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Abstract: Analyzing vertical distribution characters of air pollutants is conducive to study the
mechanisms under polluted atmospheric conditions. Nitrous acid (HONO) is a kind of crucial
species in photochemical cycles. Exploring the influence and sources of HONO in air pollution at
different altitudes offers some insights into the research of tropospheric oxidation chemistry processes.
Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements
were conducted in Shanghai, China, from December 2017 to March 2018 to investigate vertical
distributions and diurnal variations of trace gases (NO2, HONO, HCHO, SO2, and water vapor) and
aerosol extinction coefficient in the boundary layer. Aerosol and NO2 showed decreasing profile
exponentially, SO2 and HCHO concentrations were observed relatively high values in the middle
layer. SO2 was caused by industrial emissions, while HCHO was from secondary sources. As for
HONO, below 0.82 km, the heterogeneous reactions of NO2 impacted on forming HONO, while in
the upper layers, vertical diffusion might be the dominant source. The contribution of OH production
from HONO photolysis at different altitudes was mainly controlled by the concentration of HONO.
MAX-DOAS measurements characterize the vertical structure of air pollutants in Shanghai and
provide further understanding for HONO formation, which can help deploy advanced measurement
platforms of regional air pollution over eastern China.
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1. Introduction

Over the past decades, people paid more and more attention to air pollution, since this
problem did have multifarious devastating impacts on human health [1–4]. It is particularly
serious in China, including the Yangtze River Delta (YRD), it is the consequence of the
fast-paced progress of the economy and industrialization [5–11]. Shanghai is one of the four
directly controlled municipalities in China, with a large number of vehicles and factories.
Heavy industrial activities and growing vehicle numbers have continued to deteriorate
the air quality. The meteorological environment in winter is relatively stable, which is
not conducive to the dissipation of pollution. Then the pollution is getting worse in
winter [12–14]. What’s more, nitrous acid (HONO) has long been recognized as significant
to atmospheric photochemistry [15,16]. A high-level concentration of HONO would lead to
the formation of secondary pollutants and accelerate air pollutions [15,17]. Previous studies
showed that the concentration of HONO in winter is higher than that in summer [16].
Therefore, it is particularly important to formulate specific air pollution prevention and
control strategies for the winter of Shanghai.

Monitoring temporal and spatial concentrations of atmospheric species is the premise
of pollution control. Traditional atmospheric environment monitoring technology mainly
relies on automatic monitoring stations in urban cities, so the coverage is limited. Vertical
distributions of precursor trace gases (e.g., NO2, SO2, HCHO, and so on) and aerosols
in regional pollution studies are also short of research. Multi-axis differential optical
absorption spectroscopy (MAX-DOAS) is a passive remote sensing technique that measures
the tropospheric aerosol extinctions and trace gas concentrations [18–23], hence provides
the information of temporal and spatial characters of air pollutants. Fengxian, the site
we set the instrument in, is one of the sub-districts of Shanghai, located in the southeast
of YRD and the north of Hangzhou Bay. This area is mainly affected by the Subtropical
marine monsoon, the prevailing winds are mainly southeasterly and there are always rainy
days in winter. Notably, the measurement site is surrounded by agricultural areas with
only a few industrial and traffic emissions.

In this paper, MAX-DOAS observations were conducted from December 2017 to March
2018 for measuring the vertical distribution and diurnal variations of aerosol extinction and
trace gases in the lower troposphere, where conducted a majority of chemical and physical
reactions. The VCDs and profiles were retrieved by the HEIPRO (Heidelberg Profile)
algorithm and also validated by USTC-OMI (University of Science and Technology of China-
Ozone Monitoring Instrument) products, CNEMC (the China National Environmental
Monitoring Center), and NCDC (the National Climatic Data Center) measurements. In the
following, this study also focuses on studying winter HONO sources and the contribution
of OH production from HONO photolysis at different altitudes in Shanghai by analyzing
the vertical nitrous acid distribution during the whole campaign.

2. Materials and Methodologies
2.1. The MAX-DOAS Observations
2.1.1. Setup of Observations

The MAX-DOAS instrument was set up in the Fengxian campus of East China Univer-
sity of Science and Technology (30.8336◦N 121.5025◦E; Elevation: 20 m) from 16 December
2017 to 6 March 2018, located in shanghai (Figure 1).

The instrument contains a telescope, two spectrometers, a computer acting as a
controlling and data acquisition unit. The viewing elevation angles of the telescope are
controlled by a stepping motor. Scattered sunlight collected by the telescope is redirected
to the spectrometer through a prism reflector and quartz fibers for spectral analysis. Two
imaging spectrometers (Ocean Optics HR2000C and a Maya2000 Pro spectrometer) were
used to measure spectra in both the UV (303–370 nm) and visible (390–608 nm) wavelength
ranges, the spectral resolution of full width half maximum (FWHM) is 0.5 nm and 0.3 nm
respectively. The operating temperature of spectrometers is stabilized to 20 ◦C with the
help of Peltier. The field of view (FOV) of the telescope is estimated to be less than 1◦.
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Figure 1. The position of the MAX-DOAS observation sites in Shanghai. The instrument was set up 
on the roof of the Environmental Science Building in the Fengxian campus of East China University 
of Science and Technology (30.8336°N 121.5025°E). Figure 1 was captured from online Google Map. 
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length ranges, the spectral resolution of full width half maximum (FWHM) is 0.5 nm and 
0.3 nm respectively. The operating temperature of spectrometers is stabilized to 20 °C with 
the help of Peltier. The field of view (FOV) of the telescope is estimated to be less than 1°. 

During the whole observation period, the viewing azimuth direction of the telescope 
was kept to the north. The elevation angles of a full measurement scan sequence consist 
of 1°, 2°, 3°, 4°, 5°, 8°, 10°, 15°, 30°, and 90°, each sequence lasts about 15 min automatically 
depending on the intensity of scattered sunlight. A spectral software in the combined 
computer collected the measurement data only when the Solar Zenith Angle (SZA) is less 
than 75° in order to avoid the influence from the stratospheric absorptions. Dark current 
and offset spectra were removed from the measured spectrum automatically through a 
script at night [14,24,25].  

