minimum is 5 ppm in cluster 5, which
is primarily caused by the strength of vegetation uptake at different latitudes.

We further investigated the relationship between seasonal XCO2 changes and seasonal
vegetation activities characterized by NDVI. Figure 7 shows the spatial distribution of
correlation coefficients (R) between their seasonal changes globally. The seasonal XCO2
presents strong negative correlation with NDVI in most areas due to seasonal activities
of vegetation CO2 uptake in the northern high latitude area and regions of grassland and
savannas. The regions with less or no vegetation present weak correlation between seasonal
XCO2 and NDVI. These regions with strong correlations indicate that the biosphere has
large impacts on the variation of CO2 concentration, which can also be seen in Figure A6.
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Figure 5. The clustering results of seasonal XCO2 changes based on Mapping-XCO2 from 2009 to 2020 (a) and the temporal
variations of clusters in the Northern Hemisphere (b). The line colors correspond to the clusters in (a).

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

(a) (b) 

Figure 5. The clustering results of seasonal XCO2 changes based on Mapping-XCO2 from 2009 to 2020 (a) and the temporal 
variations of clusters in the Northern Hemisphere (b). The line colors correspond to the clusters in (a). 

 

 
Figure 6. Spatial distribution of potential temperature contours at 1000 hPa from 2009 to 2020. 

We further investigated the relationship between seasonal XCO2 changes and sea-
sonal vegetation activities characterized by NDVI. Figure 7 shows the spatial distribution 
of correlation coefficients (R) between their seasonal changes globally. The seasonal XCO2 
presents strong negative correlation with NDVI in most areas due to seasonal activities of 
vegetation CO2 uptake in the northern high latitude area and regions of grassland and 
savannas. The regions with less or no vegetation present weak correlation between sea-
sonal XCO2 and NDVI. These regions with strong correlations indicate that the biosphere 
has large impacts on the variation of CO2 concentration, which can also be seen in Figure 
A6. 

 

 
Figure 7. Spatial distribution of correlation coefficients between seasonal XCO2 changes based on 
Mapping-XCO2 and NDVI from 2009 to 2020. 

An accurate assessment of the contribution of the biosphere and atmospheric 
transport helps better disentangle the contribution of anthropogenic emissions to XCO2 
variations. This clustering result can help us understand globally spatial distribution char-
acteristics of XCO2 variation affected by the biosphere and atmospheric transport. Com-
paring Figure 5a with Figures 6 and 7, we can find that clustering results of XCO2 after 
removing long-term changes effectively reveal the effects of fluxes from the biosphere and 
atmospheric transport. The ranges of clustering classes can be used to select and analyze 
interesting areas with similar biospheric fluxes and atmospheric transport. 

3.3. Regional XCO2 Anomalies and Anthropogenic Emissions 
3.3.1. Regional XCO2 Anomalies in Urban Agglomeration areas 

We focus on the investigation of regional XCO2 anomalies caused by anthropo-genic 
emissions in the urban agglomeration areas in China and the United States. Based on the 
density of cities, we selected three source areas of anthropogenic emissions (AE), includ-
ing the Beijing-Tian-Hebei region and nearby areas (BTH), the Yangtze River Delta urban 
agglomerations (YRD), and the urban agglomerations in the eastern United States of 

270    274    278    282    286    290    294    298    302    306  

–1         –0.8        –0.6        –0.4          0          0.4          0.6          0.9   

Figure 6. Spatial distribution of potential temperature contours at 1000 hPa from 2009 to 2020.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

(a) (b) 

Figure 5. The clustering results of seasonal XCO2 changes based on Mapping-XCO2 from 2009 to 2020 (a) and the temporal 
variations of clusters in the Northern Hemisphere (b). The line colors correspond to the clusters in (a). 

 

 
Figure 6. Spatial distribution of potential temperature contours at 1000 hPa from 2009 to 2020. 

We further investigated the relationship between seasonal XCO2 changes and sea-
sonal vegetation activities characterized by NDVI. Figure 7 shows the spatial distribution 
of correlation coefficients (R) between their seasonal changes globally. The seasonal XCO2 
presents strong negative correlation with NDVI in most areas due to seasonal activities of 
vegetation CO2 uptake in the northern high latitude area and regions of grassland and 
savannas. The regions with less or no vegetation present weak correlation between sea-
sonal XCO2 and NDVI. These regions with strong correlations indicate that the biosphere 
has large impacts on the variation of CO2 concentration, which can also be seen in Figure 
A6. 

 

 
Figure 7. Spatial distribution of correlation coefficients between seasonal XCO2 changes based on 
Mapping-XCO2 and NDVI from 2009 to 2020. 

