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Abstract: Land degradation and development (LDD) has become an urgent global issue. Quick and
accurate monitoring of LDD dynamics is key to the sustainability of land resources. By integrating
normalized difference vegetation index (NDVI) and net primary productivity (NPP) based on the
Euclidean distance method, a LDD index (LDDI) was introduced to detect LDD processes, and to
explore its quantitative relationship with climate change and human activity in China from 1985 to
2015. Overall, China has experienced significant land development, about 45% of China’s mainland,
during the study period. Climate change (temperature and precipitation) played limited roles in
the affected LDD, while human activity was the dominant driving force. Specifically, LDD caused
by human activity accounted for about 58% of the total, while LDD caused by climate change only
accounted for 0.34% of the total area. Results from the present study can provide insight into LDD
processes and their driving factors and promote land sustainability in China and around the world.

Keywords: monitoring of land degradation and development; land degradation and development
index; remote sensing; climate change; anthropogenic factors

1. Introduction

Land degradation is defined as a persistent decline in terrestrial ecosystem productiv-
ity during a period and it is characterized by vegetation degradation, water loss, soil erosion
and desertification [1]. It has profoundly affected the ecosystem and human well-being
and induced a series of environmental and social problems, including carbon emissions,
climate change, biodiversity loss, sandstorms and food and water security [2—4]. Land
development represents land improvement and is characterized by vegetation restoration,
terrestrial ecosystem productivity and vegetation cover growth. It is beneficial to natural
environment protection and socioeconomic development [5]. The world is facing the issue
of land degradation and development (LDD) and it has attracted strong attention from
concerned individuals and the scientific community [6].

Quick and accurate monitoring of LDD dynamics is key to ensure the sustainability of
land resources. The development of remote sensing (RS) technology provides an important
resource for monitoring the spatiotemporal dynamics of LDD processes and plays a vital
role in the mitigation of land degradation, especially at large scales (e.g., national scale,
continent scale, and global scale) [4,7]. Remotely sensed vegetation indices have been
widely applied to reflect LDD processes in previous studies. One of the most common
indices is normalized difference vegetation index (NDVI) [6]. NDVI reflects the vegetation
conditions of terrestrial ecosystems based on the normalized difference between red and
near-infrared red (NIR) radiation of healthy vegetation. However, there are two main flaws
when using NDVI to represent the biomass and production of terrestrial ecosystems [8].
First, the relationships between NDVI, biomass and productivity are not linear, and may
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become saturated in high vegetation cover areas. In addition, NDVI reflects the greenness
instead of the photosynthesis of vegetation. This means that NDVI may not be very
sensitive to a substantial increase or decline in vegetation, and therefore does not necessarily
reflect the actual biomass and productivity dynamics in particular regions [8]. These issues
result in the uncertainty of NDVI in evaluating the dynamics of LDD.

To improve the reliability of NDVI in monitoring LDD processes, some studies have
attempted to construct a new index by integrating NDVI with transformation parameters.
For instance, multiplying NDVI by NIR, Badgley et al. [9] proposed the NIRv and Camps-
Valls et al. [8] built a kernel NDVI (kNDVI) using the theory of kernel methods based
on machine learning. Both new indices showed higher correlations with gross primary
productivity (GPP) and sun-induced chlorophyll fluorescence (SIF) than the original NDVI
at specific temporal scales [8,9]. However, the abovementioned new indices may not be
suitable at the large regional scale and over longer period because the calculation process
is complex and time-consuming. Therefore, the question remains whether we can create
a more convenient and simpler index to quickly and accurately monitor LDD processes
at wide spatiotemporal scales. NPP (net primary productivity), as an important remotely
sensed parameter, can accurately reflect ecosystem productivity and biomass, and has
been individually used to explore LDD processes at different spatiotemporal scales [10].
Theoretically, NDVI can reveal LDD processes if it is integrated with NPP. However, no
previous research has attempted this.