2.1.2. Spectral Analysis 
The solar scattering spectra observed by MAX-DOAS were analyzed to derive the 

differential slant column densities (DSCDs) at different elevation angles via QDOAS spec-
tral fitting software. Detailed DOAS fit settings for the trace gases have been presented in 
Table 1. The fitting wavelength interval of O4 (oxygen dimer), NO2, HONO, HCHO, SO2, 
and H2O are 338–367 nm, 338–367 nm, 335–373 nm, 336.5–359 nm, 305–317.5 nm, and 433–
462 nm, respectively. And O4 has an additional wavelength (460–490 nm) especially for 
analysis of H2O. Several trace gases absorption cross-sections, the Ring spectrum, the 
Frauenhofer reference spectrum (FRS), and a low order polynomial are applied in the 

Figure 1. The position of the MAX-DOAS observation sites in Shanghai. The instrument was set up
on the roof of the Environmental Science Building in the Fengxian campus of East China University
of Science and Technology (30.8336◦N 121.5025◦E). Figure 1 was captured from online Google Map.

During the whole observation period, the viewing azimuth direction of the telescope
was kept to the north. The elevation angles of a full measurement scan sequence consist of
1◦, 2◦, 3◦, 4◦, 5◦, 8◦, 10◦, 15◦, 30◦, and 90◦, each sequence lasts about 15 min automatically
depending on the intensity of scattered sunlight. A spectral software in the combined
computer collected the measurement data only when the Solar Zenith Angle (SZA) is less
than 75◦ in order to avoid the influence from the stratospheric absorptions. Dark current
and offset spectra were removed from the measured spectrum automatically through a
script at night [14,24,25].

2.1.2. Spectral Analysis

The solar scattering spectra observed by MAX-DOAS were analyzed to derive the
differential slant column densities (DSCDs) at different elevation angles via QDOAS spec-
tral fitting software. Detailed DOAS fit settings for the trace gases have been presented
in Table 1. The fitting wavelength interval of O4 (oxygen dimer), NO2, HONO, HCHO,
SO2, and H2O are 338–367 nm, 338–367 nm, 335–373 nm, 336.5–359 nm, 305–317.5 nm,
and 433–462 nm, respectively. And O4 has an additional wavelength (460–490 nm) espe-
cially for analysis of H2O. Several trace gases absorption cross-sections, the Ring spectrum,
the Frauenhofer reference spectrum (FRS), and a low order polynomial are applied in
the DOAS parameters. The wavelength calibration was typically used in form of a high-
resolution solar spectrum [26]. Then we will get the results of the differential slant column
densities (DSCDs), which means the difference of the slant column density between the
off-aix spectrum and the zenith-sky reference spectrum. These DSCDs will be converted to
vertical profile retrieval subsequently. Before profile retrieval, DOAS fit results with a root
mean square (RMS) of residuals larger than 0.002 or a solar zenith angle (SZA) larger than
75◦ were filtered for quality control.
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Table 1. Summary of retrieval settings for the O4, NO2, HONO, HCHO, SO2, and H2O DOAS spectral analyses.

Parameter Data Source Trace Gases

O4 O4 NO2 HONO HCHO SO2 H2O

Fitting Wavelength Range (nm) 338–367 460–490 338–367 335–373 336.5–359 307.5–315 433–462

NO2

[27] 220 K, 294 K,
I0-correction *
(SCD of 1017

molecules/cm2)

√ √ √ √ √
(294 K)

√
(294 K)

√

SO2 [28] 298 K
√

HCHO [29], 297 K
√ √ √ √

HONO [30], 296 K
√

O3

[31], 223 K, 243 K,
I0-correction *
(SCD of 1020

molecules/cm2)

√ √
(223 K)

√ √ √ √ √
(223 K)

O4 [32], 293 K
√ √ √ √ √ √

BrO [33], 223 K
√ √ √ √

Glyoxal [34], 298 K
√

H2O [35], 293 K,
1021 hPa

√ √

Ring
Ring spectra

calculated with
QDOAS [36]

√ √ √ √ √ √ √

Polynomial
degree 5th order 5th order 5th order 5th order 5th order 5th order 3rd order

Intensity
offset constant constant constant 1st order 1st order 1st order constant

Wavelength
calibration Based on a high resolution solar reference spectrum (SAO2010 solar spectra) [26]

* Solar I0-correction [37].

The primary results (i.e., DSCDs) are affected by the absorption path in the atmosphere,
so the calculated results need to convert to the tropospheric Vertical Column Density (VCD)
by using tropospheric Differential Air Mass Factors (DAMFs) [38,39], the equation is:

VCDtrop =
DSCDs
DAMFs

=
DSCDs(α)

AMF(α)−AMF(90◦)
(1)

The Air Mass Factors (AMFs) is calculated by the so-called geometric approximation
method [18,38], and is simply expressed in a transfer simulation [39,40]:

AMF(α) =
1

sin(α)
(2)

So, the tropospheric VCD can be figured out by:

VCDtrop =
DSCDs(α)

1
sin(α) − 1

(3)

2.1.3. Profile Retrievals of Aerosol and Trace Gases

Vertical profiles of aerosol and trace gases (NO2, HONO, HCHO, SO2, water vapor)
are retrieved from DSCDs at different elevation angles by the HEIPRO (Heidelberg Profile)
retrieval algorithm [20,41,42]. The equation consisting of different elevation SCD and
different layer concentrations will be overdetermined. It is hard to obtain a unique solution
for this equation, in order to solve this problem, the HEIPRO algorithm is developed
basing on the Optimal Estimation Method (OEM) [43], and the radiative transfer model
SCIATRAN [44] is applied as a forward model to simulate the measurement vector y
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through the atmospheric state vector x. An a priori state vector xa is introduced into
the optimal estimation method, and the minimum value function χ2(x) is used to solve
the optimally estimated state vector x between the measurement and the prior, so as to
invert the statement that is closest to the real atmospheric concentration, i.e., the so-called
maximum a posteriori (MAP) solution.