An accurate assessment of the contribution of the biosphere and atmospheric 
transport helps better disentangle the contribution of anthropogenic emissions to XCO2 
variations. This clustering result can help us understand globally spatial distribution char-
acteristics of XCO2 variation affected by the biosphere and atmospheric transport. Com-
paring Figure 5a with Figures 6 and 7, we can find that clustering results of XCO2 after 
removing long-term changes effectively reveal the effects of fluxes from the biosphere and 
atmospheric transport. The ranges of clustering classes can be used to select and analyze 
interesting areas with similar biospheric fluxes and atmospheric transport. 

3.3. Regional XCO2 Anomalies and Anthropogenic Emissions 
3.3.1. Regional XCO2 Anomalies in Urban Agglomeration areas 

We focus on the investigation of regional XCO2 anomalies caused by anthropo-genic 
emissions in the urban agglomeration areas in China and the United States. Based on the 
density of cities, we selected three source areas of anthropogenic emissions (AE), includ-
ing the Beijing-Tian-Hebei region and nearby areas (BTH), the Yangtze River Delta urban 
agglomerations (YRD), and the urban agglomerations in the eastern United States of 

270    274    278    282    286    290    294    298    302    306  

–1         –0.8        –0.6        –0.4          0          0.4          0.6          0.9   

Figure 7. Spatial distribution of correlation coefficients between seasonal XCO2 changes based on
Mapping-XCO2 and NDVI from 2009 to 2020.

An accurate assessment of the contribution of the biosphere and atmospheric transport
helps better disentangle the contribution of anthropogenic emissions to XCO2 variations.
This clustering result can help us understand globally spatial distribution characteristics of
XCO2 variation affected by the biosphere and atmospheric transport. Comparing Figure 5a
with Figures 6 and 7, we can find that clustering results of XCO2 after removing long-
term changes effectively reveal the effects of fluxes from the biosphere and atmospheric
transport. The ranges of clustering classes can be used to select and analyze interesting
areas with similar biospheric fluxes and atmospheric transport.

3.3. Regional XCO2 Anomalies and Anthropogenic Emissions
3.3.1. Regional XCO2 Anomalies in Urban Agglomeration Areas

We focus on the investigation of regional XCO2 anomalies caused by anthropo-genic
emissions in the urban agglomeration areas in China and the United States. Based on
the density of cities, we selected three source areas of anthropogenic emissions (AE),
including the Beijing-Tian-Hebei region and nearby areas (BTH), the Yangtze River Delta
urban agglomerations (YRD), and the urban agglomerations in the eastern United States
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of America (EUSA), which are shown in Figure 8. Total CO2 emissions from these areas
account for about 13% of global CO2 emissions according to anthropogenic emissions from
ODIAC. These three regions are located in the same clustering areas that have similar
seasonal XCO2 cycles. They are clusters 3 and 4, as shown in Figure 5.
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Regional XCO2 anomalies (∆XCO2) are calculated by removing the “background”
trend of latitude zone from regional CO2 concentrations as described in Section 3.1. We cal-
culated the multi-year averaged ∆XCO2 for these three regions using Mapping-XCO2 ac-
cording to two stages during 2009–2014 and during 2015–2020, respectively. From Table 2,
∆XCO2 are generally 1–3 ppm and the values during the wintertime are up to 1 ppm larger
than the multi-year mean, especially for BTH and EUSA. Both BTH and EUSA are basically
located in cluster 3 with a seasonal amplitude of 8 ppm, which is larger than the amplitude
of 6 ppm for YRD in cluster 4. From the first 5 years of 2009–2014 to the second 5 years
of 2015–2020, ∆XCO2 increased in the three areas. Comparing the differences of ∆XCO2
among AE areas, ∆XCO2 in both BTH and YRD is greater than that in EUSA, while BTH is
slightly larger than YRD.

Table 2. Regional characteristics in the emission source areas.