In this study, we introduced a LDD index (LDDI) by integrating NDVI and NPP based
on the Euclidean distance method to detect the LDD processes in China from 1985 to 2015
and explored its relationship to climate change and human activities. This study can offer
quick and accurate monitoring of LDD at large spatiotemporal scales and provide a deeper
understanding of LDD processes and their driving mechanisms and eventually contribute
to land use sustainability in China and other countries around the world.

2. Materials and Methods
2.1. Study Area

China is located in eastern Asia to the west of the Pacific Ocean. It covers an area
of about 9.6 million km? and has a population of approximately 1.39 billion [11]. The
topography of China is high in the west and low in the east, with altitudes ranging from
about 171 m to 8488 m above the mean seal level. Generally, China can be divided into
6 subareas with different natural and socioeconomic environments, including north China
(NCQ), northeast China (NEC), northwest China (NWC), east China (EC), central south
China (CSC) and southwest China (SWC) (Figure 1). There are four main climate types:
Subtropical monsoon climate (covering the EC, CSC and eastern part of SWC), temperate
monsoon climate (including the NC and NEC), temperate continental climate (NWC)
as well as the plateau climate (including the western part of SEC and southern part of
NWCQ) [12]. Socioeconomic development also varies in different subareas.

Due to tremendous economic growth and rapidly expanding urban development, as
well as over cultivation and grazing behaviors, China has undergone great land degradation
over the past few decades [13,14]. Since the 1970’s, large-scale ecological projects have been
launched in China by the central government with the aim of preventing water loss and soil
erosion and ensuring sustainable development (e.g., the Three-North Forest Shelterbelts
Program launched in 1979 and the Grain for Green Program implemented in 1999) [15-17].
These programs protected ecosystems’ stability and productivity, and therefore mitigated
land degradation in some regions to a certain extent.
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Figure 1. The study area. I-VI represents northeast China (NEC), north China (NC), east China (EC),
northwest China, southwest China (SWC) and central south China (CSC), respectively.

2.2. Data Acquisition and Processing

The NDVI data used in this study were derived from the GIMMS-NDVI 3g.v1 time
series dataset, which was based on an advanced very high-resolution radiometer (AVHRR)
and currently ranges from 1981 to 2015 with a spatial resolution of 8 km and temporal
resolution of 15 days [18]. Using MATLAB software, the semi-monthly original data were
first transformed to monthly data by calculating the maximum value in each pixel and
then the monthly maximum data were transformed to yearly data by calculating the mean
value of 12 months in a year.

NPP data were acquired from the global annual summed GPP/NPP dataset generated
by the revised EC-LUE model, which covers a period from 1980 to 2018 with a spatial
resolution of 0.05° [19,20].

The annual mean temperature (MAT) and precipitation (MAP) were derived from the
dataset of 1 km monthly mean temperature and precipitation dataset for China (1901-2017)
(https:/ /data.tpdc.ac.cn/zh-hans/) (accessed on 22 May 2021). The dataset was spatially
downscaled from CRU TS v4.02 with WorldClim datasets based on the delta downscaling
method. The dataset was evaluated by 496 national weather stations across China, and the
evaluation indicated that the downscaled dataset is reliable for investigations related to
climate change across China [21].

All of these data were resampled to a spatial resolution of 10 km with the Al-
bers_ WGS_1984 coordinate system using ArcGIS 10.5 software.
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2.3. Method
2.3.1. Building of Land Degradation and Development Index (LDDI)