χ2(x) = [y− F(x, b)]TSε−1[y− F(x, b)] + [x− xa]
TSa
−1[x− xa] (4)

where x represents observed gas or aerosol concentrations. Parameter b represents system
parameters that are not involved in retrieval but have an influence on results such as mete-
orological statements (i.e., pressure and temperature vertical profiles). The measurement
vector y (DSCDs at different elevation angles), which is a function of x and b. F(x, b) is a
radiative transfer model or forward model, which corresponds to the measurement vector y
as a function of the atmospheric state vector x, which is also dependent on parameters b.
The a priori state vector xa serves as an initial profile to constrain the range of the solu-
tion. Sε and Sa denote the covariance matrices of the measurement error and the a priori
uncertainty, respectively.

HEIPRO has two steps to retrieve profiles. Firstly, aerosol extinction profiles are
retrieved according to the measured O4 DSCDs. The concentration of O4 in the atmosphere
is positively proportional to the square of O2 monomer concentration, and its vertical
concentration and profile are basically stable. SCD of O4 is not only affected by geometric
observation angle but also affected by aerosol concentration. The absorption band of O4
with different wavelengths can reflect the aerosol extinction, so O4 can be used as an
indicator of aerosol. A fixed set of aerosol optical properties with single-scattering albedo
(SSA) of 0.90, asymmetry parameter of 0.69, and ground surface albedo of 0.05 is assumed
here [14].

Then the retrieved aerosol extinction profiles serve as the forward model parameters
coupled with the measured trace gas DSCDs to retrieve trace gases (i.e., NO2, HONO,
HCHO, SO2, and water vapor) vertical profiles. The retrieval processes of trace gases are
nearly similar to that of aerosols. As for NO2, HONO, HCHO, and SO2, their retrievals
depend on the wavelength of O4 ranged from 338–367 nm, the lowest 3.0 km of the
troposphere were divided into 20 layers, with 100 m grid below 1 km and 200 m grid from
1–3 km. But as for water vapor, the forward O4 wavelength ranges from 460–490 nm, the
profiles were divided into 30 layers that the first 20 layers (below 2 km) are on a 100 m grid,
and the last ten layers (between 2 km and 4 km) are on a 200 m grid. Considering a full
scan- sequence lasts around 13 min, a fixed time interval of 15 min was set to cover all the
measured DSCDs. The retrieved profiles with degrees of freedom (DFS) less than 2.0 were
filtered out for quality control.

2.2. Backward Trajectory

To calculate backward trajectories of air masses, the HYSPLIT (Hybrid Single particle
Lagrangian Integrated Trajectory) model coupled with the Global Data Assimilation System
(GDAS) [45,46] was used. Both the National Oceanic and Atmospheric Administration
Air Resource Laboratory (NOAA-ARL) and the Australian Weather Bureau developed the
model. It can simulate and analyze the trajectory of air pollutant transport and diffusion
and has been widely used in many studies [24,47] over the past 20 years.

In this study, backward trajectory frequencies were simulated online in order to
determine the source of air masses and the physical transport pathway of atmospheric
pollutants. Meteorological data from the Global Data Assimilation System (GDAS) (spatial
resolution of 0.5 degrees) was inputted in the model for simulations. The HYSPLIT model
functions real-time calculation and fine analysis.

2.3. TUV Model

The NCAR Tropospheric Ultraviolet and Visible (TUV) radiation model was used
to compute the photolysis frequencies of J (HONO) in the absence of direct observations.
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The ozone density was got from the Total Ozone Mapping Spectrometer, the typical single
scattering albedo (SSA) is 0.95 [48], the mean value of optical depth (AOD) was derived
from DOAS retrieval results, and others were set as defaults.

2.4. Ancillary Data for Validation

The Ozone Monitoring Instrument (OMI) flies onboard NASA’s Earth Observing Sys-
tem (EOS) Aura satellite launched on 15 July 2004 into a Sun synchronous polar orbit (98◦

inclination) [49]. OMI is a passive imaging spectrometer equipped with two-dimensional
array charge-coupled devices (CCDs) to measure the solar spectra which are reflected by
the earth’s surface in the ultraviolet and visible (UV-VIS) wavelength range from 270 nm
to 500 nm. OMI has a high spatial resolution (13 km (along-track) × 24 km (cross-track))
and daily global coverage because of a large 114◦ swath along with a 2600 km wide spatial
sampling for one orbit. The local overpass time is between 13:40 LT and 13:50 LT. The
algorithm for the retrieval of total column and NO2, SO2, and HCHO is based on the
DOAS method. In this study, USTC-OMI tropospheric products were derived from three
processes. The trace gas SCDs were derived from OMI Level 1B VIS Global 190 Radiances
Data (OML1BRVG). Then the SCDs were converted into vertical column densities (VCDs)
using the air mass factors (AMFs) [39]. AMFs were calculated based on the atmospheric
temperature and pressure profiles derived from WRF-Chem chemistry transport model
simulations. Albedo data are from the climatology albedo database derived from 5 years
of OMI observations [50]. VCDs of stratospheric and tropospheric were separated by the
assimilation model [51]. More details of the retrieval method can refer to [52–54].

The concentration of NO2, SO2, and HCHO retrieved from USTC-OMI and the con-
centration of NO2, SO2, and PM2.5 collected from the China National Environmental
Monitoring Center (CNEMC) network were both used to validate the MAX-DOAS re-
trieved data.