Source Areas
2009–2014 2015–2020

BTH YRD EUSA BTH YRD EUSA

XCO2 (ppm) 393.96 ± 3.55 394.14 ± 3.44 392.91 ± 3.56 407.56 ± 4.73 407.86 ± 4.87 406.77 ± 4.71

∆XCO2 (ppm) 1.24 ± 0.24 1.42 ± 0.31 0.19 ± 0.19 1.36 ± 0.16 1.66 ± 0.22 0.57 ± 0.08

XCO2 in winter (ppm) 395.29 ± 3.49 395.12 ± 3.33 394.41 ± 3.55 409.40 ± 4.43 409.06 ± 4.56 408.14 ± 4.51

∆XCO2 in winter (ppm) 2.32 ± 0.38 2.16 ± 0.34 1.44 ± 0.41 2.59 ± 0.33 2.25 ± 0.37 1.33 ± 0.25

Total CO2 emission
(GtCO2/year) 1.54 ± 0.14 1.66 ± 0.04 0.72 ± 0.01 1.71 ± 0.19 1.86 ± 0.05 0.70 ± 0.01

Land cover (%)
(Urban; Croplands;
Vegetation; Other)

7.6 7.8 9.7 8.4 8.3 9.7
34.9 56.4 13.5 34.5 55.4 14.1
51.2 34.4 74.7 50.6 35.0 73.9
6.3 1.4 2.2 6.6 1.5 2.3

Time series of XCO2 anomalies in source areas from Mapping-XCO2 and CT-XCO2
are shown in Figures 9 and A7, respectively. ∆XCO2 shows seasonal variations in which
BTH and EUSA present greater negative ∆XCO2 than YRD. This is likely induced by the
vegetation CO2 uptake as the vegetation coverage is larger in BTH and EUSA. As can be
seen from Figure 7, the correlation coefficients between seasonal CO2 cycles and NDVI are
−0.80 ± 0.11 and −0.77 ± 0.05 for BTH and EUSA, respectively, which are greater than the
obtained coefficients of −0.65 ± 0.15 for YRD.
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Figure 9. Time series of regional XCO2 anomalies(∆XCO2) in the source areas derived from Mapping-
XCO2. The 1σ uncertainty estimate of regional XCO2 anomalies is represented by the error bar, which
is computed by the averaging mapping uncertainty and the standard deviation of regional statistics.

3.3.2. Response of Regional XCO2 Anomalies during the COVID-19 Pandemic

Beginning from December 2019, Coronavirus disease 2019 (COVID-19) has occurred in
numerous countries. The decline of economic activities caused by the pandemic lockdown
measures has led to sharp reductions in anthropogenic CO2 emissions in many countries.
Regional-scale COVID-19-related CO2 emission reductions are expected to be the largest in
the first months of the pandemic outbreak. According to Le Quéré et al. [65], China’s CO2
emissions decreased by 242 MtCO2 (uncertainty range 108–394 MtCO2) during January–
April 2020. Buchwitz et al. [66] estimated the relative change of East China monthly
emissions in 2020 relative to previous months. Their results showed significant differences
across the ensemble of GOSAT and OCO-2 data products analysis. The ensemble mean
indicates emission reductions by approximately 8% ± 10% in March 2020 and 10% ± 10%
in April 2020 (uncertainties are 1-sigma), while somewhat lower reductions for the other
months in 2020. These reduction months, however, should be investigated further, since the
lockdown was mainly implemented during January–March; hence, the emission reduction
should be in the same period.

We compared the relative differences of regional XCO2 anomalies during January–April
between 2020 and 2019. CO2 anomalies in YRD have a slight decrease of 0.17 ppm during
January to February in 2020 relative to the same month of 2019, while there has been no
decline in CO2 anomalies for BTH and EUSA. This is because that CO2 is a long-lived gas,
and therefore, it has a high background concentration in the atmosphere. The increase
of CO2 concentration caused by anthropogenic emissions and the decline induced by
emission reduction are small variables. The precision of satellite observations and mapping
uncertainty makes it difficult to detect weak signals due to the emission reduction.

NO2 concentration in the atmosphere has been used to infer CO2 reductions and
estimate China’s CO2 emissions during the COVID-19 pandemic [67]. Figure 10 illustrates
the time series of regional NO2 columns from July 2018 to December 2020 and the difference
of 2020 relative to the previous year of 2019 for three areas. From Figure 10b, we can
find that the sharp declines of NO2 columns started in January and basically ended in
April; NO2 columns were reduced by 45–51%, 59%–61%, and 30% during January–March
for BTH, YRD, and EUSA, respectively. The obvious reduction during the lockdown
indicates that NO2 columns are more sensitive to the reduction of anthropogenic emissions.
The reduction, moreover, is lower in BTH than in YRD. This likely implies that the effects
of reduced emissions from the decreased traffic volume were due to lockdown measures in
YRD. However, there was increased demand for winter heating in BTH, as more people in
2020 had to stay in Beijing during the lockdown compared to former years. Additionally,
the BTH area suffered a heavy pollution process from 11–13 February during the lockdown
period [68].
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Figure 10. Time series of NO2 columns and the differences of NO2 relative to the previous year. (a) Regional NO2 columns
every 16 days and 1σ uncertainty estimate is represented by error bar; (b) contemporaneous differences of NO2 between
2019 and 2020.