LDDI was built based on the Euclidean distance method [22], which has been widely
used in environmental and ecological research, such as dryness monitoring [11]. In 2D
space, the Euclidean distance model can be written as follows:

o=/ 02 —x1)*+ (v, — 1)° (1)

where p represents the Euclidean distance between points (x;, y;) and (x2, y,).
In this study, we measured LDDI using NDVI and NPP. Before building the LDDI,
we normalized the NDVI and NPP to values ranging from 0 to 1 by using the following

two equations:
NDVI — NDVIin

NDVImnax — NNDVIi,

NPP — NPPmin
NNPP = NPPmax — NPPyin (3)
where NNDVI and NNPP represent the normalized NDVI and NPP; NDVInax, NPPmax,
NNDVI,,in, and NPPp, represent the maximum NDVI, maximum NPP, minimum NDVI
and minimum NPP.
Then, based on the Euclidean distance method, we defined LDDI as the distance to
the points with minimum NDVI and minimum NPP. Longer distances represent higher
LDDI values. Specifically, Equation (1) can be written as:

NNDVI = )

LDDI = \/ (NNDVI — NNDVIin)? + (NNPP — NNPPi) )

where NNDVI,;, and NNPP,,;, represent the minimum NNDVI and minimum NNPP,
respectively. Because the value of NNDVI,i, and NNPP,,, is 0, LDDI can be simplified as:

LDDI = \/ (NNDVI)? + (NNPP)? (5)

2.3.2. The Sen-MK Method

The Sen-MK method was used to analyze the change trend of LDDI. The Sen-MK
method integrates a Theil-Sen median trend analysis with a Mann-Kendall test, which had
been widely used in previous studies to evaluate and test the change trend of time series
data [23].

The Theil-Sen Median trend analysis is a robust statistical trend based on calculation
median slopes of time series data [24]. The equation can be written as follows:

. Xj =X e
Sen_slope = medlan( — ), Vj>i (6)
where Sen_slope is the change trend of time series data; x; and x; represents the values of
times series data of year j and i, respectively.

The Mann-Kendall test is a non-parametric statistical test and is generally used to test
the significance of changes in the trend of time series data, which can be written as [25]:

S-1_ 5>
Var(S)

the statisticof Z=< 0, S=0 (7)
S+1 S<0

/Var(s)’
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where S is the test statistic and Var(S) is the variance of statistic S and can be written as:

n—1 n
S=Y Y sgn(x—x) 8)

i=1i=i+1

where x; and x; represent the values of time series of year j and i, respectively; sgn is
sign function:
1, Xj—Xj > 0
sgn(xj—x) =< 0, X —x; =0 ©)
-1, Xj — X < 0

Based on the slope value of the Theil-Sen median trend and the statistic of Z of the
Mann-Kendall test, the LDD processes in China during the study period was classified
into five types (Table 1) [23].

Table 1. LDD processes in China.

Slope of LDDI Z Statistic LDD Types
Slope < —0.0005 Z < -1.96 Significant degradation
Slope < —0.0005 -1.96 <Z <196 Slight degradation
—0.0005 < Slope < 0.0005 —-196<Z<1.96 Nonsignificant change
Slope > 0.0005 —196<Z <196 Slight development
Slope > 0.0005 Z>196 Significant development

2.3.3. The Hot- and Cold-Spot Analysis

The Getis-OrdGi method was used to identify the hot- and cold-spot areas of LDDI
change [26]. The hot-spot represents the agglomerations of higher slope values of LDDI,
and the cold-spot represents the agglomeration of lower slope values of LDDI. Its equation
can be written as:

n
in1 WiXi
G = 217], i

i1 Xi # (10
L _ G —E(G)
Z(Gy) = NarG) (11)

where wj; is the spatial weight matrix; x; is the value of the spatial unit i; E(G;) and Var(G;)
represents the exception and variance of G;, respectively. Z(G;) is the statistic measuring
the hot- and cold-spots, when Z(G;) > 0, the spatial unit i is a hot-spot; when Z(G;) < 0, the
spatial unit i is a cold-spot. Specifically, the hot spot represents the land development area,
while the cold spot represents the land degradation area.

2.3.4. Multiple Linear Regression Model and Residual Analysis

We used the multiple linear regression model to analyze the effects of climate factors
on LDD processes at each pixel scale [27], which can be written as:

z=ax+by+f

where z is the dependent variable; x and y are the interpretation variables; a and b are the
regression coefficients of x and y; 3 is the constant term.