The public FTP server of the National Climatic Data Center (NCDC) provided the daily
surface meteorological data (temperature, pressure, dew point, wind direction, and speed),
at the HONGQIAO INTL site (USAF ID: 583670; 31.198◦ N, 121.336◦ E) approximately
42 km north-east of the MAX-DOAS instrument. The RH data were converted to the
molecular number density of water vapor to validate the MAX-DOAS retrieved data.

3. Results

The whole observation lasted for 81 days from 16 December 2017 to 6 March 2018.
According to the principle of MAXDOAS retrieval, the observation results are valid only
when sunlight appears. Therefore, the diurnal variations in this study referred specifically
to diurnal variations during daytime (08:00 to 17:00 LT (local time)). There are only 37 days
available (Table S1) with relatively consecutive data of February 2018 after screening by
weather conditions since Shanghai is always rainy and cloudy in winter. Figures S1–S6
shows the relatively consecutive time series of vertical profiles of aerosol extinction and
trace gases during February 2018 measured by MAX-DOAS using the QDOAS software
and HEIPRO algorithm. According to China Meteorological Center, the datasets were
distinguished into haze days when the AQI was >100 and clear days when the AQI was
<100. There are 9 days are defined as haze days among all the valid days (Table S1).

3.1. Validation of VCDs Measured by MAX-DOAS

USTC-OMI measurements were obtained by spatially averaging the grid data with
a radius of 20 km around the instrument location (30.8336◦ N 121.5025◦ E) considering
the grid is >10 km [55–58]. It is necessary to exclude satellite data for accuracy with larger
error (relative error > 100%) and cloud impacts (could fraction > 0.3). The MAX-DOAS
retrieved VCDs were averaged around 13:00–14:00 LT according to the OMI overpass time
for Shanghai for a correspondent temporal and spatial comparison. All the MAX-DOAS
retrieval VCDs were filtered with an error of more than 1× 1022 molecule/cm2, a chi-square
of more than 100, or less than 1 degree of freedom (DOF) [59] (−25% of the data).
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As shown in Figure 2, the Pearson correlation coefficient (R) of NO2, SO2, and HCHO
is 0.84, 0.64, and 0.61 respectively, Significance level (p) < 0.05, indicating a good agreement
between MAX-DOAS and USTC-OMI observation. As for NO2 (number of data points = 12,
VCDMAX-DOAS = 1.10 × VCDOMI − 1.38 × 1015), the in situ MAX-DOAS VCDs ranges
from 1.89 × 1015 to 6.27 × 1016, and the USTC-OMI VCDs ranges from 3.57 × 1015 to
4.38 × 1016. The regression analysis suggested that USTC-OMI data was underestimated a
little because the NO2 retrieval VCDs by USTC-OMI subtracting the stratospheric part is
only tropospheric VCDs, however, MAX-DOAS was much more sensitive to the surface,
leading to higher and more accurate results of VCD. As for SO2 (number of data points = 21,
VCDMAX-DOAS = 0.81 × VCDOMI + 1.97 × 1015), the in situ MAX-DOAS VCDs ranges from
9.62× 1014 to 2.97× 1016, and the USTC-OMI VCDs ranges from 9.42× 1014 to 2.07 × 1016.
As for HCHO (number of data points = 23, VCDMAX-DOAS = 0.89 × VCDOMI + 1.07 × 1015),
the in situ MAX-DOAS VCDs ranges from 2.34 × 1015 to 1.78 × 1016, and the USTC-OMI
VCDs ranges from 2.64 × 1015 to 2.01 × 1016. Here, all the VCD values are in units of
molecule/cm2. The regression analysis indicated that SO2 and HCHO by USTC-OMI both
overestimated a little because they were integrated VCDs including stratospheric and
tropospheric segments, however, the VCDs by MAX-DOAS just covered from surface to
3 km’s height less than that of OMI data. In a word, the MAX-DOAS retrieval VCDs are
reliable according to the comparison results.
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3.2. Validation of Surface Concentrations Measured by MAX-DOAS

The first layer of the retrieved data can reflect the concentration near ground. As shown
in Figure 3a–c, the hourly averaged NO2, SO2 surface concentrations and aerosol extinction
observed by MAX-DOAS were validated using the averaged measurements of in-situ in-
struments from CNEMC sites of Shanghai under clear sky conditions. For NO2 (number
of data points = 258, NO2CNEMC (µg/cm3) = 1.46 × NO2MAX-DOAS (ppb) + 25.46, Pearson
correlation coefficient (R) = 0.75, Significance level (p) < 0.001), SO2 (number of data points
= 268, SO2CNEMC (µg/cm3) = 1.85 × SO2MAX-DOAS (ppb) + 11.34, Pearson correlation coeffi-
cient (R) = 0.79, Significance level (p) < 0.001), and aerosol extinction (number of data points
= 255, PM2.5CNEMC (µg/cm3) = 0.01 × AEMAX-DOAS (km−1) + 0.20, Pearson correlation
coefficient (R) = 0.80, Significance level (p) < 0.001), there existed obvious good coincidence
between them, although the CNEMC sites are far away from the position of the MAX-DOAS
instrument (as showed in Figure S7). The daily averaged results of water vapor surface
concentration measured by MAX-DOAS and NCDC in-situ instrument were displayed in
Figure 3d, we can see good correlation between them(number of data points = 35, Water
vapor NCDC (molecule/cm3) = 0.98 ×Water vapor MAX-DOAS (molecule/cm3) − 3.2 × 1014,
Pearson correlation coefficient (R) = 0.82, Significance level (p) < 0.001). All of these results
demonstrated dependable data quality and robustness of the MAX-DOAS measurements
in Shanghai.