In order to further analyze the response of XCO2 to emission reduction in BTH and
YRD, we focused on the period from January to March and compared the differences
between 2019 and 2020 for ∆XCO2 and NO2 columns. ∆XCO2 was resampled to a 0.01◦

grid by cubic convolution, which improves spatial resolution without changing the char-
acteristics of the original data. As shown in Figure 11, the differences of ∆XCO2 between
2020 and 2019 tend to be negative in YRD, which means that emissions reduced, while they
tended to increase by approximately 0.5 to 1 ppm in BTH. The spatial pattern of differences
for ∆XCO2 is generally similar to NO2 columns. The decrease of NO2 columns in BTH is
less than that in YRD. The NO2 concentration decreased by approximately 35 ± 5% in BTH,
while it decreased by approximately 45 ± 8% in YRD.
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Figure 11. Spatial distribution of changes in XCO2 anomalies and NO2 columns from January to
March in 2020 and 2019. (a) The variations of XCO2 anomalies and (b) the variations of NO2 columns.
The bold gray lines represent the boundary of the provinces, while thin gray lines represent the
boundary of cities.

In addition, we computed the variations of ∆XCO2 and NO2 columns using the city
district as a spatial unit. Figure 12 shows the result where the cities in AE areas are grouped
according to provinces. The relationship between ∆XCO2 and NO2 shows two distinct
features in both BTH and YRD, Shanxi and other provinces in BTH, and Anhui and the
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other provinces in YRD. These features are likely related to the types of emitting sources
in these areas. The emitting sources in Shanxi and Anhui are mostly coal power plants
and chemical plants, while the emitting sources of other provinces are mostly gas power
plants and vehicles in the megacities of Beijing and Tianjin in BTH and Shanghai, Nanjing,
Hangzhou, etc. in YRD. In Shanxi, the reduction of ∆XCO2 is from −0.3 to −0.9 ppm and
the decline of NO2 is 35% to 42%. In BTH, the reduction of ∆XCO2 is approximately 0.3 to
0.9 ppm and the decline of NO2 is 30% to 45%. In comparison, in YRD, there is a larger
range of ∆XCO2 changes, from approximately −0.6 to 1 ppm with declines of NO2 by 50%
to 66% in Anhui. However, for other provinces in YRD other than Anhui, there are smaller
changes of ∆XCO2 from approximately −0.5 to 0.3 ppm, with a decline of NO2 by 30% to
45%. These results indicate that the relationship between XCO2 and NO2 is available for
the estimation of CO2 emissions. However, we should also consider the regional features of
emitting sources, since their relationship highly depends on the types of emitting sources.
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Figure 12. Comparison of NO2 variations and the changes of XCO2 anomalies for cities in (a) BTH
and (b) YRD. The variations are relative differences in CO2 anomalies and NO2 columns from January
to March in 2020 and 2019.

4. Discussion

The accuracy of used Mapping-XCO2 data will result in uncertainty around the find-
ings of the spatio-temporal feature analysis. As described in Section 2.1.1, Mapping XCO2
data are obtained by processing different satellite observations using the spatio-temporal
geostatistical method. The mapping uncertainty depends not only on the retrieval bias
of original XCO2 retrievals, but also to a large extent on the number of available satellite
observations. Mapping uncertainties are calculated by the method of Zeng et al. [43–46].
Figure 13 shows the spatio-temporal distribution of mapping uncertainties. The map-
ping uncertainties of global grids are generally less than 1.5 ppm. The areas with larger
uncertainties are mainly in the high latitude of the Northern Hemisphere, which is due
to sparse satellite observations. Mapping uncertainties during the period of GOSAT ob-
servations is higher than that corresponds to OCO-2 observations. This is because that
the number of GOSAT observations is much less than OCO-2 observations. In the global
analysis, CO2 growth rates derived from Mapping-XCO2 during 2009 to 2020 are consistent
with that from ground-based measures, which does not show the deviation, such as the
uncertainty between GOSAT and OCO-2 data. The spatial patterns of mapping gridded
XCO2, in contrast to the global background, are consistent from year to year. These results
indicate that the mapping XCO2 dataset using different satellite observations has consistent
distribution characteristics in space and time. Moreover, the relative difference between
regional XCO2 in source areas and the global background is in the range of 1.13 to 3.17 ppm
during winter months, which is greater than mapping uncertainty in these areas.
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The land cover types in AE areas are dominated by croplands and vegetation, as shown
in Table 2. Affected by the CO2 uptake of terrestrial ecosystems and the accumulation of
CO2 from anthropogenic CO2 emissions in the atmosphere, the regional CO2 concentration
reaches the highest value in the spring. The method of CO2 anomalies can remove large-
scale background information from regional CO2 concentrations and enhance the signal of
CO2 changes. Many studies have pointed out that the calculation method of background
concentration does not have a great impact on the results of regional CO2 anomalies [35].
The temporal characteristic of regional CO2 anomalies is consistent with that of the regional
NO2 concentration, as shown in Figure 10. Both of them have a maximum during the
winter period of each year.