Specifically, the residual error of multiple linear regression model represents the part
of dependent variable Z that are not significantly sensitive to the interpretation factors.
In this study, the residual can be regarded as the parts of LDD affected by anthropogenic
factors. Therefore, we can use the residual analysis to explore the relationships between
the LDD process and human factors [27]. It can be written as:

A

e=2— 7



Remote Sens. 2021, 13, 3516

6 of 13

Z = ax +by

where ¢ is the residual error between the original Z and modeled Z.

For measuring the change trend of residuals, we analyzed the trend of residuals by
using the linear regression model and classified them into 5 types based on the classification
method of Tian et al. [28] (Table 2). An increase in residuals indicates the enhancement of
human activities, while a decrease means a decrease in human activities.

Table 2. The change in effects of human activities on LDD.

Slope of Residual Significance Level LDD Types
Slope < —0.0005 p<0.01 Significant decrease
Slope < —0.0005 0.01 <p<0.05 Slight decrease

—0.0005 < Slope < 0.0005 p > 0.05 Nonsignificant change
Slope > 0.0005 p <0.01 Slight increase
Slope > 0.0005 0.01 <p<0.05 Significant increase

3. Results
3.1. Spatiotemporal Dynamics of LDD from 1985 to 2015

Using the Sen-MK method, the spatiotemporal dynamics of LDD in China from 1985
to 2015 were explored. Overall, China has experienced land development from 1982 to 2015
(Figure 2). The significant and extremely significant land development area spread across
the country, such as the Loess Plateau area, the North China Plain, southwest China, the
south Tibetan area and the north area of Xinjiang Uygur Autonomous Region, accounting
for about 45% of the total area of China. Meanwhile, about 13% of China’s land experienced
degradation processes, and these were mainly distributed in the Yangtze River Delta, the
Pearl River Delta and the Daxinganling Mountain area of northeast China and some parts of
the northeast area of the Xinjiang Uygur Autonomous Region. The remaining 32% of China
did not undergo significant change, which was mainly distributed in northwest China.
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The hot-spot analysis further showed the areas where LDD took place during the study
period in China. As we can see in Figure 3, the hot spots representing the land development
areas were mainly located in the Loess Plateau areas such as east Gansu Province, north
Shaanxi Province and Shanxi Province, the North China Plain including south Hebei
Province, the whole Henan Province, north Anhui Province and west Shandong Province,
and southwest China embracing Yunnan Province, Guizhou Province and west Guangxi
Zhuang Autonomous Region. In addition, there were hot spots distributed in the northwest
Xinjiang Uygur Autonomous Region, Bohai Bay Basin and Sanjiang Plain in Jilin Province.
The cold spots were mainly distributed in Guangdong Province, south Jiangsu Province,
Shanghai, north Zhejiang Province and the east Inner Mongolia Autonomous Region.
Additionally, some cold spots were also found in east Xinjiang Uygur Autonomous Region.
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Figure 3. The hot and cold spots of LDD.

3.2. Relationships between LDDI, Climate Factors and Anthoropogenic Factors

The relationships between LDD and the main climate factors are shown in Figure 4.
Temperature had a positive effect on LDDI in the north and southwest parts of China and
had a negative correlation with LDDI in south China (Figure 4a). From Figure 4b, we
can find that precipitation positively correlated with LDDI in north China, especially in
Xinjiang Uygur Autonomous Region, Inner Mongolia Autonomous Region and the Loess
Plateau area; while temperature negatively correlated with LDDI in southwest China, such
as the south Tibetan area and Yunnan Province. However, as can be seen in Figure 4c,
the regression relationships between LDDI and climate factors were not significant, with
overall p values higher than 0.5. The significant relationships were only found in the
Daxinganling Mountain area and the south Tibetan area.
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Figure 4. The regression relationships between LDDI and climate factors in China. (a) The regression coefficient of

temperature; (b) The regression coefficient of precipitation; and (c) The significance level.