Remote Sens. 2021, 13, 3518 8 of 23

Remote Sens. 2021, 13, 3518 8 of 24 
 

 

points = 255, PM2.5CNEMC (μg/cm3) = 0.01 × AEMAX-DOAS (km−1) + 0.20, Pearson correlation 
coefficient (R) = 0.80, Significance level (p) < 0.001), there existed obvious good coincidence 
between them, although the CNEMC sites are far away from the position of the MAX-
DOAS instrument (as showed in Figure S7). The daily averaged results of water vapor 
surface concentration measured by MAX-DOAS and NCDC in-situ instrument were dis-
played in Figure 3d, we can see good correlation between them(number of data points = 
35, Water vapor NCDC (molecule/cm3) = 0.98 × Water vapor MAX-DOAS (molecule/cm3) − 3.2 × 
1014, Pearson correlation coefficient (R) = 0.82, Significance level (p) < 0.001). All of these 
results demonstrated dependable data quality and robustness of the MAX-DOAS meas-
urements in Shanghai. 

 
Figure 3. Correlation analysis between NO2, SO2 surface concentrations, aerosol extinction, water vapor observed by MAX-
DOAS and CNEMC, NCDC datasets. (a–d) is NO2, SO2, aerosol extinction, and water vapor respectively. 

3.3. Vertical Distribution Characters and Diurnal Variations of Tropospheric Aerosol Extinction, 
NO2, HONO, HCHO, SO2, and Water Vapor 

Figures 4–6 were the diurnal variations of the vertical profiles from 08:00 to 17:00 LT 
(local time) at the height of 0–3 km. Figure 4 is the averaged profiles of tropospheric aer-
osol extinction, HONO, NO2, HCHO, SO2, water vapor during the whole campaign. And 
the averaged diurnal variations of profiles on clear days and haze days are depicted in 

Figure 3. Correlation analysis between NO2, SO2 surface concentrations, aerosol extinction, water vapor observed by
MAX-DOAS and CNEMC, NCDC datasets. (a–d) is NO2, SO2, aerosol extinction, and water vapor respectively.

3.3. Vertical Distribution Characters and Diurnal Variations of Tropospheric Aerosol Extinction,
NO2, HONO, HCHO, SO2, and Water Vapor

Figures 4–6 were the diurnal variations of the vertical profiles from 08:00 to 17:00
LT (local time) at the height of 0–3 km. Figure 4 is the averaged profiles of tropospheric
aerosol extinction, HONO, NO2, HCHO, SO2, water vapor during the whole campaign.
And the averaged diurnal variations of profiles on clear days and haze days are depicted
in Figures 5 and 6, respectively. By comparing the differences between Figures 4–6, typical
information of polluted cases could be found.

The averaged ground-level of aerosol extinction, HONO, HCHO, SO2, NO2, and water
vapor were 0.86 km−1, 18.63 ppb, 0.27 ppb, 3.00 ppb, 4.35 ppb, 1.58 × 1017 molecule/cm3

respectively. As for haze days: aerosol extinction 1.63 km−1, NO2 24.70 ppb, HONO
0.43 ppb, HCHO 4.98 ppb, SO2 6.66 ppb, water vapor 1.36 × 1017 molecule/cm3 and for
clear days: aerosol extinction 0.64 km−1, NO2 16.63 ppb, HONO 0.22 ppb, HCHO 2.43 ppb,
SO2 3.69 ppb, water vapor 1.61 × 1017 molecule/cm3, it is obvious that aerosol extinction
and all the trace gases except water vapor were much higher in haze days than those in clear
days. Emissions of primary pollutants reacted to generate secondary products through
the gas to particle transformation in the atmosphere, thus resulting in the enhancement of
aerosols [60].
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The diurnal variations can potentially be derived by the interaction of miscellaneous
emissions, chemical and physical reaction processes in the boundary layer. The boundary
layer height is generally high at noon, but low in the morning & evening [61], which
can directly influence the diurnal variations of the vertical characters of those trace gas
pollutants. It is noted that the individual pollutant has their own specific peak time because
of their various lifetimes and chemical and physical behaviors. As shown in Figure 7,
aerosol extinction coefficients and NO2 concentrations are both linear fitting well with alti-
tudes, which means the vertical profiles of NO2 and aerosol extinction coefficient decreased
exponentially with the increase of height (i.e., highest NO2 and aerosol concentrations at
the surface, and decreased gradually). It was probably owing to the close approach of their
emission sources to the ground. NO2 mainly concentrated near the ground, and there were
two small peaks, one was in the morning and the other was in the afternoon, which were
exactly during the rush hour (8:00–10:00; 16:00–17:00 LT), due to the direct emission of
vehicles. The decrease NO2 at noon was the result of the increase of the boundary layer.
As for SO2, it is also concentrated near the ground like NO2, moreover, they were both
observed in the upper layer from 13:00 to 15:00 LT. A possible explanation is that NO2
and SO2 were emitted predominantly from elevated point sources due to the discharges of
burning fossil fuels (e.g., power plants) and long-term transport from other regions which
can bring higher NO2 and SO2 concentrations at the height of hundreds of meters [62–65].
A similar phenomenon (i.e., SO2 has been observed at a high-level concentration in the
upper layer) has also been found in previous aircraft experiments [66]. Most of HONO was
distributed below 0.6 km, and its diurnal variation is characterized by high in the morning
& evening and low at noon, with a U shape. Occasionally, there existed a small peak at
noon. The heterogeneous reaction of nitrogen oxides generating HONO occurred at night,
which caused the HONO accumulation till early morning. However, HONO was gradually
decomposed along with the enhanced radiation in the daytime. What is noteworthy is that,
similar to NO2 and SO2, HCHO also appeared at an elevated concentration in the upper
layer, probably predicting that there was a strong photochemical generation of secondary
HCHO rather than primary HCHO emissions. There were also two small peaks during
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the rush hour (8:00–10:00; 16:00–17:00 LT), which was the primary source. The vertical
character of HCHO was not obvious as others, which possibly was the consequence of
preponderant secondary sources from photochemical production. The concentration of
HCHO was higher in hazy conditions, demonstrating severe photochemical oxidation
processes during haze pollution days. HCHO and NO2, which were known as the typical
precursor compounds of O3, were both relatively sufficient at noon in the upper layer, so
it is expected that there will be significant O3 production, and bring a stronger impact
to the atmospheric oxidizing capacity than HONO. In winter, the water vapor concentra-
tion is lower than in other seasons. It showed a decreasing profile and the concentration
is negatively correlated to the solar irradiance, thus the concentration in the afternoon
(12:00–16:00 LT) was relatively low during the whole daytime. In general, increased con-
centration of water vapor contributed to the generation of secondary pollutants, but the
water vapor concentration observed in haze days was lower than that in clear days, which
was different from others’ research. A possible explanation for it may be the increase of
moisture absorption of aerosol particles, as we have known, it is a process of consuming
water vapor [67–69].
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4. Discussion
4.1. Trajectory Clustering and Potential Pollution Evolution