Regional CO2 anomalies are mainly caused by anthropogenic CO2 emissions and local
ecological CO2 fluxes. Regional ecological CO2 flux has little impact on CO2 changes in
winter; CO2 enhancement is in the range of 1.00 to 3.14 ppm in source areas during winter
months, whereas the mapping uncertainty is 0.75 to 1.42 ppm in the same period. During
the winter period, ∆XCO2 of BTH is higher than that of YRD, which agrees with the emis-
sion characteristics of NO2 concentrations. The ∆XCO2 in BTH and EUSA show negative
values in summer, which is because local ecological CO2 fluxes have a greater impact on
CO2 anomalies in summer. On the other hand, the mapping uncertainty and standard
deviation are relatively larger during the summer months. Therefore, it is challenging to
detect the enhancement of regional CO2 concentration caused by anthropogenic emissions
in the growing season of vegetation.

5. Conclusions

We presented a global analysis of spatio-temporal XCO2 variations and detected
regional XCO2 anomalies using satellite mapping XCO2 data (Mapping-XCO2) from April
2009 to December 2020. The dataset has resolutions of 3 days in time and 1◦ grid in space,
respectively. Mapping-XCO2 is produced by a gap-filling technique using XCO2 retrievals
obtained by GOSAT and OCO-2.

The growth rates of global XCO2 derived from Mapping-XCO2 data show large
fluctuations in inter-annual variabilities, which is in agreement with the long-term CO2
trends calculated by WDCGG ground-based observations. Elevated XCO2 of 1.5 to 3.5 ppm,
which is mostly induced by anthropogenic emissions and seasonal biomass burning,
can be observed using Mapping-XCO2 data with background removed. Furthermore,
the clustering analysis of gridded seasonal XCO2 variations, after removing the long-term
trend and background, reveal spatial pattern of atmospheric transport and terrestrial
ecological CO2 flux.

At the regional scale, XCO2 enhancements during winter months are detected to be
2.47 ± 0.37 ppm, 2.20 ± 0.36 ppm, and 1.38 ± 0.33 ppm for the Beijing-Tianjin-Hebei
area, the Yangtze River Delta area, and the high-density urban areas in the eastern USA,
respectively. The regional emission characteristic of XCO2 enhancement is consistent with
regional NO2 columns. However, it is difficult to accurately detect enhanced CO2 signals in
the vegetation growing season due to impacts of local ecological CO2 uptakes and relatively
large uncertainty of the mapping data during summertime. The regional XCO2 anomalies
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did not clearly show the declines of anthropogenic CO2 emissions during the lockdown of
the COVID-19 pandemic from January to March 2020 compared with the same time in the
previous year of 2019. However, the significant correlation between relative differences of
XCO2 and NO2 columns calculated at urban scales indicates that different types of emitting
sources show a significantly positive correlation. This result suggests that we could use
space-observed NO2 data to identify the anthropogenic emitting sources and rectify CO2
emissions estimated from satellite observations since both gases are mostly co-emitted
in cities.

Our studies provide new cases for investigating the responses of XCO2 observed by
satellites to anthropogenic emissions at global and regional scales. These results demon-
strate the potential of the global land mapping XCO2 dataset in monitoring the long-term
XCO2 variations and detecting regional XCO2 enhancements caused by anthropogenic in
non-growing seasons.
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Figure A3. Comparison of Mapping-XCO2 and CT-XCO2 from 2010 to 2018. (a) The absolute mean
difference of monthly gridded XCO2 between Mapping-XCO2 and CT-XCO2 from 2010 to 2018;
(b) time series of the mean difference in the regions of the red boxes shown in (a), in which the shaded
colors represent one standard deviation.
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Figure A4. Spatial distributions of long-term averaged seasonal dXCO2 in winter (a) and in summer (b) calculated from
CT-XCO2 from 2009 to 2018.
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Figure A5. The clustering results of seasonal XCO2 changes using CT-XCO2 data from 2009 to 2019.
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Figure A6. Spatial distribution of correlation coefficients in seasonal XCO2 changes between CT-
XCO2 and NDVI from 2009 to 2019.
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