The residual represents the effects of anthropogenic activities on LDD. The increase
in residual indicated that the effects of human activities on LDD processes had been
strengthened. From Figure 5, we can see that the human factors became more important in
driving the LDD processes in China during the study period. As shown in Figure 5b, the
area experiencing increasing effects of human activities on LDD accounting for about 84%
of China’s mainland and was mainly distributed in the Loess Plateau area, Qinghai-Tibetan
Plateau, north China plain and southwest China. About 6% of the total area underwent a
decrease in human influences on LDD, which were located in the Yangtze River delta, the
Pearl River Delta area and some places in the Xinjiang Uygur Autonomous Region.

Figure 5. Residual analysis of LDDI’s influencing factors. (a) The slope of residual and (b) significance level.

3.3. Relative Roles of Climate Change and Anthropogenic Factors in LDD

Based on the slope of LDDI and its relationships with climate factors and anthro-
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pogenic factors, we further explored the relative contributions of climate change and
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anthropogenic factors to the LDD processes. According to a previous study, we classified
LDD into eight types (Table 3).

Table 3. Classification standard of LDD types.

Significance Level of Regression Model Significant Level of

Development induced by
climate change
Degradation induced by
climate change
Development induced by
human factors
Degradation induced by
human factors
Development induced by
climate change and
human factors
Degradation induced by
climate change and
human factors
Natural development
Natural degradation

LDDI’s Change Trend between LDDI and Climate Factors Residual’s Slope
Significant increase p <0.05 p >0.05
Significant decrease p<0.05 p>0.05
Significant increase p>0.05 p<0.05
Significant decrease p>0.05 p <0.05
Significant increase p<0.05 p<0.05
Significant decrease p<0.05 p<0.05
Significant increase p>0.05 p>0.05
Significant decrease p>0.05 p>0.05

As shown in Figure 6, anthropogenic factors played dominant roles in driving LDD
dynamics. Land significantly influenced by human activities accounted for about 58% of
the whole country’s land. Specifically, land development was the dominant LDD type
(accounted for about 47.46% of total land area) and was spread all over the country, while
the land degradation area accounted for 10.38% and was mainly distributed in east China
and central south China. LDD dominated by climate change occupied only 0.34% of the
entire country (0.23% and 0.11% for land development and land degradation, respectively).
The lands influenced by the synergistic effects of climate factors and anthropogenic factors
accounted for 2.6% of the total and they were mainly distributed in the mountain area,
such as the south part of the Daxinganling Mountain area of north China and the Qinling
Mountain area in northwest China. Meanwhile, about 7.4% of the total land in China
experienced natural degradation or development and it was not significantly affected by
external factors.
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Figure 6. LDD types in China.



Remote Sens. 2021, 13, 3516

10 of 13

4. Discussion
4.1. Effects of Climate Change on LDD Processes

Based on the multiple linear regression analysis, we explored the effects of precipita-
tion and temperature on LDD processes in China at each pixel scale. In general, the climate
represented by precipitation and temperature can greatly influence the LDD processes by
directly or indirectly affecting the vegetation’s physical activities (i.e., photosynthesis and
respiration) [3,13,16,29]. In the present study, we found that temperature was correlated
with LDD processes and had a greater influence on LDD processes than precipitation in
China during the study period as found in a previous study in China [27] and in North
America [30]. It was widely accepted that global warming exerted a great influence on
terrestrial ecosystems [30]. For example, the increase in heat and water stress on vegetation
induced by extreme drought can limit the growth of natural vegetation as well as crops, and
ultimately cause the degradation of forested land, grassland, and cropland [3,22,31]. Precip-
itation played a role in affecting LDD processes mainly in north China, which is dominated
by arid and semi-arid climate environments, which is also similar to a previous study
in China [27,32]. The growth of natural vegetation and crops in these areas is generally
constrained by water conditions and thus it is more sensitive to changes in rainfall.