To distinguish the influence and source of regional transport on air pollutants, the
HYSPLIT model helps simulating the backward trajectories. The trajectory frequency
option is used. It starts a trajectory every 6 h from a position and a height, then sums the
frequency with the trajectory passing through the grid cells, and then normalizes with the
total number of trajectories or endpoints. The backward trajectory frequency of the whole
campaign was shown in Figure 8a, moreover, according to the AQI (air quality index),
the whole campaign was classified into haze days or clear days respectively. Figure 8b–h
described the backward trajectory frequency of each period in chronological order.

The backward trajectories indicate that air mass mainly came from the north and
northwest. The results portrayed absolute differences between different air qualities,
especially on haze days, which were much more air mass transported from other regions.
The north and northwest of the observed site are the urban districts of Shanghai, there were
many factories and heavy traffic pollutions. In addition, Shanghai could be influenced
by emissions from neighboring provinces. The trajectory extended in the northerly and
northwesterly direction pointed to Zhenjiang, Nantong, and Yangzhou, were also covered
many industries, so the pollution of the observed site in Shanghai was transported from
both locality and other regions in the north and northwest. At the same time, it is worth
noting that sometimes pollution is transported from southern areas, such as Zhejiang
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Province. Even though the wind direction in Shanghai is mainly southeast in winter, there
is a sea in the southeast, so the pollution from this direction is not obvious as we saw.
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4.2. Vertical Characters of Tropospheric HONO

Nitrous acid (HONO) is known as a vital precursor of tropospheric hydroxyl radical
(OH), an important oxidant, which can react with organic matters and form multiple sec-
ondary productions like ozone and aerosols [15,70,71]. The role of HONO in photochemical
cycles had been underestimated before, recent studies revealed that HONO not only affects
daytime atmospheric chemistry early in the morning but also has a dominant effect in
generating OH radicals throughout the whole day [72–76]. The current observations of
HONO were mainly set up at a surface level, there are few focuses in the upper atmospheric
layers. Direct observations of HONO at high altitudes are scanty. This constrained better
comprehending for distribution in vertical dimension and transmission mode of HONO.
In this study, vertical characters of tropospheric HONO are analyzed.

Table 2 compares the HONO concentration levels in this study with those measured
at various surface sites as well as in the high-elevation atmospheres around the world. The
mean concentration of HONO at the surface and the height of 1 km is 0.27 ± 0.085 ppb
and 0.013 ± 0.0077 ppb. In contrast to previous studies, the concentrations in this study
were lower than others and were obviously lower than those polluted sites in China, but
in approximate order of magnitude as most of them. These are within expectation and
indicate reasonable measurements of HONO in this study. Moreover, the low level of
HONO concentration may imply the HONO sources of high altitudes were from diffusion
considering the short lifetime of HONO, which are discussed below.

Table 2. Comparison of HONO concentration observed at Shanghai with previous studies at surface and high altitudes.

Type Site Location Period HONO (ppb)
Mean ± SD References

Beijing, China (urban) 3 January–27 January 2016 1.05 ± 0.89 [25]
Ji’nan, China (urban) December 2015–February 2016 1.75 ± 1.62 [16]

Ground level Wangdu, China (rural) June–July 2014 0.91 ± 0.48 [77]
observations Guangzhou, China (urban) June 2006 2.80 [78]

in China Xinken, China (rural) 13 October–2 November 2004 1.20 [79]
Back Garden, China (rural) July 2006 0.76 [80]

Shanghai, China (urban) October 2004–January 2005 1.1 ± 1.0 [81]

Whiteface Mountain, USA
(1483 m a.s.l.) 14 June–20 July 199 0.046 [82]

Hohenpeissenberg, Germany
(980 m a.s.l.) 3 July–12 July 2002 0.039 [83]

Mt.Brocken, Germany
(1142 m a.s.l.) 19 June–4 July 1999 0.056 [84]

Observations at Northern Michigan
(1000–1900 m.) 30 July-6 August 2007 0.009 [85]

high altitude Northern Italy
(300–1000 m a.g.l.) 12 July 2012 ~0.15 [86]

Mt. Tai, China (1534 m a.s.l) November–December 2017
March–April 2018

0.15 ± 0.15
0.13 ± 0.15 [87]

HONO diurnal variations of all the valid days, clear days, and haze days at different
altitudes were shown in Figure 9. For the sake of description, the vertical profiles of HONO
were divided into four representational sections as follows: (1) the bottom layer (0.02 km)
represents the surface layer nearest to the ground, (2) the lower layer (0.12–0.42 km) repre-
sents the lower boundary layer, (3) the middle layer (0.52–0.82 km) represents the middle
boundary layer, (4) the higher layer (0.92–1.82 km) representing the upper boundary layer.

As shown in Figure 9, HONO was remarkably in higher concentration levels when
the pollution was severer. By comparing Figure 9b,c, a distinction can be found that the
HONO concentration was exceedingly high in the morning of haze days. The diurnal
variation patterns of those three conditions were fairly close at the bottom layer, i.e., HONO
concentrations were high in the morning & evening and low at noon, with a U shape,
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occasionally, there existed a small peak at noon, indicating there will be an unknown
source. With the increase of height, the concentration of HONO decreased, which means
the HONO of upper layers was prevailingly diffused from lower layers. However, the
diurnal variation patterns of the upper layer did not retain the characteristics of that of
the bottom layer, that is to say, from morning to noon, there was no obvious downward
trend, and even appeared higher concentration at noon, especially in the middle and higher
layers. Reasonable speculation is that the consumption of HONO at the bottom layer is
stronger than that in the upper layers, and the photolysis of HONO, dry deposition, and
wet deposition of HONO are the dominant sinks of the bottom layer. To confirm this,
the HONO vertical transport distance (σ) caused by turbulent diffusion was estimated by
Equation (5) [88]:

σ = (2KZτHONO)
1/2 (5)

where σ is the vertical transport distance, KZ is the turbulent diffusion coefficient, τHONO
is HONO chemical lifetime. In the morning, KZ is usually 102–105 cm2/s [85]. τHONO is as-
sumed as 79.1 min (according to a J(HONO) of 2.1× 10−4 s−1, which is simulated from TUV
model), then σ of the ground HONO is calculated in the range of 9.7–308.0 m. While around
noontime, the PBL has been lifted and KZ is generally in the range of 2–8 × 106 cm2/s [89].
τHONO is assumed as 17.0 min (according to a J(HONO) of 9.8 × 10−4 s−1, which is sim-
ulated from TUV model), then σ of the ground HONO is calculated in the range of
451.7–903.3 m. According to the results, the HONO vertical transport distance (σ) at
noon is much higher than in the morning. Due to the effective and uniform PBL mixing,
∆c/∆h of high altitude at noon is lower, which is consistent with the observation (∆c/∆h
at noon is ~0.11 ppb/km; ∆c/∆h in the morning is ~0.60 ppb/km).
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4.3. The Impact Factors on HONO Formation at Different Altitude

HONO can promote forming air pollutions [15], so, studying the HONO formation
mechanism can help to understand the complex process of atmospheric chemistry. Gener-
ally, the adopted sources of HONO included: (a) emitting directly from combustion [90–94],
(b) reaction of NO with OH in gas phase [37,95], (c) NO2 heterogeneous reduction on
various surfaces including aerosol surfaces, ground surface, and reductive surfaces [96–99],
(d) photolysis of nitrate (pNO3) [100–102], (e) biotic emissions [103,104]. The direct emis-
sion sources were not that important except rush hours [80]. The reaction of NO and OH
in gas phase was also relatively insignificant due to its low production rate [70]. While
heterogeneous reactions of NO2 were regarded as a considerable contributor to generating
HONO, and the efficiency of the reaction depended on the compositions of surfaces and
the content of absorbed water [105,106]. HONO/NO2 ratios could indicate the extent of
heterogeneous reaction of NO2 [80,96], normally, it was in the range of 0.01 to 0.13 near the
ground surface [107–112].
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In this study, the variations of diurnal HONO/NO2 ratios during the whole observed
period, clear days, and haze days were plotted in Figure 10. The mean HONO/NO2 ratios
in each layer were 0.013, 0.010, 0.004, 0.008 respectively, and for clear days were 0.013,
0.010, 0.004, 0.010 respectively, and for haze days were 0.017, 0.014, 0.005, 0.009 respectively.
HONO/NO2 ratios of these conditions suggested that the efficiencies of heterogeneous
reactions of NO2 in haze days were much more abundant. Aerosols provided more surfaces
for reactions. Below 800 m, HONO/NO2 ratios showed a decreasing trend as the height
increased. The surface and lower layer provided more surfaces including concrete, glass,
foliage, and aerosols for reacting. However, in this measurement, HONO/NO2 ratios of
the higher layer were not the lowest; a possible explanation for this phenomenon was
that there might be an unknown source such as vertical diffusion for generating HONO.
Future work might be expected to include tropospheric Doppler Lidar measurements with
MAX-DOAS to calculate pollutant fluxes and verify the HONO source of the higher layer.

1 
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Figure 10. Diurnal variations of HONO/NO2 at different altitudes. (a) is average of all the valid days; (b) is clear days;
(c) is haze days. Different colored lines represent different altitudes: 0.02 km black; 0.12–0.42 km red; 0.52–0.82 km blue;
0.92–1.82 km green.

The NO2 concentration, absorbed water, and reaction surfaces would impact HONO
heterogeneous generations. In order to study these effects, the relationships between
HONO and NO2 concentrations in each layer were depicted in Figure 11. The Pearson cor-
relation coefficient (R) was 0.69, 0.50, 0.54, 0.33, which means, when the height was below
0.82 km, HONO formation was affected by NO2 to some extent. As seen in Figure 11a,c,e,
the HONO concentrations were increasing with the increase of aerosol extinction because
of more reaction surfaces. While in Figure 11b,d,f, water vapor inhibited the generation of
HONO. The wet deposition could account for the decrease of HONO because of the over-
saturation of water vapor, although high RH might bring more opportunities for reactions.
When above 0.82 km (Figure 11g,h), there is no obvious correlation between HONO and
NO2, aerosol extinction, and water vapor. It is speculated that vertical diffusion might be
the dominant factor of HONO at high altitudes, which is agreed with the previous analysis.

4.4. Contribution of OH Production from HONO Photolysis at Different Altitude

Growing researches suggest that HONO photolysis contributes to producing OH not
only in the morning but also throughout the whole daytime [72–76]. HONO appeared low
concentrations at daytime because of the fast rate of its photolysis (R1) and hence HONO
photolysis provides a great contribution in generating OH radicals. Measuring HONO in
the boundary layer rather than just on the ground is really important for getting the access
of the knowledge in the field of tropospheric oxidation photochemistry.