However, from the significant level of the multiple regression models (Figure 4c),
we found that at the pixel scale (10 km x 10 km), the relationship between LDD and
climate factors in most regions in China were not significant, with a p value greater than
0.05. This may be because the time frame of the present study, which is relatively short.
Actually, the responses of the terrestrial ecosystems to climate change vary according to
spatiotemporal scales. Consequently, it is important to explore the scale effects of climate
change on LDD processes in a future study, which may help reveal the driving mechanism
of LDD processes.

4.2. Effects of Anthropogenic Activities on Land Degradation and Development

Based on residual analysis, we further explored the influences of anthropogenic factors
on LDD processes in China during the study period. Human activities, such as urbanization,
economic development and ecological restoration programs, exerted a great influence on
LDD processes and became the most important driving factors of LDD [6,13,33,34].

Human activity was the most important driving force of LDD processes in China
during the study period, especially the land development processes. The land development
in most natural vegetation areas could be attributed to the implementation of ecological
programs in China [31,35]. Since 1970s, the Three-North Forest Shelterbelts Program and
Grain for Green program were launched in China, which have greatly transformed the
land use and increased the vegetation cover, and eventually contributed to the land devel-
opment [16,17]. The utilization of advanced cultivation techniques in China during recent
decades is the main reason for the development of farmland in areas such as the North
China Plain and Northeastern China Plain [36]. With the promotion of chemical fertilizer
and pesticides as well as improved cultivation machinery and irrigation technology in
China, the disaster resistance of the crop was enhanced and yields were increased since
1980s [6,37,38]. The rapid urbanization that has occurred in China over recent decades
(especially in east China) has resulted in various effects on land development both directly
and indirectly. Urbanization occupied large portions of farmland and natural spaces and
induced land degradation of farmlands, forests, grasslands and wetlands [39-42]. With
the development of urbanization in China, green infrastructure including urban forests,
grasslands and water areas attracted attention because of their role in the mitigation of
many urban issues. This has helped with the development of ecological lands in or around
urban areas [43—46].

4.3. Availability and Limitation of LDDI in Monitoring LDD Processes

In this study, a new land degradation and development index (LDDI) was proposed
to quickly and accurately monitor the LDD processes of terrestrial ecosystems; it was
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successful in revealing the LDD dynamics in China from 1982 to 2015. Our study proved
that the LDDI is suitable for monitoring LDD processes at large spatiotemporal scales. The
LDDI demonstrated certain advantages. First, the data used are readily available. Both
NDVI and NPP data can be easily acquired from existing remote sensing products, and
most are reliable and are generally provided without any cost. Second, compared with
other improved NDVI indexes created by introducing transformation parameters, LDDI
in the present study can be calculated based on MATLAB software or R by using some
relatively concise programs and in a very short time. Third, by integrating NDVI and NPP,
LDDI reflects vegetation greenness and productivity in the meantime, and thus accurately
reveals the actual vegetation dynamics.

LDD], of course, has its limitations in monitoring LDD processes. For example, the
index partly improves the saturation in high vegetation cover by considering greenness
and productivity together, but it is unable to avoid this problem. In addition, this index
is not suitable for certain regions, such as mountainous areas with high altitudes and
complex terrain.

5. Conclusions

In this study, we initially proposed a LDDI based on the Euclidean distance method,
and then detected the spatiotemporal dynamics of LDD and their relationship with climate
change and human activities in China from 1982 to 2015. China has experienced significant
land development during the study period. Temperature and precipitation partly played a
role in the affected LDD. However, human activities served as the dominant driving force
of LDD in China.

The LDDI proposed in this study can provide quick and accurate monitoring of LDD
processes at the large spatiotemporal scale and offers a deeper understanding of LDD’s
driving mechanisms. However, some improvements are needed to solve the saturation
problem with high vegetation cover.
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