HONO + hv→ NO + OH (320 nm < λ < 400 nm) (R1)

The OH production rate of HONO is figured up by Equation (6)

POH(HONO) = JHONO × [HONO] (6)
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Figures 12 and 13 are the case analysis of OH production rate from HONO photolysis
for a clear day (11 January 2018) and a haze day (10 February 2018) respectively. JHONO was
simulated by TUV model, and [HONO] was retrieved from MAX-DOAS measurements
using the HEIPRO algorithm. The results of POH displayed fairly close patterns whether
it’s a hazy day or a clean day. (POH value up to 1.27 ppb/h and 0.67 ppb/h respectively)



Remote Sens. 2021, 13, 3518 17 of 23

JHONO increased with the increase of height, on the contrary, [HONO] usually decreased
with the increase of height. These two parameters have an opposite effect on POH. [HONO]
changed substantially when the height elevated, while JHONO changed relatively in a
smaller amplitude. So, it is evident that POH had a similar variation trend with [HONO],
which means POH was mainly controlled by [HONO], especially below 0.7 km. However,
with the decrease of [HONO], POH was controlled both by [HONO] and JHONO when the
height was up to 0.7 km.

Remote Sens. 2021, 13, 3518 17 of 24 
 

 

the boundary layer rather than just on the ground is really important for getting the access 
of the knowledge in the field of tropospheric oxidation photochemistry. HONO + hv → NO + OH (320nm  λ  400 nm) (R1)

The OH production rate of HONO is figured up by Equation (6) P (HONO) = J [HONO] (6)

Figures 12 and 13 are the case analysis of OH production rate from HONO photolysis 
for a clear day (11 January 2018) and a haze day (10 February 2018) respectively. JHONO was 
simulated by TUV model, and [HONO] was retrieved from MAX-DOAS measurements 
using the HEIPRO algorithm. The results of POH displayed fairly close patterns whether 
it’s a hazy day or a clean day. (POH value up to 1.27 ppb/h and 0.67 ppb/h respectively) 
JHONO increased with the increase of height, on the contrary, [HONO] usually decreased 
with the increase of height. These two parameters have an opposite effect on POH. [HONO] 
changed substantially when the height elevated, while JHONO changed relatively in a 
smaller amplitude. So, it is evident that POH had a similar variation trend with [HONO], 
which means POH was mainly controlled by [HONO], especially below 0.7 km. However, 
with the decrease of [HONO], POH was controlled both by [HONO] and JHONO when the 
height was up to 0.7 km. 

 
Figure 12. Case analysis of OH production rate from HONO photolysis for a clear day (11 January 2018). (a–c) is the 
correlation between [HONO], JHONO, POH, and altitude at different times in one day. Different colored lines represent dif-
ferent times. (d–f) is the profile of [HONO], JHONO, and POH respectively. 

Figure 12. Case analysis of OH production rate from HONO photolysis for a clear day (11 January 2018). (a–c) is the
correlation between [HONO], JHONO, POH, and altitude at different times in one day. Different colored lines represent
different times. (d–f) is the profile of [HONO], JHONO, and POH respectively.
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0.82 km, which is the same height as the chimneys of power plants, showing direct effects 
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tion at the middle layer in the afternoon, probably manifesting that there existed strong 
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different times. (d–f) is the profile of [HONO], JHONO, and POH respectively.
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5. Conclusions and Summaries

This paper described the diurnal variation and vertical distribution of trace gases
(NO2, HONO, HCHO, SO2, and water vapor) and aerosol extinction of Shanghai based on
in-situ MAX-DOAS measurements from December 2017 to March 2018, and characterized
their vertical profiles retrieved using the HEIPRO algorithm. The VCDs and surface
concentrations are validated with the USTC-OMI, CNEMC, and NCDC measurements,
gaining good correlation coefficients and proving good data quality of MAX-DOAS. The
HYSPLIT model helps to simulate the backward trajectories, indicating that air mass mainly
came from north and northwest, and sometimes southeast.

Aerosol and NO2 both showed an exponentially downward trend, and the high
concentration was concentrated near the surface, indicating that the main emission sources
were at surface level. SO2 profiles showed high concentration levels at the altitude of
0.12–0.82 km, which is the same height as the chimneys of power plants, showing direct
effects by industrial emissions. However, as for HCHO, it was also observed a peak
concentration at the middle layer in the afternoon, probably manifesting that there existed
strong photochemical formation, and HCHO was principally from secondary sources. The
water vapor concentration observed in haze days was lower than that in clear days, which
might be caused by the increase of moisture absorption of aerosol particles. Then, we
also emphasized the analysis of influencing factors of HONO generation and contribution
of OH production from HONO photolysis at different altitudes. Below 0.82 km, various
surfaces, such as ground, aerosol surfaces, reductive surfaces, provided more opportunities
for the heterogeneous reactions of NO2 to form HONO, while in the upper layers, vertical
diffusion might be the dominating source of HONO. NO2 promoted the formation of
HONO, however, water vapor inhibited. The contribution of OH production from HONO
photolysis at different altitudes was influenced by both the concentration of HONO and the
HONO photolysis frequencies, however, the results showed that it was mainly controlled
by the former factor.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13173518/s1, Table S1: All the defined haze days and clear days during the whole
campaign, Figure S1: Time series of aerosol extinction vertical profiles during February 2018 retrieved
from MAX-DOAS measurements, Figure S2: Time series of NO2 vertical profiles during February
2018 retrieved from MAX-DOAS measurements, Figure S3: Time series of HONO vertical profiles
during February 2018 retrieved from MAX-DOAS measurements, Figure S4: Time series of HCHO
vertical profiles during February 2018 retrieved from MAX-DOAS measurements, Figure S5: Time
series of SO2 vertical profiles during February 2018 retrieved from MAX-DOAS measurements,
Figure S6: Time series of water vapor vertical profiles during February 2018 retrieved from MAX-
DOAS measurements, Figure S7: The location of the MAX-DOAS instrument and CNEMC sites in
urban Shanghai. The CNEMC sites are far away from the instrument.
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